اخبار و کتاب های ریاضی
11.2K subscribers
8.27K photos
938 videos
2.47K files
2.37K links
همه چیز در مورد ریاضیات
جدیدترین اخبار در حوزه ریاضی
معرفی جدیدترین و مهم ترین کتاب های ریاضی
پادکست های عالی ریاضی
زیباترین مسائل و معماهای ریاضی
کاربرد ریاضیات در علوم و فنون مهندسی

آی دی مدیر کانال جهت ارتباط
@meisami_mah
Download Telegram
حسین: مهدی دوست داری امروز یه نکته‌ی دیگه از ریاضی یاد بگیری؟

مهدی: آره خیلی مشتاقم.

حسین: واقعاً اعداد خیلی جالب‌اند! ببین اگر تعدادی عدد دلخواه رو به صورت مستطیلی با طول و عرض دلخواه کنار هم قرار بدیم، همیشه تعداد سطرهای مستقل خطی با تعداد ستون‌های مستقل خطی برابره.

مهدی: کلاً نفهمیدم چی گفتی!

حسین: خب پس بهتره اول مفهوم استقلال خطی یک مجموعه از بردارها رو بیان کنم. مستقل خطی بودن یک مجموعه از بردارها رو اینطور تعریف می‌کنیم که اگر یک ترکیب خطی از اون بردارها بخواد صفر بشه، باید همه‌ی ضرایب ترکیب خطی صفر باشند. در واقع بردار صفر هیچ‌جوره از ترکیب خطی بردارهای ما ساخته نمی‌شه مگر اینکه همه‌ی ضرایب بردارها رو صفر انتخاب کنیم. مثلاً سه بردار

(1,2,3), (4,5,6), (7,8,9)

نمی‌تونن مستقل خطی باشن. چون می‌تونیم بنویسیم:

1(1,2,3)-2(4,5,6)+1(7,8,9)=(0,0,0).

و می‌بینی که شرایط استقلال خطی برقرار نیست و همه‌ی ضرایب صفر نیستن. به بردارهایی که مستقل خطی نباشند می‌گیم وابسته‌ی خطی. دقت کن تو می‌تونی ضریب همه‌ی بردارها رو صفر بذاری تا بردار صفر بدست بیاد. این که یه چیز واضحه؛ ولی استقلال خطی به این معنیه که تو به جز این کار، راه دیگه‌ای نداشته باشی.

مهدی: چه جالب.

حسین: آره. حالا بذار یه مثال معروف از بردارهای مستقل خطی بزنم‌. مثلاً توی

بردارهای
(1,0), (0,1)

مستقل خطی‌اند. چون اگر ترکیب خطی دلخواهی از اونا، یعنی
a(1,0)+b(0,1)
رو مساوی با
(0,0)
بذاری می‌بینی که a و b حتماً باید صفر باشند.

مهدی: فقط همین بردارها مستقل خطی‌اند؟

حسین: نه اصلاً. توی هر فضا وقتی دوتا بردار داری، همین‌که ضریبی از هم نباشن مستقل خطی‌ان‌. ولی وقتی تعداد بردارهات بیشتر می‌شه باید یک ترکیب خطی دلخواه ازشون رو مساوی صفر بذاری و این‌طوری به یک دستگاه معادلات خطی همگن می‌رسی. این دستگاه اگر جواب ناصفر داشت بردارهات وابسته‌ی خطی می‌شن و اگر فقط جواب‌ صفر داشت بردارهات مستقل خطی‌ان.

مهدی: خب تا اینجا مفهوم استقلال خطی رو کامل گرفتم. حالا نکته‌ای که می‌خواستی بگی رو بگو.

حسین: باشه. ولی قبلش لازمه یه چندتا مطلب دیگه بگم. اول اینکه امکان نداره توی فضای R² بیش از دو بردار غیرصفر، مثلاً سه‌تاشون، مستقل خطی باشند. چون در این صورت دستگاه همگنی که برای بررسی استقلال خطی تشکیل می‌دی، دو معادله داره و سه مجهول. یعنی در انتخاب مقدار یکی از مجهول‌ها آزادی عمل داری. پس دستگاه بی‌شمار جواب داره. به همین ترتیب توی فضای Rⁿ نمی‌تونی بیشتر از n بردار غیرصفر مستقل خطی داشته باشی. اگر در یک فضا n تا بردار مستقل خطی باشند ولی هر n+1 تا بردارِ اون فضا وابسته‌ی خطی باشند، می‌گیم فضامون بعدش nه.

مهدی: پس به این خاطر بوده که همیشه می‌گفتیم بعد Rⁿ برابر با n‌ه.

