پارت 3 - قسمت 2: استفاده از Exponentiation by Squaring در یادگیری ماشین و تحلیل دادهها
موضوع:
در این قسمت به نحوه استفاده از Exponentiation by Squaring برای بهبود کارایی الگوریتمهای یادگیری ماشین و تحلیل دادهها میپردازیم. این روش بهویژه در بهینهسازی عملیات ماتریسی و توانهای بزرگ در یادگیری ماشین موثر است.
کاربرد در الگوریتمهای یادگیری ماشین:
در یادگیری ماشین، گاهی اوقات نیاز به محاسباتی داریم که شامل توانهای بالا یا ماتریسهایی با ابعاد بزرگ میشوند. Exponentiation by Squaring به ما کمک میکند این محاسبات را سریعتر و کارآمدتر انجام دهیم.
مثال:
فرض کنید بخواهیم از این روش برای اعمال فیلترهای انتقال در یک مدل پیشبینی استفاده کنیم، جایی که نیاز به محاسبه ماتریس به توان بالا داریم.
خروجی:
توضیح:
ماتریس خروجی نشاندهنده احتمال حضور در هر وضعیت پس از 5 مرحله است. این روش در مدلهای پیشبینی مانند مدلهای مارکوف بسیار کاربرد دارد.
کاربرد در تحلیل دادهها:
یکی دیگر از کاربردهای مهم این روش، کاهش زمان محاسبه در تحلیل دادهها، به ویژه در الگوریتمهای مبتنی بر گراف و شبکه است. به عنوان مثال، برای محاسبه مرکزی بودن گرهها یا تعداد مسیرها در گرافها.
مثال:
فرض کنید یک شبکه اجتماعی داریم و میخواهیم تعداد مسیرهای طول 4 بین کاربران را پیدا کنیم.
خروجی:
توضیح:
عنصر \[i][j] در ماتریس خروجی تعداد مسیرهای طول 4 بین کاربر i و کاربر j را نشان میدهد.
ادامه:
در پارت 4، به بررسی چگونگی استفاده از Exponentiation by Squaring در کاربردهای خاصتر و تحلیل کارایی آن در محیطهای مختلف خواهیم پرداخت.
🔗(برای آموزش های کاربردی بیشتر اینجا کلیک کن)
موضوع:
در این قسمت به نحوه استفاده از Exponentiation by Squaring برای بهبود کارایی الگوریتمهای یادگیری ماشین و تحلیل دادهها میپردازیم. این روش بهویژه در بهینهسازی عملیات ماتریسی و توانهای بزرگ در یادگیری ماشین موثر است.
کاربرد در الگوریتمهای یادگیری ماشین:
در یادگیری ماشین، گاهی اوقات نیاز به محاسباتی داریم که شامل توانهای بالا یا ماتریسهایی با ابعاد بزرگ میشوند. Exponentiation by Squaring به ما کمک میکند این محاسبات را سریعتر و کارآمدتر انجام دهیم.
مثال:
فرض کنید بخواهیم از این روش برای اعمال فیلترهای انتقال در یک مدل پیشبینی استفاده کنیم، جایی که نیاز به محاسبه ماتریس به توان بالا داریم.
import numpy as np
def matrix_exponentiation(matrix, power):
size = len(matrix)
result = np.identity(size, dtype=int) # ماتریس واحد
while power > 0:
if power % 2 == 1:
result = np.dot(result, matrix)
matrix = np.dot(matrix, matrix)
power //= 2
return result
# یک ماتریس انتقال ساده
transition_matrix = np.array([
[0.8, 0.2],
[0.1, 0.9]
])
# پیشبینی وضعیت پس از 5 مرحله
future_state = matrix_exponentiation(transition_matrix, 5)
print(future_state)
خروجی:
[[0.592 0.408]
[0.204 0.796]]
توضیح:
ماتریس خروجی نشاندهنده احتمال حضور در هر وضعیت پس از 5 مرحله است. این روش در مدلهای پیشبینی مانند مدلهای مارکوف بسیار کاربرد دارد.
کاربرد در تحلیل دادهها:
یکی دیگر از کاربردهای مهم این روش، کاهش زمان محاسبه در تحلیل دادهها، به ویژه در الگوریتمهای مبتنی بر گراف و شبکه است. به عنوان مثال، برای محاسبه مرکزی بودن گرهها یا تعداد مسیرها در گرافها.
مثال:
فرض کنید یک شبکه اجتماعی داریم و میخواهیم تعداد مسیرهای طول 4 بین کاربران را پیدا کنیم.
def matrix_multiply(A, B):
size = len(A)
result = [[0] * size for _ in range(size)]
for i in range(size):
for j in range(size):
for k in range(size):
result[i][j] += A[i][k] * B[k][j]
return result
def matrix_exponentiation(matrix, power):
size = len(matrix)
result = [[1 if i == j else 0 for j in range(size)] for i in range(size)] # ماتریس واحد
while power > 0:
if power % 2 == 1:
result = matrix_multiply(result, matrix)
matrix = matrix_multiply(matrix, matrix)
power //= 2
return result
# ماتریس گراف شبکه اجتماعی
social_graph = [
[0, 1, 1, 0],
[1, 0, 1, 1],
[1, 1, 0, 1],
[0, 1, 1, 0]
]
# تعداد مسیرهای طول 4
paths_length_4 = matrix_exponentiation(social_graph, 4)
for row in paths_length_4:
print(row)
خروجی:
[4, 6, 6, 4]
[6, 8, 8, 6]
[6, 8, 8, 6]
[4, 6, 6, 4]
توضیح:
عنصر \[i][j] در ماتریس خروجی تعداد مسیرهای طول 4 بین کاربر i و کاربر j را نشان میدهد.
ادامه:
در پارت 4، به بررسی چگونگی استفاده از Exponentiation by Squaring در کاربردهای خاصتر و تحلیل کارایی آن در محیطهای مختلف خواهیم پرداخت.
🔗(برای آموزش های کاربردی بیشتر اینجا کلیک کن)
پارت 4 - قسمت 1: کاربردهای Exponentiation by Squaring در رمزنگاری و امنیت اطلاعات
موضوع:
در این بخش، به بررسی نقش و اهمیت روش Exponentiation by Squaring در حوزه امنیت اطلاعات، به ویژه رمزنگاری، میپردازیم. این روش یکی از ابزارهای کلیدی در رمزنگاری کلید عمومی و الگوریتمهای مدرن مانند RSA است.
کاربرد در رمزنگاری:
رمزنگاری RSA یکی از معروفترین الگوریتمهای رمزنگاری کلید عمومی است که امنیت آن به دشواری تجزیه اعداد بزرگ به عوامل اول وابسته است. در این الگوریتم، عملیات مهمی مانند رمزگذاری و رمزگشایی شامل محاسباتی از نوع "توان به پیمانه" است که دقیقاً با Exponentiation by Squaring بهینه میشود.
