Открытый код ФКН ВШЭ pinned «🎉 Стартует конкурс проектов с открытым кодом для студентов ФКН НИУ ВШЭ! 🎉 Приглашаем вас принять участие в первом конкурсе проектов с открытым исходным кодом. Это отличный шанс прокачать свои навыки, сделать вклад в open-source сообщество и выиграть призы!…»
Forwarded from ФКН НИУ ВШЭ
Kotlin-митапы снова в игре
💻 💻 💻 совместно с российской группой пользователей Kotlin открывают серию митапов, посвящённых разным аспектам разработки на Kotlin и экосистемы языка. Митап подойдёт как новичкам, так и бывалым котлиновцам.
В программе:
⤵️ 18:00 — Открытие митапа
🎙️ Александр Нозик, лидер Kotlin-сообщества
⤵️ 18:10 — Доклад «Горячие и холодные потоки в Kotlin Flow»
🎙️ Яна Седова, специалист по автоматизации технических процессов в Яндекс Крауд
⤵️ 19:10 — Доклад «Пополнение в семье kotlinx: зачем нам этот ваш kotlinx.fuzz?»
🎙️ Александр Соколинский, Яндекс Go, Android Architect
📆 Когда: 30 мая в 18:00
🗺️ Где: Покровский бульвар, 11
Участие бесплатное по регистрации🐭
#анонсы #разработка
В программе:
Участие бесплатное по регистрации
#анонсы #разработка
Please open Telegram to view this post
VIEW IN TELEGRAM
❤🔥5❤3👍2
Forwarded from Yandex for Developers
Подводим итоги программы поддержки независимых разработчиков от Yandex Open Source. Нам прислали 120 проектов в трёх категориях: обработка и хранение данных, машинное обучение и разработка. Забавный и поучительный факт: один участник отправил заявку 15 марта в 23:59 — в последнюю минуту подачи. И победил!
Подписывайтесь:
Please open Telegram to view this post
VIEW IN TELEGRAM
❤5❤🔥2
Forwarded from Научный опенсорс (Nikolay Nikitin)
Мы тут вместе с учебно-научной лабораторией ИТМО LISA организовали мини-семинар по разборке удачных и неудачных реализаций студенческих репозиториев. Заодно обсудим опыт улучшения некоторых из них с помощью нашего ИИ-инструмента OSA (про который недавно писали на Хабре).
С нашей стороны в роли эксперта участвует Андрей Гетманов - исследователь из NSS Lab, руководитель разработки OSA и активный участник соообщества ITMO OpenSource.
Если интересно послушать - подключиться можно тут в зуме, вот как раз начинаем.
С нашей стороны в роли эксперта участвует Андрей Гетманов - исследователь из NSS Lab, руководитель разработки OSA и активный участник соообщества ITMO OpenSource.
Если интересно послушать - подключиться можно тут в зуме, вот как раз начинаем.
🔥7❤4👍2
tencdm
В репозитории содержится код для воспроизведения экспериментов по генерации текста методом TEncDM (Text Encoding Diffusion Model) — диффузионной модели, работающей в пространстве выходных представлений предобученной языковой модели, а не в embedding-пространстве, как в большинстве предыдущих работ. Авторы демонстрируют, что использование таких представлений, содержащих контекстную информацию, существенно упрощает задачу денойзинга и повышает качество генерации. Ключевая особенность TEncDM — декодер, специально обученный восстанавливать текст из зашумленных латентных представлений, что позволяет компенсировать ошибки на этапах диффузии. Также авторы подробно исследуют влияние self-conditioning и scheduler’ов шума на качество модели. Предложен новый scheduler (tan-d), равномерно распределяющий сложность по всем шагам денойзинга. В экспериментах показано, что при использовании таких компонентов модель превосходит существующие SOTA подходы (DiffuSeq, AR-Diffusion и др.) на задачах перефразирования, суммаризации и упрощения текста (QQP, XSum, Wiki-Auto). Репозиторий предоставляет полный пайплайн: тренировка диффузионной модели в пространстве энкодингов, обучение декодера с corrupt-стратегией, настройка self-conditioning и различных схем шумов. Код открытый, реализован на PyTorch и включает запуск на множестве датасетов (ROCStories, Wikipedia и др.), поддерживая генерацию в условиях как с условием (conditional), так и без него. Работа может быть полезна исследователям в области генерации текста, особенно тем, кто занимается развитием диффузионных моделей, а также разработчикам, ищущим более интерпретируемые и мощные альтернативы автокорреляционным языковым моделям.