حسین: دقیقاً. مطلب دوم این که، به یک مجموعه از بردارها که مستقل خطی باشن و بتونیم هر بردار فضا رو به صورت ترکیبی خطی از اونا بنویسیم می‌گیم پایه و هر دو پایه از یک فضای n بعدی دقیقاً n تا بردار مستقل خطی دارن.

مهدی: چرا این‌طوریه؟

حسین: خب مثلاً فرض کن دوتا پایه داری که اولی m عضو داره و دومی n عضو. اگر m از n بخواد بیشتر بشه عناصر مجموعه اول وابسته‌ی خطی میشن. به همین ترتیب اگر n بخواد بیشتر از m بشه، عناصر مجموعه‌ی دوم وابسته‌ی خطی می‌شن. هر دو حالت با تعریف پایه که مستقل خطی بودن بردارها رو لازم داره، منافات داره. پس لازمه که m و n برابر باشن.

مهدی: بسیار خوب. برگردیم به نکته‌‌ی اولی که می‌خواستی بگی.

حسین: حالا صحبتم این بود که چرا هر آرایش مستطیلی با طول و عرض دلخواه از اعداد دلخواه بنویسیم، در این صورت حتماً تعداد سطرهای مستقل خطی‌ش با تعداد ستون‌های مستقل خطی‌ش برابره. فرض کن ماتریسی از اعداد با m سطر و n ستون داریم و
m≥n.

دقت کن این فرض استدلال ما رو زیر سؤال نمی‌بره، چون اگر m از n کمتر باشه با ترانهاده‌ی این ماتریس کار می‌کنیم که باز هم ادعای ما، یعنی برابری تعداد سطرهای و ستون‌های مستقل خطی، سر جاشه.

مهدی: قبول.

حسین: اون n ستون رو میشه بردارهایی در
R^m
در نظر گرفت. چون تعداد بردارهای یه مجموعه‌ی مستقل خطی از بعد فضا بیشتر نیست، پس یا همه‌ی این n ستون مستقل خطی‌اند یا تعداد ستون‌های مستقل خطی از n کمتره. فرض کنیم مثلاً k تا ستون مستقل خطی داریم‌. اگر این k تا ستون رو جدا کنیم و بذاریم کنار، یک زیرماتریس
m×k

خواهیم داشت و چون
k≤n
پس حتماً
k≤m.

پس توی این زیرماتریس، m تا سطر k مؤلفه‌ای یا بردار k تایی داریم. ولی با توجه به بعد
R^k

فقط k تا از این بردارها می‌تونن مستقل خطی باشند و تشکیل پایه بدند و این ادعای ما رو تأیید می‌کنه.

@harmoniclib
اخبار و کتاب های ریاضی
حسین: مهدی دوست داری امروز یه نکته‌ی دیگه از ریاضی یاد بگیری؟ مهدی: آره خیلی مشتاقم. حسین: واقعاً اعداد خیلی جالب‌اند! ببین اگر تعدادی عدد دلخواه رو به صورت مستطیلی با طول و عرض دلخواه کنار هم قرار بدیم، همیشه تعداد سطرهای مستقل خطی با تعداد ستون‌های مستقل…
با سلام.

چون دیدم دوستان عزیز از آموزش پیوستگی یکنواخت و تفاوت آن با پیوستگی استقبال کرده‌اند، ضمن ابراز خرسندی، در پست بالا آموزشی کوتاه از مطالب جبر خطی تقدیم می‌کنم. امیدوارم مفید واقع شود.

با احترام
زارع
@harmoniclib
This media is not supported in your browser
VIEW IN TELEGRAM
صحبت‌های بسیار مهم دکتر سیاوش شهشهانی

واقعا راجع به هر جمله‌اش می‌توان صفحه‌ها نوشت...
@harmoniclib
#ریاضی_معماری

طرح عجیب و غریب کاشیکاری یکی از ایوان‌های مقبره امیرتیمور در سمرقند ازبکستان
@harmoniclib
👌 تصویری بی نظیر

#موسیقی_ریاضی

نقشه دنباله هارمونیک

@harmoniclib
فایل های صوتی تا جلسه نهم در کست باکس قرار گرفت
👇👇👇
https://castbox.fm/va/3290001
.
اگر لینک باز نشد، در برنامه کست‌باکس جستجو کنید "رادیو ریاضی".
@harmoniclib
This media is not supported in your browser
VIEW IN TELEGRAM
این فیلم شما را به یاد چه مفاهیمی در ریاضیات می‌اندازد؟!
@harmoniclib
👇👇👇
اخبار و کتاب های ریاضی
این فیلم شما را به یاد چه مفاهیمی در ریاضیات می‌اندازد؟! @harmoniclib 👇👇👇
نظر ارسالی:

بجز فراکتال ها یا هتل هیلبرت، ساختار هندسی
space filling curve / Peano curve
رو هم میشه در این ویدئو مشاهده کرد. فرض کنید در لحظه صفر یک‌ نخ بصورت عمودی از پایین تا بالای سازه میره. همینطور که انیمیشن ادامه پیدا می‌کنه این نخ در جهت های مختلف تا میشه و یک حجم سه بعدی بزرگتر رو بصورت منظم اشغال می‌کنه.
@harmoniclib
📣 اطلاعیه

با سلام
امکان امریه سربازی جهت فارغ التحصیلان ارشد و دکترا
در پارک فناوری البرز
کار بر روی الگوریتم ها و محاسبات هوش مصنوعی و کوانتوم کامپیوتینگ

جهت اطلاعات بیشتر با آقای ذوالفقاری ۰۹۱۲۵۱۳۴۶۹۶ تماس بگیرید.
@harmoniclib
حمایت معنوی شما که همیشه همراه ماست، ولی حمایت‌های مادی شما هم باعث دلگرمی ما می‌شود، دامنه‌ی فعالیت‌های این کانال را افزایش می‌دهد و قدرت عمل ما را بیشتر می‌کند.
👇👇👇
6219861980029192
مهدی میسمی بانک سامان

@harmoniclib
قدردان محبتتان هستیم.
جلسه آخر ساعت ۱۸ امروز
👇👇👇
https://meetingvc.iust.ac.ir/ast-ssa/

@harmoniclib
MeisamiRamanujan.pdf
38.7 MB
جزوه کامل درس

رامونوجان سوار بر ریسمان بی‌نهایت


دکتر مهدی میسمی

دانشگاه علم و صنعت
@harmoniclib
Media is too big
VIEW IN TELEGRAM
#کنکور
اعتراف دکتر مجتبی شکوری درباره دروغ بزرگش به مردم
@harmoniclib
اگر دوستانی هستند که می توانند در ساخت قسمت‌های جدید پادکست رادیو ریاضی به ما کمک کنند بسیار سپاسگزار خواهیم بود که پیام بدهند.
👇👇👇
@meisami_mah
حالا که تمام عمرتان را به ریاضیات گذرانده‌اید،
حسرت چه کارهای نکرده‌ای را می‌خورید؟!

حسرت نمی‌خورید که ای کاش کمی بیشتر با خانواده وقت می‌گذراندم؟!

حسرت نمی‌خورید که ای کاش تا مادربزرگم زنده بود، به جای حل فلان مساله ریاضی، می‌رفتم می‌نشستم کنارش و از هم‌صحبتی با او لذت می‌بردم؟!

حسرت نمی‌خورید که ای کاش به کلاس موسیقی می‌رفتم و یک ساز یاد می‌گرفتم؟!

حسرت نمی‌خورید که ای کاش کتاب‌های غیر ریاضی بیشتری می‌خواندم؟!

حسرت نمی‌خورید که ای کاش بیشتر با دوستانم به گردش و تفریح می‌رفتم؟!

حسرت نمی‌خورید که ای کاش
ای کاش
ای کاش
.
.
.
@harmoniclib
📣 تبادل لینک

کانال اخبار و کتاب های ریاضی
@harmoniclib
و
گروه ارشد و دکتری ریاضی
@arshadoct
آماده تبادل لینک با سایر کانال‌ها و گروه‌های علمی می‌باشند.
جهت تبادل به
@meisami_mah
پیام دهید.
👨‍🏫👨‍💻یک گردش، دو راهنما: ریاضیدان یا مهندس

ممکن است در هر جمع علمی در کشورمان این بحث دربگیرد که آیا یک ریاضی‌خوانده (که ما او را ریاضیدان می‌نامیم) باید ریاضی تدریس کند و یا یک مهندس؟ و این که کدام بهتر درس می‌دهند؟!

می‌دانیم که فارغ‌التحصیل رشته ریاضی اجازه ندارد به جای مهندس عمران سر ساختمان برود و به جای مهندس مکانیک به کارخانه برود و به جای مهندس شیمی به پالایشگاه و... اما شاهدیم که خیلی از مهندسان در کشور ما ریاضی درس می‌دهند.

یکی از دلایل آن توهم آگاهیست. یعنی یک مهندس خیال می‌کند با یکی دو درس ریاضی عمومی و معادلات گذراندن، دیگر خدای ریاضیست. حتی دیده شده بعضی از آن‌ها با همین معلومات سودای اثبات مهمترین حدسیه‌های ریاضی را دارند. آن‌ها فکر می‌کنند همین مقدار معلومات برای تدریس در مدرسه کافیست. ولی چنین نمی‌باشد، که جلوتر در قالب یک مثال دلیل خود را عنوان می‌کنم.