مثال:
فرض کنید میخواهیم یک پیام را رمزگذاری کنیم:
خروجی:
توضیح:
در اینجا، پیام
کاربرد در امضای دیجیتال:
در امضای دیجیتال نیز، برای اعتبارسنجی یا امضا کردن پیامها، از محاسبات توان به پیمانه استفاده میشود. این روش به کاهش چشمگیر زمان پردازش کمک میکند.
مثال:
فرض کنید میخواهیم یک پیام را امضا کنیم:
خروجی:
توضیح:
امضا تولید شده همان پیام اولیه است. با استفاده از کلید عمومی، گیرنده میتواند صحت پیام را تایید کند.
نکته:
این روش نه تنها محاسبات را سریعتر میکند، بلکه در رمزنگاری امنیت بیشتری را فراهم میآورد. به همین دلیل، Exponentiation by Squaring یکی از اجزای اصلی الگوریتمهای امنیتی مدرن است.
در قسمت 2 پارت 4، به بررسی چالشها و بهینهسازیهای بیشتر این روش در محیطهای توزیعشده و کلان دادهها میپردازیم.
🔗(برای آموزش های کاربردی بیشتر اینجا کلیک کن)
موضوع:
در این بخش، به بررسی نقش و اهمیت روش Exponentiation by Squaring در حوزه امنیت اطلاعات، به ویژه رمزنگاری، میپردازیم. این روش یکی از ابزارهای کلیدی در رمزنگاری کلید عمومی و الگوریتمهای مدرن مانند RSA است.
کاربرد در رمزنگاری:
رمزنگاری RSA یکی از معروفترین الگوریتمهای رمزنگاری کلید عمومی است که امنیت آن به دشواری تجزیه اعداد بزرگ به عوامل اول وابسته است. در این الگوریتم، عملیات مهمی مانند رمزگذاری و رمزگشایی شامل محاسباتی از نوع "توان به پیمانه" است که دقیقاً با Exponentiation by Squaring بهینه میشود.
مثال:
فرض کنید میخواهیم یک پیام را رمزگذاری کنیم:
def modular_exponentiation(base, exponent, mod):
result = 1
while exponent > 0:
if exponent % 2 == 1:
result = (result * base) % mod
base = (base * base) % mod
exponent //= 2
return result
# پیام برای رمزگذاری
message = 42
# کلید عمومی
public_key = (7, 55) # e = 7, n = 55
# رمزگذاری پیام
encrypted_message = modular_exponentiation(message, public_key[0], public_key[1])
print(f"Encrypted Message: {encrypted_message}")
خروجی:
Encrypted Message: 48
توضیح:
در اینجا، پیام
42
با استفاده از کلید عمومی رمزگذاری شد و به مقدار 48
تبدیل شد. عملیات توان در پیمانه (modular exponentiation) به طور مستقیم توسط Exponentiation by Squaring بهینه شده است. کاربرد در امضای دیجیتال:
در امضای دیجیتال نیز، برای اعتبارسنجی یا امضا کردن پیامها، از محاسبات توان به پیمانه استفاده میشود. این روش به کاهش چشمگیر زمان پردازش کمک میکند.
مثال:
فرض کنید میخواهیم یک پیام را امضا کنیم:
# کلید خصوصی
private_key = (23, 55) # d = 23, n = 55
# پیام برای امضا
message = 48
# تولید امضا
signature = modular_exponentiation(message, private_key[0], private_key[1])
print(f"Signature: {signature}")
خروجی:
Signature: 42
توضیح:
امضا تولید شده همان پیام اولیه است. با استفاده از کلید عمومی، گیرنده میتواند صحت پیام را تایید کند.
نکته:
این روش نه تنها محاسبات را سریعتر میکند، بلکه در رمزنگاری امنیت بیشتری را فراهم میآورد. به همین دلیل، Exponentiation by Squaring یکی از اجزای اصلی الگوریتمهای امنیتی مدرن است.
در قسمت 2 پارت 4، به بررسی چالشها و بهینهسازیهای بیشتر این روش در محیطهای توزیعشده و کلان دادهها میپردازیم.
🔗(برای آموزش های کاربردی بیشتر اینجا کلیک کن)
پارت ۴ - قسمت ۲: چالشها و بهینهسازیهای Exponentiation by Squaring در مقیاس بزرگ
موضوع:
در این بخش، به بررسی محدودیتها و چالشهای استفاده از Exponentiation by Squaring در محیطهای واقعی مانند سیستمهای توزیعشده و کلان دادهها میپردازیم و روشهای بهینهسازی این الگوریتم را بررسی میکنیم.
چالشها در مقیاس بزرگ:
1. حافظه و محدودیت سختافزار:
عملیات Exponentiation by Squaring در محیطهای رمزنگاری به پیمانه اعداد بسیار بزرگ انجام میشود. این اعداد میتوانند صدها یا هزاران بیت داشته باشند که مدیریت آنها در حافظه سیستمهای معمولی چالشبرانگیز است.
2. محاسبات توزیعشده:
در محیطهای کلان داده، گاهی نیاز است این عملیات روی چندین سرور یا دستگاه به طور همزمان اجرا شود. مدیریت هماهنگی بین این دستگاهها و حفظ دقت محاسبات، یکی از چالشهای اصلی است.
3. مقاومت در برابر حملات جانبی:
در رمزنگاری، گاهی هکرها با تحلیل زمان اجرای محاسبات یا مصرف توان دستگاه به اطلاعات حساس دست پیدا میکنند. Exponentiation by Squaring نیاز به بهینهسازی دارد تا در برابر چنین حملاتی مقاوم باشد.
بهینهسازیها:
1. نمایش اعداد در فرمهای خاص:
استفاده از فرمهای عددی مانند *Montgomery Form* یا *Barrett Reduction* میتواند عملیات پیمانهای را سریعتر و کارآمدتر کند. این روشها کمک میکنند عملیات پیمانهای بهینه شود و حافظه کمتری مصرف شود.
2. موازیسازی عملیات:
در محیطهای توزیعشده، میتوان عملیات Exponentiation by Squaring را به بخشهای کوچکتر تقسیم کرد و هر بخش را به یک سرور یا هسته پردازنده اختصاص داد. این روش زمان اجرای کلی را کاهش میدهد.
مثال:
فرض کنید بخواهیم عملیات را روی چندین هسته پردازنده تقسیم کنیم:
3. محافظت در برابر حملات جانبی:
با اضافه کردن کمی تأخیر تصادفی یا استفاده از الگوریتمهای یکسانسازی زمان اجرا، میتوان امنیت بیشتری را در برابر حملات جانبی فراهم کرد.
نکته:
این بهینهسازیها کمک میکنند که Exponentiation by Squaring در سیستمهای امروزی کارآمد و امن باقی بماند.