статья | код
В репозитории содержится код для воспроизведения экспериментов по генерации текста методом TEncDM (Text Encoding Diffusion Model) — диффузионной модели, работающей в пространстве выходных представлений предобученной языковой модели, а не в embedding-пространстве, как в большинстве предыдущих работ. Авторы демонстрируют, что использование таких представлений, содержащих контекстную информацию, существенно упрощает задачу денойзинга и повышает качество генерации. Ключевая особенность TEncDM — декодер, специально обученный восстанавливать текст из зашумленных латентных представлений, что позволяет компенсировать ошибки на этапах диффузии. Также авторы подробно исследуют влияние self-conditioning и scheduler’ов шума на качество модели. Предложен новый scheduler (tan-d), равномерно распределяющий сложность по всем шагам денойзинга. В экспериментах показано, что при использовании таких компонентов модель превосходит существующие SOTA подходы (DiffuSeq, AR-Diffusion и др.) на задачах перефразирования, суммаризации и упрощения текста (QQP, XSum, Wiki-Auto). Репозиторий предоставляет полный пайплайн: тренировка диффузионной модели в пространстве энкодингов, обучение декодера с corrupt-стратегией, настройка self-conditioning и различных схем шумов. Код открытый, реализован на PyTorch и включает запуск на множестве датасетов (ROCStories, Wikipedia и др.), поддерживая генерацию в условиях как с условием (conditional), так и без него. Работа может быть полезна исследователям в области генерации текста, особенно тем, кто занимается развитием диффузионных моделей, а также разработчикам, ищущим более интерпретируемые и мощные альтернативы автокорреляционным языковым моделям.
статья | код
GitHub
GitHub - M0RJIQUE/tencdm
Contribute to M0RJIQUE/tencdm development by creating an account on GitHub.
❤9🔥6👍2😍2
PersonGenSampler
В репозитории представлен код для воспроизведения результатов работы по критическому анализу стратегий семплирования в text-to-image генерации с использованием диффузионных моделей. Авторы подробно рассматривают различные подходы: Mixed, Switching, Multi-stage, Masked sampling, а также сравнивают их с существующими решениями. В частности, предлагается использовать смешение траекторий генерации между концептом и его суперклассом, а также различные способы комбинирования guidance сигналов. В серии экспериментов на датасетах Dreambooth и различных бэкбонах (SD-2, SD-XL, PixArt-alpha) показано, что грамотно выбранная стратегия семплирования может заметно повысить соответствие изображе. Отдельное внимание уделено анализу вычислительных затрат различных методов. Результаты обобщены в виде практического фреймворка для выбора стратегии в зависимости от приоритетов. Работа будет полезна исследователям и инженерам, занимающимся генеративными моделями, а также разработчикам приложений в креативных индустриях и автоматизации контента.
статья | код
В репозитории представлен код для воспроизведения результатов работы по критическому анализу стратегий семплирования в text-to-image генерации с использованием диффузионных моделей. Авторы подробно рассматривают различные подходы: Mixed, Switching, Multi-stage, Masked sampling, а также сравнивают их с существующими решениями. В частности, предлагается использовать смешение траекторий генерации между концептом и его суперклассом, а также различные способы комбинирования guidance сигналов. В серии экспериментов на датасетах Dreambooth и различных бэкбонах (SD-2, SD-XL, PixArt-alpha) показано, что грамотно выбранная стратегия семплирования может заметно повысить соответствие изображе. Отдельное внимание уделено анализу вычислительных затрат различных методов. Результаты обобщены в виде практического фреймворка для выбора стратегии в зависимости от приоритетов. Работа будет полезна исследователям и инженерам, занимающимся генеративными моделями, а также разработчикам приложений в креативных индустриях и автоматизации контента.
статья | код
GitHub
GitHub - ControlGenAI/PersonGenSampler: This is the official implementation of "Beyond Fine-Tuning: A Systematic Study of Sampling…
This is the official implementation of "Beyond Fine-Tuning: A Systematic Study of Sampling Techniques in Personalized Image Generation" - ControlGenAI/PersonGenSampler
❤4🤔1
Challenges-on-generating-structurally-diverse-graphs
В репозитории опубликован код для воспроизведения результатов работы по генерации структурно разнообразных графов. Авторы впервые формализуют и системно исследуют задачу построения наборов графов с максимальным структурным разнообразием — задача, критически важная для тестирования алгоритмов на графах, оценки нейросетевых приближений и построения бенчмарков. В работе подробно анализируется, как определить меру разнообразия для множества графов и почему задача не сводится к стандартным генераторам случайных графов. Введён показатель diversity на основе агрегирования попарных расстояний между графами (Energy), обладающий важными теоретическими свойствами, как монотонность и уникальность. Экспериментально исследованы и сравниваются различные алгоритмы генерации: жадный отбор из большого пула, генетические алгоритмы, локальная оптимизация и нейросетевые генеративные модели. Показано, что предлагаемые методы существенно превосходят классические случайные модели, например, Erdős–Rényi, GraphWorld, по мере diversity, позволяя получать выборки графов с сильно отличающимися характеристиками. Исследование также даёт новые инсайты о свойствах различных метрик расстояния между графами. Работа будет полезна исследователям в области графов, алгоритмистам, а также разработчикам бенчмарков и тестовых наборов для графовых задач.