دلیل دیگر مدیریت ضعیف و نبود قدرت و سازماندهی در سازمان‌های ریاضی کشور است. ما چیزی شبیه نظام مهندسی و یا نظام پزشکی در ریاضیات نداریم. جای خالی نظام ریاضی شدیدا احساس می‌شود. نظامی که اجازه ندهد هر کس یک مدرک مهندسی از فلان دانشگاه می‌گیرد خود را مدرس ریاضی جا بزند.

دلیل دیگر دلیل فرهنگیست. متاسفانه جامعه‌ی ما تفاوت ریاضیدان و مهندس را نمی‌دانند. هنوز خیلی از افراد کم‌سواد فکر می‌کنند دکتر ریاضی، مریض معاینه می‌کند. خیلی از افراد تحصیل کرده هم که می‌گویند: چه نیازیست که یک معلم ریاضی مفاهیم پیچیده‌ ریاضی را بداند؟! معلم ریاضی که قرار است یک حد و مشتق ساده و یا چهارتا اتحاد درس بدهد چه نیازی به دانستن هندسه دیفرانسیل، توپولوژی، نظریه حلقه‌ها و ... دارد؟! اما نکته‌ی ظریفی در این تشکیک آن‌ها وجود دارد که در قالب مثال خواهم گفت.

دلیل سوم این است که صنعت ما بسیار ضعیف است و توانایی جذب این همه فارغ‌التحصیل مهندسی را ندارد. بنابراین به طور طبیعی قسمتی از بیکاران رشته‌های مهندسی به سمت تدریس ریاضی گرویده می‌شوند. از این نقطه نظر می‌توان گفت این جوانان تقصیری ندارند و مسئولان باید در این زمینه به دنبال چاره‌ای باشند. اما کار وقتی بیخ پیدا می‌کند که بعضی از مهندسان مدرس ریاضی بر این شرایط چشم می‌پوشانند و در مقابل ریاضیدانان مدرس، ادعا می‌کنند. در حالی که فراموش کرده‌اند که جایگاه واقعی آن عزیزان کارخانه و پالایشگاه و شرکت است نه مدرسه و آموزشگاه. بگذارید به سراغ مثال وعده داده شده بروم.

فرض کنید دو گروه گردشگر قصد دارند از چند کوه که در هر کدام از آن‌ها چند غار وجود دارد دیدن کنند. بر در ورودی هر غاری یک راهنما ایستاده است. یک روز ریاضیدانان برای گروه اول راهنمایند و روز دیگر مهندسان برای گروه دوم راهنمایند (در حقیقت غارها نماد مفاهیم ریاضی هستند.). ریاضیدان تا عمق بسیار خوبی از غار را رفته و وقتی قرار است راجع به چند متر اول غار با گردشگران صحبت کند می‌داند که چه می‌گوید. می‌تواند به گردشگران دید بدهید که تا انتهای غار چه پدیده‌هایی روی می‌دهد. ولی مهندسان که گروه دوم راهنمایان هستند، فقط چند متر بیشتر از این غارها را ندیده‌اند. اگر یکی از گردشگران استعداد صعود به انتهای غاری را داشته باشد، مهندس راهنما چه کمکی می‌تواند به او بکند؟! و یا اگر مهندسِ انتهایِ غارندیده، گردشگری را به غلط راهنمایی کند، چه اتفاقات بدی که خواهد افتاد.

راهنمای ریاضیدان که غار مربوط به خود را به خوبی می‌شناسد. حتی راجع به سنگ‌ریزه‌های ریخته شده دم در غار هم دید دارد. او می‌داند این‌ها متعلق به کدام قسمتند و چرا اینجا هستند. در حالی که مهندس راهنما فقط این‌ها را یک سری سنگ‌ریزه می‌بیند که اینجا ریخته‌اند و جلوی هر غاری می‌توانستند باشند. کدام گروه بهتر غارها را خواهند شناخت؟! گروهی که راهنمای آنان ریاضیدانان بودند یا گروهی که مهندسان راهنمایشان کرده‌اند؟!

در پایان یادآور می‌شوم که اگر چه ممکن است چند مهندس مدرس به طور استثنا از ریاضیدانان مدرس بهتر درس بدهند ولی فراموش نکنیم که ریاضیدان، ریاضی آموخته که در آن پژوهش کند و بیاموزاند و به عنوان مشاور برای سایر رشته‌ها به کار ببندد ولی مهندس چیزهای دیگری آموخته که باید در صنعت به کار بگیرد.

مهدی میسمی
کانال اخبار و کتاب‌های ریاضی

@harmoniclib
امروز دقیقا هفت سال است که دیگر دکتر مریم میرزاخانی در بین ما نیست ولی انگار بیشتر از زمان حیاتش بین ماست و همه در موردش صحبت می‌کنند.

انسان‌های بزرگ اینگونه‌اند. گویی بعد از وفات تازه به دنیا می‌آیند.

راهش پر رهرو باد.
@harmoniclib