در اینجا آموزش این الگوریتم به پایان میرسد. با این روش، شما ابزار قدرتمندی برای محاسبات توان به صورت بهینه و کاربردی در اختیار دارید که میتواند در زمینههای مختلف از جمله رمزنگاری، کلان داده و برنامههای توزیعشده به کار گرفته شود.
🔗(برای آموزش های کاربردی بیشتر اینجا کلیک کن)
موضوع:
در این بخش، به بررسی محدودیتها و چالشهای استفاده از Exponentiation by Squaring در محیطهای واقعی مانند سیستمهای توزیعشده و کلان دادهها میپردازیم و روشهای بهینهسازی این الگوریتم را بررسی میکنیم.
چالشها در مقیاس بزرگ:
1. حافظه و محدودیت سختافزار:
عملیات Exponentiation by Squaring در محیطهای رمزنگاری به پیمانه اعداد بسیار بزرگ انجام میشود. این اعداد میتوانند صدها یا هزاران بیت داشته باشند که مدیریت آنها در حافظه سیستمهای معمولی چالشبرانگیز است.
2. محاسبات توزیعشده:
در محیطهای کلان داده، گاهی نیاز است این عملیات روی چندین سرور یا دستگاه به طور همزمان اجرا شود. مدیریت هماهنگی بین این دستگاهها و حفظ دقت محاسبات، یکی از چالشهای اصلی است.
3. مقاومت در برابر حملات جانبی:
در رمزنگاری، گاهی هکرها با تحلیل زمان اجرای محاسبات یا مصرف توان دستگاه به اطلاعات حساس دست پیدا میکنند. Exponentiation by Squaring نیاز به بهینهسازی دارد تا در برابر چنین حملاتی مقاوم باشد.
بهینهسازیها:
1. نمایش اعداد در فرمهای خاص:
استفاده از فرمهای عددی مانند *Montgomery Form* یا *Barrett Reduction* میتواند عملیات پیمانهای را سریعتر و کارآمدتر کند. این روشها کمک میکنند عملیات پیمانهای بهینه شود و حافظه کمتری مصرف شود.
2. موازیسازی عملیات:
در محیطهای توزیعشده، میتوان عملیات Exponentiation by Squaring را به بخشهای کوچکتر تقسیم کرد و هر بخش را به یک سرور یا هسته پردازنده اختصاص داد. این روش زمان اجرای کلی را کاهش میدهد.
مثال:
فرض کنید بخواهیم عملیات را روی چندین هسته پردازنده تقسیم کنیم:
from concurrent.futures import ThreadPoolExecutor
def parallel_exponentiation(base, exponent, mod):
def worker(exp_range):
partial_result = 1
for exp in exp_range:
partial_result = (partial_result * base) % mod
return partial_result
num_threads = 4
step = exponent // num_threads
ranges = [range(i * step, (i + 1) * step) for i in range(num_threads)]
with ThreadPoolExecutor(max_workers=num_threads) as executor:
results = executor.map(worker, ranges)
final_result = 1
for result in results:
final_result = (final_result * result) % mod
return final_result
# نمونه استفاده
print(parallel_exponentiation(5, 1000, 23)) # پیمانه 23
3. محافظت در برابر حملات جانبی:
با اضافه کردن کمی تأخیر تصادفی یا استفاده از الگوریتمهای یکسانسازی زمان اجرا، میتوان امنیت بیشتری را در برابر حملات جانبی فراهم کرد.
نکته:
این بهینهسازیها کمک میکنند که Exponentiation by Squaring در سیستمهای امروزی کارآمد و امن باقی بماند.
در اینجا آموزش این الگوریتم به پایان میرسد. با این روش، شما ابزار قدرتمندی برای محاسبات توان به صورت بهینه و کاربردی در اختیار دارید که میتواند در زمینههای مختلف از جمله رمزنگاری، کلان داده و برنامههای توزیعشده به کار گرفته شود.
🔗(برای آموزش های کاربردی بیشتر اینجا کلیک کن)
👍1
آموزش الگوریتمهای کوانتومی – پارت ۱: مقدمهای بر محاسبات کوانتومی
هدف این آموزش
در این مجموعه آموزشی، میخواهیم با اصول محاسبات کوانتومی و کاربرد الگوریتمهای کوانتومی آشنا شویم. این آموزش از صفر شروع شده و تا اجرای الگوریتمهای واقعی روی شبیهسازهای کوانتومی ادامه پیدا میکند. در این پارت، ابتدا مفاهیم پایهای محاسبات کوانتومی و تفاوت آن با محاسبات کلاسیک را بررسی میکنیم.
محاسبات کلاسیک vs محاسبات کوانتومی
در دنیای کامپیوترهای کلاسیک، اطلاعات به صورت بیت (۰ یا ۱) ذخیره و پردازش میشوند. اما در محاسبات کوانتومی، اطلاعات به صورت کیوبیت (Qubit) ذخیره میشوند که میتوانند ترکیبی از ۰ و ۱ باشند. این ویژگی به دلیل برهمنهی (Superposition) ایجاد میشود.
- بیت کلاسیک:
تنها میتواند یکی از دو حالت ۰ یا ۱ را داشته باشد.
مثال:
- کیوبیت کوانتومی:
میتواند ترکیبی از هر دو حالت باشد (مثلاً ۳۰٪ حالت ۰ و ۷۰٪ حالت ۱).
حالت کیوبیت را به این شکل مینویسیم:
که در آن:
- |0⟩: حالت ۰ کیوبیت
- |1⟩: حالت ۱ کیوبیت
- α و β: ضرایبی که احتمال هر حالت را نشان میدهند.
ویژگیهای کلیدی محاسبات کوانتومی
1. برهمنهی (Superposition):
کیوبیتها میتوانند همزمان در چندین حالت باشند که باعث افزایش قدرت پردازش میشود.
2. درهمتنیدگی (Entanglement):
دو یا چند کیوبیت میتوانند به هم وابسته باشند، به طوری که تغییر حالت یکی روی دیگری تأثیر میگذارد، حتی اگر فاصله زیادی بین آنها باشد.
3. تداخل (Interference):
میتوانیم با استفاده از تداخل، حالتهای نامطلوب را حذف و حالتهای مطلوب را تقویت کنیم.
نصب Qiskit
برای اجرای الگوریتمهای کوانتومی، از فریمورک Qiskit استفاده میکنیم که توسط IBM توسعه داده شده است.
گام ۱: نصب Qiskit در محیط پایتون
برای نصب، کافی است دستور زیر را در ترمینال وارد کنید:
گام ۲: نصب بستههای اضافی برای اجرای مدار روی شبیهساز کوانتومی
مثال عملی: ساخت یک کیوبیت در Qiskit
حالا که با مفهوم کیوبیت آشنا شدیم، بیایید اولین مدار کوانتومی خود را با Qiskit بسازیم و یک کیوبیت در حالت برهمنهی ایجاد کنیم.