статья | код
В репозитории опубликован код для воспроизведения результатов работы по генерации структурно разнообразных графов. Авторы впервые формализуют и системно исследуют задачу построения наборов графов с максимальным структурным разнообразием — задача, критически важная для тестирования алгоритмов на графах, оценки нейросетевых приближений и построения бенчмарков. В работе подробно анализируется, как определить меру разнообразия для множества графов и почему задача не сводится к стандартным генераторам случайных графов. Введён показатель diversity на основе агрегирования попарных расстояний между графами (Energy), обладающий важными теоретическими свойствами, как монотонность и уникальность. Экспериментально исследованы и сравниваются различные алгоритмы генерации: жадный отбор из большого пула, генетические алгоритмы, локальная оптимизация и нейросетевые генеративные модели. Показано, что предлагаемые методы существенно превосходят классические случайные модели, например, Erdős–Rényi, GraphWorld, по мере diversity, позволяя получать выборки графов с сильно отличающимися характеристиками. Исследование также даёт новые инсайты о свойствах различных метрик расстояния между графами. Работа будет полезна исследователям в области графов, алгоритмистам, а также разработчикам бенчмарков и тестовых наборов для графовых задач.
статья | код
GitHub
GitHub - Abusagit/Challenges-on-generating-structurally-diverse-graphs: Official repository of our NeurIPS-2024 publication
Official repository of our NeurIPS-2024 publication - Abusagit/Challenges-on-generating-structurally-diverse-graphs
❤5🔥2👍1
Исследователь Yandex Research, Младший научный сотрудник Научно-учебной лаборатории компании Яндекс
Аннотация: В развитие эмпирической науки про глубокое обучение существенную роль играет open-source (в широком смысле - открытый код, данные, идеи и воспроизводимые исследования). В последнее время эту идею разделяют не все. Поговорим про то насколько открытость важна со стороны науки, и что для ее продвижения можно делать. Так как я занимаюсь глубинным обучением на табличных данных – какое-то количество примеров будет из этой области, а не из мира LLM.
Место: Zoom
Идентификатор конференции: 884 0765 6151
Код доступа: 655748
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥7👍3🐳3🤔1😍1
DVAR
В репозитории опубликован код для воспроизведения результатов работы по ускорению персонализации text-to-image моделей при помощи нового критерия ранней остановки обучения. Авторы анализируют динамику тренировки популярных методов кастомизации, таких как Textual Inversion, DreamBooth и Custom Diffusion, и показывают, что стандартные метрики сходимости не отражают реальный прогресс и часто неинформативны. Ключевой вклад работы — введение критерия Deterministic VARiance Evaluation (DVAR), который позволяет автоматически и гораздо раньше завершать обучение без потери качества результатов. DVAR оценивает стабилизацию детерминированной версии loss на фиксированном наборе данных, что позволяет сократить время обучения до 8 раз. Авторы демонстрируют эффективность подхода на 48 концептах и трёх популярных personalization-методах. Эксперименты показывают, что ранняя остановка по DVAR почти не снижает качество генерации, а также предотвращает переобучение и экономит вычислительные ресурсы. Работа будет полезна исследователям и инженерам, работающим с кастомизацией diffusion-моделей, а также разработчикам инструментов для креативных и промышленных задач генерации изображений.
статья | код
В репозитории опубликован код для воспроизведения результатов работы по ускорению персонализации text-to-image моделей при помощи нового критерия ранней остановки обучения. Авторы анализируют динамику тренировки популярных методов кастомизации, таких как Textual Inversion, DreamBooth и Custom Diffusion, и показывают, что стандартные метрики сходимости не отражают реальный прогресс и часто неинформативны. Ключевой вклад работы — введение критерия Deterministic VARiance Evaluation (DVAR), который позволяет автоматически и гораздо раньше завершать обучение без потери качества результатов. DVAR оценивает стабилизацию детерминированной версии loss на фиксированном наборе данных, что позволяет сократить время обучения до 8 раз. Авторы демонстрируют эффективность подхода на 48 концептах и трёх популярных personalization-методах. Эксперименты показывают, что ранняя остановка по DVAR почти не снижает качество генерации, а также предотвращает переобучение и экономит вычислительные ресурсы. Работа будет полезна исследователям и инженерам, работающим с кастомизацией diffusion-моделей, а также разработчикам инструментов для креативных и промышленных задач генерации изображений.
