Про GPT в Алисе
Бывает, скажешь что-нибудь эдакое Алисе — например, ругнешься невзначай в ответ на её «в данную минуту на улице плюс шесть» в сентябре, а она подхватит и ответит как живая. С развитием больших языковых моделей это хоть и приятно, но не удивительно. Но вопрос-то в другом: насколько в ней действительно «сидит» GPT, а где всё ещё работают старые сценарные схемы?
На прошедшем big tech night 12 сентября как раз был доклад Павла Капли, руководителя продуктовой разработки Алисы, посвящённый этой теме. Выделил для себя главное:
1. Раньше Алиса жила на сценариях: «услышала intent → выбрала готовый ответ».
2. Теперь команда двигается к агентности: ИИ сам строит логику решения задачи, вызывает нужные инструменты по шагам, а не идёт по заранее заданным веткам.
3. Первые прототипы работали по 15 секунд на запрос, но инженерная оптимизация позволила добиться скорости и стабильности.
4. Результаты внедрения на ТВ-станциях: перезапросы ↓ 11,41 %, ошибки «извините» ↓ 16,09 %, «не смогла» ↓ 15,58 %.
Итог простой: GPT внутри Алисы не только работает, но и улучшает пользовательские метрики и даёт системе возможность понимать сложные команды вроде «включи Титаник на громкости 30». Если хотите узнать больше об архитектурной революции в Алисе — смотрите запись доклада вот тут.
Бывает, скажешь что-нибудь эдакое Алисе — например, ругнешься невзначай в ответ на её «в данную минуту на улице плюс шесть» в сентябре, а она подхватит и ответит как живая. С развитием больших языковых моделей это хоть и приятно, но не удивительно. Но вопрос-то в другом: насколько в ней действительно «сидит» GPT, а где всё ещё работают старые сценарные схемы?
На прошедшем big tech night 12 сентября как раз был доклад Павла Капли, руководителя продуктовой разработки Алисы, посвящённый этой теме. Выделил для себя главное:
1. Раньше Алиса жила на сценариях: «услышала intent → выбрала готовый ответ».
2. Теперь команда двигается к агентности: ИИ сам строит логику решения задачи, вызывает нужные инструменты по шагам, а не идёт по заранее заданным веткам.
3. Первые прототипы работали по 15 секунд на запрос, но инженерная оптимизация позволила добиться скорости и стабильности.
4. Результаты внедрения на ТВ-станциях: перезапросы ↓ 11,41 %, ошибки «извините» ↓ 16,09 %, «не смогла» ↓ 15,58 %.
Итог простой: GPT внутри Алисы не только работает, но и улучшает пользовательские метрики и даёт системе возможность понимать сложные команды вроде «включи Титаник на громкости 30». Если хотите узнать больше об архитектурной революции в Алисе — смотрите запись доклада вот тут.
❤25👍13😁2