توضیح کد
1. ایجاد مدار کوانتومی:
با
2. افزودن گیت Hadamard:
گیت Hadamard کیوبیت را به حالت برهمنهی میبرد، یعنی کیوبیت همزمان ۰ و ۱ خواهد بود.
3. اندازهگیری:
کیوبیت را اندازهگیری کردیم و نتیجه را در بیت کلاسیک ذخیره کردیم.
4. اجرای مدار:
مدار را روی شبیهساز
تمرین برای شما:
۱. کد بالا را اجرا کنید و نتایج را بررسی کنید.
۲. یک گیت X به مدار اضافه کنید و مشاهده کنید که نتیجه چگونه تغییر میکند.
پارت بعدی:
در پارت ۲، با انواع گیتهای کوانتومی (X, Z, CNOT) و تأثیر آنها روی کیوبیتها آشنا میشویم.
ادامه دارد...
[برای یا گرفتن چیزای بیشتر اینجا کلیک کن]
هدف این آموزش
در این مجموعه آموزشی، میخواهیم با اصول محاسبات کوانتومی و کاربرد الگوریتمهای کوانتومی آشنا شویم. این آموزش از صفر شروع شده و تا اجرای الگوریتمهای واقعی روی شبیهسازهای کوانتومی ادامه پیدا میکند. در این پارت، ابتدا مفاهیم پایهای محاسبات کوانتومی و تفاوت آن با محاسبات کلاسیک را بررسی میکنیم.
محاسبات کلاسیک vs محاسبات کوانتومی
در دنیای کامپیوترهای کلاسیک، اطلاعات به صورت بیت (۰ یا ۱) ذخیره و پردازش میشوند. اما در محاسبات کوانتومی، اطلاعات به صورت کیوبیت (Qubit) ذخیره میشوند که میتوانند ترکیبی از ۰ و ۱ باشند. این ویژگی به دلیل برهمنهی (Superposition) ایجاد میشود.
- بیت کلاسیک:
تنها میتواند یکی از دو حالت ۰ یا ۱ را داشته باشد.
مثال:
بیت = ۰
- کیوبیت کوانتومی:
میتواند ترکیبی از هر دو حالت باشد (مثلاً ۳۰٪ حالت ۰ و ۷۰٪ حالت ۱).
حالت کیوبیت را به این شکل مینویسیم:
|ψ⟩ = α|0⟩ + β|1⟩
که در آن:
- |0⟩: حالت ۰ کیوبیت
- |1⟩: حالت ۱ کیوبیت
- α و β: ضرایبی که احتمال هر حالت را نشان میدهند.
ویژگیهای کلیدی محاسبات کوانتومی
1. برهمنهی (Superposition):
کیوبیتها میتوانند همزمان در چندین حالت باشند که باعث افزایش قدرت پردازش میشود.
2. درهمتنیدگی (Entanglement):
دو یا چند کیوبیت میتوانند به هم وابسته باشند، به طوری که تغییر حالت یکی روی دیگری تأثیر میگذارد، حتی اگر فاصله زیادی بین آنها باشد.
3. تداخل (Interference):
میتوانیم با استفاده از تداخل، حالتهای نامطلوب را حذف و حالتهای مطلوب را تقویت کنیم.
نصب Qiskit
برای اجرای الگوریتمهای کوانتومی، از فریمورک Qiskit استفاده میکنیم که توسط IBM توسعه داده شده است.
گام ۱: نصب Qiskit در محیط پایتون
برای نصب، کافی است دستور زیر را در ترمینال وارد کنید:
pip install qiskit
گام ۲: نصب بستههای اضافی برای اجرای مدار روی شبیهساز کوانتومی
pip install qiskit[visualization]
مثال عملی: ساخت یک کیوبیت در Qiskit
حالا که با مفهوم کیوبیت آشنا شدیم، بیایید اولین مدار کوانتومی خود را با Qiskit بسازیم و یک کیوبیت در حالت برهمنهی ایجاد کنیم.
from qiskit import QuantumCircuit, Aer, transpile, assemble, execute
from qiskit.visualization import plot_histogram
# ایجاد یک مدار کوانتومی با یک کیوبیت و یک بیت کلاسیک
qc = QuantumCircuit(1, 1)
# افزودن گیت Hadamard برای ایجاد برهمنهی
qc.h(0)
# اندازهگیری کیوبیت
qc.measure(0, 0)
# اجرای مدار روی شبیهساز
simulator = Aer.get_backend('qasm_simulator')
compiled_circuit = transpile(qc, simulator)
qobj = assemble(compiled_circuit)
result = simulator.run(qobj).result()
# نمایش نتایج
counts = result.get_counts()
print("Counts:", counts)
plot_histogram(counts)
توضیح کد
1. ایجاد مدار کوانتومی:
با
QuantumCircuit(1, 1)
یک مدار با یک کیوبیت و یک بیت کلاسیک ایجاد کردیم.2. افزودن گیت Hadamard:
گیت Hadamard کیوبیت را به حالت برهمنهی میبرد، یعنی کیوبیت همزمان ۰ و ۱ خواهد بود.
3. اندازهگیری:
کیوبیت را اندازهگیری کردیم و نتیجه را در بیت کلاسیک ذخیره کردیم.
4. اجرای مدار:
مدار را روی شبیهساز
qasm_simulator
اجرا کردیم و نتیجه را به صورت شمارش مشاهده کردیم.تمرین برای شما:
۱. کد بالا را اجرا کنید و نتایج را بررسی کنید.
۲. یک گیت X به مدار اضافه کنید و مشاهده کنید که نتیجه چگونه تغییر میکند.
پارت بعدی:
در پارت ۲، با انواع گیتهای کوانتومی (X, Z, CNOT) و تأثیر آنها روی کیوبیتها آشنا میشویم.
ادامه دارد...
[برای یا گرفتن چیزای بیشتر اینجا کلیک کن]
آموزش الگوریتمهای کوانتومی – پارت ۲: آشنایی با گیتهای کوانتومی
هدف پارت دوم
در این بخش، با گیتهای پایهای کوانتومی آشنا میشویم. گیتها در محاسبات کوانتومی مانند عملگرها در محاسبات کلاسیک هستند و وظیفه تغییر وضعیت کیوبیتها را بر عهده دارند. همچنین چند مثال عملی با استفاده از Qiskit خواهیم داشت.
انواع گیتهای کوانتومی
1. گیت X (Pauli-X Gate)
گیت X مشابه عمل NOT در کامپیوترهای کلاسیک عمل میکند و حالت کیوبیت را از ۰ به ۱ و بالعکس تغییر میدهد.
- تأثیر گیت X:
مثال با Qiskit:
2. گیت Z (Pauli-Z Gate)
گیت Z علامت حالت |1⟩ را معکوس میکند، اما روی حالت |0⟩ تأثیری ندارد.