статья | код
GitHub
GitHub - yandex-research/DVAR: Official implementation of "Is This Loss Informative? Faster Text-to-Image Customization by Tracking…
Official implementation of "Is This Loss Informative? Faster Text-to-Image Customization by Tracking Objective Dynamics" (NeurIPS 2023) - yandex-research/DVAR
❤🔥6😍3🔥2❤1
Forwarded from Кружковое движение НТИ
🔥Набор стажеров в проекты свободного ПО от программы «Код для всех» до 31 июля — в программе уже 12 проектов!
Новый сезон оплачиваемых стажировок «Код для всех» уже стартовал! Кружковое движение НТИ вместе с партнерами приглашают к участию школьников, студентов и молодых разработчиков, готовых включиться в проекты свободного ПО и помочь в их развитии.
📥 Прием заявок до 31 июля
Стажеров ждут в open source продуктах от CyberOK, ROBBO, Кружкового движения НТИ и платформы Берлога. Теперь в программе 12 проектов — участники могут выбрать одно или несколько направлений. Для подачи заявки нужно заполнить анкету, прикрепить свои достижения и ссылки на уже имеющиеся контрибьюшены.
👨💻 Прошедшие отбор разработчики будут в течение 2-4 месяцев писать код в open source проектах под руководством менторов и смогут получать ежемесячную стипендию или итоговое вознаграждение от партнеров.
🌐 подробная информация и регистрация — по ссылке
Внимательно следите за новостями в чате и канале конкурса! Ждем ваши заявки 🫶
Новый сезон оплачиваемых стажировок «Код для всех» уже стартовал! Кружковое движение НТИ вместе с партнерами приглашают к участию школьников, студентов и молодых разработчиков, готовых включиться в проекты свободного ПО и помочь в их развитии.
📥 Прием заявок до 31 июля
Стажеров ждут в open source продуктах от CyberOK, ROBBO, Кружкового движения НТИ и платформы Берлога. Теперь в программе 12 проектов — участники могут выбрать одно или несколько направлений. Для подачи заявки нужно заполнить анкету, прикрепить свои достижения и ссылки на уже имеющиеся контрибьюшены.
👨💻 Прошедшие отбор разработчики будут в течение 2-4 месяцев писать код в open source проектах под руководством менторов и смогут получать ежемесячную стипендию или итоговое вознаграждение от партнеров.
🌐 подробная информация и регистрация — по ссылке
Внимательно следите за новостями в чате и канале конкурса! Ждем ваши заявки 🫶
gflownet-tlm
В репозитории представлен код для оптимизации обратной стратегии в GFlowNets методом Trajectory Likelihood Maximization. Идея простая: учим обратную стратегию, максимизируя правдоподобие полных траекторий, сэмплированных текущей прямой стратегией; затем обновляем прямую стратегию в эквивалентной задаче soft-RL (энтропийно-регуляризованный MDP) с вознаграждениями, задаваемыми новой обратной политикой. Такой чередующийся шаг легко встраивается в TB/DB/SubTB и офф-полиси RL и закрывает ограничение теории фиксированного обратного прохода, принятой в недавних связках GFlowNets — soft-RL. Авторы также обсуждают практические трюки для стабильности и дают условие сходимости при стабильных обновлениях PB и регрет-минимизации для PF. Эксперименты на Hypergrid, Bit Sequences, QM9 и sEH показывают более быструю сходимость и лучшее mode discovery в сложных и менее структурированных средах, особенно QM9; на сильно структурированной sEH выигрыш скромнее и сопоставим с фиксированным равномерным обратным проходом. Код и обучающие скрипты — открыты. Работа будет полезна исследователям GFlowNets и RL, а также практикам из областей дизайна биомолекул и материалов, где важно эффективно исследовать пространство дискретных объектов пропорционально награде.