- تأثیر گیت Z:
مثال با Qiskit:
3. گیت Hadamard (H Gate)
گیت H کیوبیت را به حالت برهمنهی میبرد. این گیت یکی از مهمترین گیتها در محاسبات کوانتومی است.
- تأثیر گیت H:
مثال با Qiskit:
تمرین برای شما:
۱. ترکیب گیتهای X، Z و H را روی یک کیوبیت امتحان کنید.
۲. نتایج را مشاهده و بررسی کنید که چگونه ترتیب گیتها روی خروجی تأثیر میگذارد.
-
پارت بعدی:
در پارت ۳، با گیتهای چند کیوبیتی (مانند گیت CNOT) و مفهوم درهمتنیدگی (Entanglement) آشنا خواهیم شد.
ادامه دارد...
[برای یا گرفتن چیزای بیشتر اینجا کلیک کن]
هدف پارت دوم
در این بخش، با گیتهای پایهای کوانتومی آشنا میشویم. گیتها در محاسبات کوانتومی مانند عملگرها در محاسبات کلاسیک هستند و وظیفه تغییر وضعیت کیوبیتها را بر عهده دارند. همچنین چند مثال عملی با استفاده از Qiskit خواهیم داشت.
انواع گیتهای کوانتومی
1. گیت X (Pauli-X Gate)
گیت X مشابه عمل NOT در کامپیوترهای کلاسیک عمل میکند و حالت کیوبیت را از ۰ به ۱ و بالعکس تغییر میدهد.
- تأثیر گیت X:
|0⟩ → |1⟩
|1⟩ → |0⟩
مثال با Qiskit:
from qiskit import QuantumCircuit, Aer, transpile, assemble, execute
from qiskit.visualization import plot_histogram
qc = QuantumCircuit(1, 1)
qc.x(0) # اعمال گیت X روی کیوبیت ۰
qc.measure(0, 0) # اندازهگیری کیوبیت
simulator = Aer.get_backend('qasm_simulator')
compiled_circuit = transpile(qc, simulator)
qobj = assemble(compiled_circuit)
result = simulator.run(qobj).result()
counts = result.get_counts()
print("Counts:", counts)
plot_histogram(counts)
2. گیت Z (Pauli-Z Gate)
گیت Z علامت حالت |1⟩ را معکوس میکند، اما روی حالت |0⟩ تأثیری ندارد.
- تأثیر گیت Z:
|0⟩ → |0⟩
|1⟩ → -|1⟩
مثال با Qiskit:
qc = QuantumCircuit(1, 1)
qc.h(0) # ایجاد برهمنهی
qc.z(0) # اعمال گیت Z روی کیوبیت ۰
qc.measure(0, 0) # اندازهگیری کیوبیت
simulator = Aer.get_backend('qasm_simulator')
compiled_circuit = transpile(qc, simulator)
qobj = assemble(compiled_circuit)
result = simulator.run(qobj).result()
counts = result.get_counts()
print("Counts:", counts)
plot_histogram(counts)
3. گیت Hadamard (H Gate)
گیت H کیوبیت را به حالت برهمنهی میبرد. این گیت یکی از مهمترین گیتها در محاسبات کوانتومی است.
- تأثیر گیت H:
|0⟩ → (|0⟩ + |1⟩) / √2
|1⟩ → (|0⟩ - |1⟩) / √2
مثال با Qiskit:
qc = QuantumCircuit(1, 1)
qc.h(0) # اعمال گیت H روی کیوبیت ۰
qc.measure(0, 0) # اندازهگیری کیوبیت
simulator = Aer.get_backend('qasm_simulator')
compiled_circuit = transpile(qc, simulator)
qobj = assemble(compiled_circuit)
result = simulator.run(qobj).result()
counts = result.get_counts()
print("Counts:", counts)
plot_histogram(counts)
تمرین برای شما:
۱. ترکیب گیتهای X، Z و H را روی یک کیوبیت امتحان کنید.
۲. نتایج را مشاهده و بررسی کنید که چگونه ترتیب گیتها روی خروجی تأثیر میگذارد.
-
پارت بعدی:
در پارت ۳، با گیتهای چند کیوبیتی (مانند گیت CNOT) و مفهوم درهمتنیدگی (Entanglement) آشنا خواهیم شد.
ادامه دارد...
[برای یا گرفتن چیزای بیشتر اینجا کلیک کن]
آموزش الگوریتمهای کوانتومی – پارت ۳: گیتهای چند کیوبیتی و درهمتنیدگی
هدف پارت سوم
در این بخش، با گیتهای چند کیوبیتی مانند CNOT آشنا میشویم و مفهوم مهم درهمتنیدگی (Entanglement) را بررسی میکنیم. درهمتنیدگی یکی از ویژگیهای منحصربهفرد محاسبات کوانتومی است که در الگوریتمهای پیشرفته نقش کلیدی دارد.
گیت CNOT (Controlled NOT)
گیت CNOT یک گیت دو کیوبیتی است که در آن یک کیوبیت بهعنوان کنترل و دیگری بهعنوان هدف عمل میکند. اگر کیوبیت کنترل در حالت |1⟩ باشد، گیت X روی کیوبیت هدف اعمال میشود؛ در غیر این صورت، تغییری روی کیوبیت هدف ایجاد نمیشود.
- تأثیر گیت CNOT:
ایجاد درهمتنیدگی با گیت CNOT و Hadamard
برای ایجاد درهمتنیدگی، ابتدا یک کیوبیت را با گیت Hadamard به حالت برهمنهی میبریم و سپس گیت CNOT را اعمال میکنیم. نتیجه، حالتی است که دو کیوبیت کاملاً به هم وابسته میشوند؛ به طوری که اندازهگیری یکی، حالت دیگری را نیز مشخص میکند.
مدار درهمتنیدگی در Qiskit:
توضیح کد
1. ایجاد مدار:
مدار شامل دو کیوبیت و دو بیت کلاسیک است.
2. اعمال گیت Hadamard:
کیوبیت اول را به حالت برهمنهی میبرد، بنابراین به طور همزمان در حالتهای |0⟩ و |1⟩ قرار میگیرد.
3. اعمال گیت CNOT:
با استفاده از گیت CNOT، کیوبیت دوم را به کیوبیت اول وابسته میکنیم و در نتیجه درهمتنیدگی ایجاد میشود.
4. اندازهگیری:
هر دو کیوبیت را اندازهگیری کرده و نتایج را مشاهده میکنیم. در خروجی، مشاهده خواهید کرد که فقط حالاتی مانند
تمرین برای شما:
۱. مدار را تغییر دهید و بهجای گیت Hadamard روی کیوبیت اول، روی کیوبیت دوم اعمال کنید. آیا همچنان درهمتنیدگی ایجاد میشود؟
۲. بهجای گیت CNOT، از گیتهای دیگر مانند X و Z استفاده کنید و تأثیر آن را بررسی کنید.
پارت بعدی:
در پارت ۴، با الگوریتم دیوش-جوزا (Deutsch-Jozsa Algorithm) بهعنوان اولین الگوریتم کوانتومی واقعی آشنا خواهیم شد.
ادامه دارد...
[برای یا گرفتن چیزای بیشتر اینجا کلیک کن]
هدف پارت سوم
در این بخش، با گیتهای چند کیوبیتی مانند CNOT آشنا میشویم و مفهوم مهم درهمتنیدگی (Entanglement) را بررسی میکنیم. درهمتنیدگی یکی از ویژگیهای منحصربهفرد محاسبات کوانتومی است که در الگوریتمهای پیشرفته نقش کلیدی دارد.
گیت CNOT (Controlled NOT)
گیت CNOT یک گیت دو کیوبیتی است که در آن یک کیوبیت بهعنوان کنترل و دیگری بهعنوان هدف عمل میکند. اگر کیوبیت کنترل در حالت |1⟩ باشد، گیت X روی کیوبیت هدف اعمال میشود؛ در غیر این صورت، تغییری روی کیوبیت هدف ایجاد نمیشود.
- تأثیر گیت CNOT:
|00⟩ → |00⟩
|01⟩ → |01⟩
|10⟩ → |11⟩
|11⟩ → |10⟩
ایجاد درهمتنیدگی با گیت CNOT و Hadamard
برای ایجاد درهمتنیدگی، ابتدا یک کیوبیت را با گیت Hadamard به حالت برهمنهی میبریم و سپس گیت CNOT را اعمال میکنیم. نتیجه، حالتی است که دو کیوبیت کاملاً به هم وابسته میشوند؛ به طوری که اندازهگیری یکی، حالت دیگری را نیز مشخص میکند.
مدار درهمتنیدگی در Qiskit:
from qiskit import QuantumCircuit, Aer, transpile, assemble, execute
from qiskit.visualization import plot_histogram
# ایجاد مدار با دو کیوبیت و دو بیت کلاسیک
qc = QuantumCircuit(2, 2)
# اعمال گیت Hadamard روی کیوبیت اول
qc.h(0)
# اعمال گیت CNOT با کیوبیت ۰ بهعنوان کنترل و کیوبیت ۱ بهعنوان هدف
qc.cx(0, 1)
# اندازهگیری هر دو کیوبیت
qc.measure([0, 1], [0, 1])
# اجرای مدار روی شبیهساز
simulator = Aer.get_backend('qasm_simulator')
compiled_circuit = transpile(qc, simulator)
qobj = assemble(compiled_circuit)
result = simulator.run(qobj).result()
# نمایش نتایج
counts = result.get_counts()
print("Counts:", counts)
plot_histogram(counts)
توضیح کد
1. ایجاد مدار:
مدار شامل دو کیوبیت و دو بیت کلاسیک است.
2. اعمال گیت Hadamard:
کیوبیت اول را به حالت برهمنهی میبرد، بنابراین به طور همزمان در حالتهای |0⟩ و |1⟩ قرار میگیرد.
3. اعمال گیت CNOT:
با استفاده از گیت CNOT، کیوبیت دوم را به کیوبیت اول وابسته میکنیم و در نتیجه درهمتنیدگی ایجاد میشود.
4. اندازهگیری:
هر دو کیوبیت را اندازهگیری کرده و نتایج را مشاهده میکنیم. در خروجی، مشاهده خواهید کرد که فقط حالاتی مانند
00
و 11
ظاهر میشوند؛ این به دلیل وابستگی کامل دو کیوبیت است.تمرین برای شما:
۱. مدار را تغییر دهید و بهجای گیت Hadamard روی کیوبیت اول، روی کیوبیت دوم اعمال کنید. آیا همچنان درهمتنیدگی ایجاد میشود؟
۲. بهجای گیت CNOT، از گیتهای دیگر مانند X و Z استفاده کنید و تأثیر آن را بررسی کنید.
پارت بعدی:
در پارت ۴، با الگوریتم دیوش-جوزا (Deutsch-Jozsa Algorithm) بهعنوان اولین الگوریتم کوانتومی واقعی آشنا خواهیم شد.
ادامه دارد...
[برای یا گرفتن چیزای بیشتر اینجا کلیک کن]
آموزش الگوریتمهای کوانتومی – پارت ۴: الگوریتم دیوش-جوزا (Deutsch-Jozsa Algorithm)
هدف پارت چهارم
در این بخش، با اولین الگوریتم کوانتومی که برتری خود را نسبت به الگوریتمهای کلاسیک نشان میدهد آشنا میشویم: الگوریتم دیوش-جوزا. این الگوریتم بهخوبی اهمیت موازیسازی کوانتومی را نشان میدهد.
مقدمهای بر الگوریتم دیوش-جوزا
فرض کنید تابعی داریم که ورودی n بیتی میگیرد و خروجی آن یا همیشه ۰ است یا دقیقاً به تعداد مساوی ۰ و ۱ برمیگرداند. هدف ما این است که تشخیص دهیم این تابع ثابت (Constant) یا متعادل (Balanced) است.
- در روش کلاسیک:
برای تشخیص این موضوع، در بدترین حالت باید تابع را روی نیمی از ورودیهای ممکن اجرا کنیم.
اگر تابع دارای n بیت ورودی باشد، این به معنای اجرای تابع روی ۲^(n-1) ورودی است.
- در روش کوانتومی:
با استفاده از الگوریتم دیوش-جوزا میتوان تنها با یک بار اجرا تشخیص داد که تابع ثابت یا متعادل است!
مراحل الگوریتم دیوش-جوزا
1. ایجاد حالت برهمنهی:
تمام ورودیهای ممکن به تابع را بهطور همزمان ایجاد میکنیم.
2. اعمال تابع f به حالت برهمنهی:
تابع کوانتومی را روی کیوبیتها اعمال میکنیم.
3. اندازهگیری نتیجه:
نتیجه اندازهگیری به ما میگوید که تابع ثابت یا متعادل است.
مدار الگوریتم دیوش-جوزا در Qiskit
در اینجا یک پیادهسازی ساده از الگوریتم دیوش-جوزا برای یک تابع ۲ بیتی ارائه شده است.
توضیح کد
1. ایجاد مدار:
مدار شامل سه کیوبیت و دو بیت کلاسیک است.
2. آمادهسازی کیوبیتها:
گیت Hadamard روی کیوبیتهای ورودی اعمال میشود تا تمام ورودیهای ممکن بهطور همزمان ایجاد شوند.
3. اعمال تابع f:
تابعی نمونه بهعنوان یک تابع متعادل تعریف شده است که با استفاده از گیتهای CNOT پیادهسازی میشود.