статья | код
В репозитории представлен код для оптимизации обратной стратегии в GFlowNets методом Trajectory Likelihood Maximization. Идея простая: учим обратную стратегию, максимизируя правдоподобие полных траекторий, сэмплированных текущей прямой стратегией; затем обновляем прямую стратегию в эквивалентной задаче soft-RL (энтропийно-регуляризованный MDP) с вознаграждениями, задаваемыми новой обратной политикой. Такой чередующийся шаг легко встраивается в TB/DB/SubTB и офф-полиси RL и закрывает ограничение теории фиксированного обратного прохода, принятой в недавних связках GFlowNets — soft-RL. Авторы также обсуждают практические трюки для стабильности и дают условие сходимости при стабильных обновлениях PB и регрет-минимизации для PF. Эксперименты на Hypergrid, Bit Sequences, QM9 и sEH показывают более быструю сходимость и лучшее mode discovery в сложных и менее структурированных средах, особенно QM9; на сильно структурированной sEH выигрыш скромнее и сопоставим с фиксированным равномерным обратным проходом. Код и обучающие скрипты — открыты. Работа будет полезна исследователям GFlowNets и RL, а также практикам из областей дизайна биомолекул и материалов, где важно эффективно исследовать пространство дискретных объектов пропорционально награде.
статья | код
GitHub
GitHub - tgritsaev/gflownet-tlm: The source code for the paper "Optimizing Backward Policies in GFlowNets via Trajectory Likelihood…
The source code for the paper "Optimizing Backward Policies in GFlowNets via Trajectory Likelihood Maximization" (ICLR 2025) - tgritsaev/gflownet-tlm
🔥6❤2👍2
tabpfn-finetuning
В репозитории представлен код для систематического изучения дообучения табличной фундаментальной модели TabPFNv2. Авторы сравнивают различные стратегии адаптации — полный fine-tuning, частичный — последние слои/LayerNorm/голова/эмбеддинги, параметро-эффективные LoRA, а также добавочные числовые эмбеддинги — и показывают, что при корректном подборе гиперпараметров именно полное дообучение даёт наилучший баланс точности и скорости сходимости. Ключевой вывод: после адаптации скалярные произведения запрос–ключ в последнем слое inter-sample внимания лучше согласуются с близостью объектов по целевой переменной; за счёт этого модель точнее собирает предсказание из релевантных контекстных примеров. Практически авторы демонстрируют дообучение на наборах до 1 млн ячеек и до 50 тыс. объектов: на академических i.i.d.-разбиениях затюненая версия достигает или превосходит современный уровень, тогда как на задачах с временным сдвигом и богатыми признаками стабильность ниже и сильные не фундаментальные DL/GBDT бейзлайны иногда предпочтительнее. Дополнительно отмечено: полный fine-tuning сходится быстрее альтернатив; увеличение числа объектов, участвующих в одном градиентном шаге предсказаний, стабильно улучшает качество; ансамбли из нескольких дообученных копий дают дополнительный прирост. Код и конфигурации доступны в открытом виде. Работа будет полезна практикам табличного DL и AutoML, выбирающим стратегию адаптации под конкретные данные, и исследователям, изучающим механизмы in-context-обучения в табличных моделях.
статья | код
В репозитории представлен код для систематического изучения дообучения табличной фундаментальной модели TabPFNv2. Авторы сравнивают различные стратегии адаптации — полный fine-tuning, частичный — последние слои/LayerNorm/голова/эмбеддинги, параметро-эффективные LoRA, а также добавочные числовые эмбеддинги — и показывают, что при корректном подборе гиперпараметров именно полное дообучение даёт наилучший баланс точности и скорости сходимости. Ключевой вывод: после адаптации скалярные произведения запрос–ключ в последнем слое inter-sample внимания лучше согласуются с близостью объектов по целевой переменной; за счёт этого модель точнее собирает предсказание из релевантных контекстных примеров. Практически авторы демонстрируют дообучение на наборах до 1 млн ячеек и до 50 тыс. объектов: на академических i.i.d.-разбиениях затюненая версия достигает или превосходит современный уровень, тогда как на задачах с временным сдвигом и богатыми признаками стабильность ниже и сильные не фундаментальные DL/GBDT бейзлайны иногда предпочтительнее. Дополнительно отмечено: полный fine-tuning сходится быстрее альтернатив; увеличение числа объектов, участвующих в одном градиентном шаге предсказаний, стабильно улучшает качество; ансамбли из нескольких дообученных копий дают дополнительный прирост. Код и конфигурации доступны в открытом виде. Работа будет полезна практикам табличного DL и AutoML, выбирающим стратегию адаптации под конкретные данные, и исследователям, изучающим механизмы in-context-обучения в табличных моделях.
статья | код
GitHub
GitHub - yandex-research/tabpfn-finetuning: On Finetuning Tabular Foundation Models Paper Code
On Finetuning Tabular Foundation Models Paper Code - yandex-research/tabpfn-finetuning
🔥5❤3