4. اندازهگیری:
پس از اعمال گیت Hadamard مجدد، نتیجه اندازهگیری به ما نشان میدهد که تابع متعادل است.
نتیجه اجرای کد
در این مثال، خروجی مدار نشان میدهد که تابع متعادل است، زیرا نتیجه اندازهگیری بهصورت
تمرین برای شما:
۱. تابعی ثابت تعریف کنید و ببینید آیا الگوریتم میتواند آن را تشخیص دهد.
۲. تعداد ورودیها را افزایش دهید و تأثیر آن را روی مدار مشاهده کنید.
پارت بعدی:
در پارت ۵، با الگوریتم گراور (Grover's Algorithm) آشنا میشویم که برای جستجوی سریع در پایگاه دادههای غیر مرتب استفاده میشود.
ادامه دارد...
[برای یا گرفتن چیزای بیشتر اینجا کلیک کن]
هدف پارت چهارم
در این بخش، با اولین الگوریتم کوانتومی که برتری خود را نسبت به الگوریتمهای کلاسیک نشان میدهد آشنا میشویم: الگوریتم دیوش-جوزا. این الگوریتم بهخوبی اهمیت موازیسازی کوانتومی را نشان میدهد.
مقدمهای بر الگوریتم دیوش-جوزا
فرض کنید تابعی داریم که ورودی n بیتی میگیرد و خروجی آن یا همیشه ۰ است یا دقیقاً به تعداد مساوی ۰ و ۱ برمیگرداند. هدف ما این است که تشخیص دهیم این تابع ثابت (Constant) یا متعادل (Balanced) است.
- در روش کلاسیک:
برای تشخیص این موضوع، در بدترین حالت باید تابع را روی نیمی از ورودیهای ممکن اجرا کنیم.
اگر تابع دارای n بیت ورودی باشد، این به معنای اجرای تابع روی ۲^(n-1) ورودی است.
- در روش کوانتومی:
با استفاده از الگوریتم دیوش-جوزا میتوان تنها با یک بار اجرا تشخیص داد که تابع ثابت یا متعادل است!
مراحل الگوریتم دیوش-جوزا
1. ایجاد حالت برهمنهی:
تمام ورودیهای ممکن به تابع را بهطور همزمان ایجاد میکنیم.
2. اعمال تابع f به حالت برهمنهی:
تابع کوانتومی را روی کیوبیتها اعمال میکنیم.
3. اندازهگیری نتیجه:
نتیجه اندازهگیری به ما میگوید که تابع ثابت یا متعادل است.
مدار الگوریتم دیوش-جوزا در Qiskit
در اینجا یک پیادهسازی ساده از الگوریتم دیوش-جوزا برای یک تابع ۲ بیتی ارائه شده است.
from qiskit import QuantumCircuit, Aer, transpile, assemble, execute
from qiskit.visualization import plot_histogram
# ایجاد مدار با ۳ کیوبیت و ۲ بیت کلاسیک
n = 2 # تعداد ورودیهای تابع
qc = QuantumCircuit(n + 1, n)
# آمادهسازی کیوبیتها: ایجاد برهمنهی
qc.h(range(n)) # اعمال گیت H روی n کیوبیت اول
qc.x(n) # اعمال گیت X روی کیوبیت کمکی
qc.h(n) # اعمال گیت H روی کیوبیت کمکی
# اعمال تابع f (در اینجا یک تابع متعادل نمونه)
qc.cx(0, n) # گیت CNOT با کیوبیت ۰ بهعنوان کنترل
qc.cx(1, n) # گیت CNOT با کیوبیت ۱ بهعنوان کنترل
# اعمال گیت Hadamard مجدد
qc.h(range(n))
# اندازهگیری کیوبیتها
qc.measure(range(n), range(n))
# اجرای مدار روی شبیهساز
simulator = Aer.get_backend('qasm_simulator')
compiled_circuit = transpile(qc, simulator)
qobj = assemble(compiled_circuit)
result = simulator.run(qobj).result()
# نمایش نتایج
counts = result.get_counts()
print("Counts:", counts)
plot_histogram(counts)
توضیح کد
1. ایجاد مدار:
مدار شامل سه کیوبیت و دو بیت کلاسیک است.
2. آمادهسازی کیوبیتها:
گیت Hadamard روی کیوبیتهای ورودی اعمال میشود تا تمام ورودیهای ممکن بهطور همزمان ایجاد شوند.
3. اعمال تابع f:
تابعی نمونه بهعنوان یک تابع متعادل تعریف شده است که با استفاده از گیتهای CNOT پیادهسازی میشود.
4. اندازهگیری:
پس از اعمال گیت Hadamard مجدد، نتیجه اندازهگیری به ما نشان میدهد که تابع متعادل است.
نتیجه اجرای کد
در این مثال، خروجی مدار نشان میدهد که تابع متعادل است، زیرا نتیجه اندازهگیری بهصورت
11
خواهد بود. اگر نتیجه 00
بود، به این معنی بود که تابع ثابت است.تمرین برای شما:
۱. تابعی ثابت تعریف کنید و ببینید آیا الگوریتم میتواند آن را تشخیص دهد.
۲. تعداد ورودیها را افزایش دهید و تأثیر آن را روی مدار مشاهده کنید.
پارت بعدی:
در پارت ۵، با الگوریتم گراور (Grover's Algorithm) آشنا میشویم که برای جستجوی سریع در پایگاه دادههای غیر مرتب استفاده میشود.
ادامه دارد...
[برای یا گرفتن چیزای بیشتر اینجا کلیک کن]
Telegram
Python3
🎓 آموزش و پروژههای Python
آموزشهای کاربردی و پروژههای عملی Python برای همه سطوح. 🚀
آموزشهای کاربردی و پروژههای عملی Python برای همه سطوح. 🚀
👍1
آموزش الگوریتمهای کوانتومی – پارت ۵: الگوریتم گراور (Grover's Algorithm)
هدف پارت پنجم
در این بخش، با یکی از مهمترین الگوریتمهای کوانتومی به نام الگوریتم گراور آشنا میشویم. این الگوریتم یک روش بسیار کارآمد برای جستجو در یک پایگاه داده غیر مرتب است و از برتری کوانتومی نسبت به روشهای کلاسیک بهره میبرد.
مقدمهای بر الگوریتم گراور
فرض کنید یک پایگاه داده غیر مرتب داریم و میخواهیم یک مقدار خاص را پیدا کنیم. در روشهای کلاسیک، در بدترین حالت نیاز به جستجو در تمام ورودیها داریم، یعنی O(N) عملیات.
اما الگوریتم گراور این کار را در حدود √N عملیات انجام میدهد!
ایده اصلی الگوریتم گراور
الگوریتم گراور به کمک مفهوم تقویت دامنه (Amplitude Amplification) عمل میکند. ایده به این صورت است که بهطور پیوسته حالتهای صحیح (که به دنبال آنها هستیم) را تقویت کرده و حالتهای نادرست را تضعیف میکند، تا در نهایت با احتمال بالایی بتوانیم حالت صحیح را با یک اندازهگیری پیدا کنیم.
مراحل الگوریتم گراور
1. ایجاد برهمنهی یکنواخت:
تمام حالتهای ممکن را بهطور همزمان ایجاد میکنیم.
2. اوراکل (Oracle):
تابعی را تعریف میکنیم که حالت هدف را مشخص میکند.
3. عملگر گراور:
به کمک گیتهای خاص، دامنه حالت هدف را تقویت میکنیم.
4. اندازهگیری:
در نهایت، با اندازهگیری حالت تقویتشده را به دست میآوریم.
پیادهسازی الگوریتم گراور در Qiskit
در اینجا یک پیادهسازی ساده از الگوریتم گراور برای یک پایگاه داده کوچک با ۲ کیوبیت ارائه شده است.
توضیح کد
1. ایجاد برهمنهی یکنواخت:
با اعمال گیتهای Hadamard، تمام حالتهای ممکن برای دو کیوبیت ایجاد میشود.
2. اوراکل:
در این مثال، یک اوراکل ساده تعریف شده که حالت |11⟩ را بهعنوان حالت هدف مشخص میکند.
3. عملگر گراور:
عملگر گراور با استفاده از گیتهای Hadamard، X و Controlled-Z پیادهسازی شده است تا دامنه حالت هدف تقویت شود.
4. اندازهگیری:
در نهایت، اندازهگیری انجام شده و نتیجه مشاهده میشود.
نتیجه اجرای کد
در خروجی، مشاهده خواهید کرد که با احتمال بالایی حالت |11⟩ به دست میآید، که همان حالت هدف ماست.
تمرین برای شما:
۱. تعداد کیوبیتها را افزایش دهید و بررسی کنید که آیا الگوریتم همچنان به درستی کار میکند.
۲. اوراکل را تغییر دهید تا حالت دیگری بهعنوان هدف در نظر گرفته شود و تأثیر آن را روی نتایج مشاهده کنید.
پارت بعدی:
در پارت ۶، به بررسی الگوریتم شُر (Shor’s Algorithm) میپردازیم که برای فاکتورگیری اعداد بزرگ استفاده میشود و کاربرد مهمی در شکستن رمزنگاریهای کلاسیک دارد.
ادامه دارد...
[برای یا گرفتن چیزای بیشتر اینجا کلیک کن]
هدف پارت پنجم
در این بخش، با یکی از مهمترین الگوریتمهای کوانتومی به نام الگوریتم گراور آشنا میشویم. این الگوریتم یک روش بسیار کارآمد برای جستجو در یک پایگاه داده غیر مرتب است و از برتری کوانتومی نسبت به روشهای کلاسیک بهره میبرد.
مقدمهای بر الگوریتم گراور
فرض کنید یک پایگاه داده غیر مرتب داریم و میخواهیم یک مقدار خاص را پیدا کنیم. در روشهای کلاسیک، در بدترین حالت نیاز به جستجو در تمام ورودیها داریم، یعنی O(N) عملیات.
اما الگوریتم گراور این کار را در حدود √N عملیات انجام میدهد!
ایده اصلی الگوریتم گراور
الگوریتم گراور به کمک مفهوم تقویت دامنه (Amplitude Amplification) عمل میکند. ایده به این صورت است که بهطور پیوسته حالتهای صحیح (که به دنبال آنها هستیم) را تقویت کرده و حالتهای نادرست را تضعیف میکند، تا در نهایت با احتمال بالایی بتوانیم حالت صحیح را با یک اندازهگیری پیدا کنیم.
مراحل الگوریتم گراور
1. ایجاد برهمنهی یکنواخت:
تمام حالتهای ممکن را بهطور همزمان ایجاد میکنیم.
2. اوراکل (Oracle):
تابعی را تعریف میکنیم که حالت هدف را مشخص میکند.
3. عملگر گراور:
به کمک گیتهای خاص، دامنه حالت هدف را تقویت میکنیم.
4. اندازهگیری:
در نهایت، با اندازهگیری حالت تقویتشده را به دست میآوریم.
پیادهسازی الگوریتم گراور در Qiskit
در اینجا یک پیادهسازی ساده از الگوریتم گراور برای یک پایگاه داده کوچک با ۲ کیوبیت ارائه شده است.
from qiskit import QuantumCircuit, Aer, transpile, assemble, execute
from qiskit.visualization import plot_histogram
# ایجاد مدار با ۲ کیوبیت و ۲ بیت کلاسیک
n = 2 # تعداد کیوبیتها
qc = QuantumCircuit(n, n)
# مرحله ۱: ایجاد برهمنهی یکنواخت
qc.h(range(n)) # اعمال گیت H روی تمام کیوبیتها
# مرحله ۲: تعریف اوراکل (Oracle)
qc.cz(0, 1) # یک اوراکل ساده که حالت |11⟩ را هدف قرار میدهد
# مرحله ۳: اعمال گیتهای گراور
qc.h(range(n))
qc.x(range(n))
qc.h(n-1)
qc.mcx([0], 1)
qc.h(n-1)
qc.x(range(n))
qc.h(range(n))
# اندازهگیری
qc.measure(range(n), range(n))
# اجرای مدار روی شبیهساز
simulator = Aer.get_backend('qasm_simulator')
compiled_circuit = transpile(qc, simulator)
qobj = assemble(compiled_circuit)
result = simulator.run(qobj).result()
# نمایش نتایج
counts = result.get_counts()
print("Counts:", counts)
plot_histogram(counts)
توضیح کد
1. ایجاد برهمنهی یکنواخت:
با اعمال گیتهای Hadamard، تمام حالتهای ممکن برای دو کیوبیت ایجاد میشود.
2. اوراکل:
در این مثال، یک اوراکل ساده تعریف شده که حالت |11⟩ را بهعنوان حالت هدف مشخص میکند.
3. عملگر گراور:
عملگر گراور با استفاده از گیتهای Hadamard، X و Controlled-Z پیادهسازی شده است تا دامنه حالت هدف تقویت شود.
4. اندازهگیری:
در نهایت، اندازهگیری انجام شده و نتیجه مشاهده میشود.
نتیجه اجرای کد
در خروجی، مشاهده خواهید کرد که با احتمال بالایی حالت |11⟩ به دست میآید، که همان حالت هدف ماست.
تمرین برای شما:
۱. تعداد کیوبیتها را افزایش دهید و بررسی کنید که آیا الگوریتم همچنان به درستی کار میکند.
۲. اوراکل را تغییر دهید تا حالت دیگری بهعنوان هدف در نظر گرفته شود و تأثیر آن را روی نتایج مشاهده کنید.
پارت بعدی:
در پارت ۶، به بررسی الگوریتم شُر (Shor’s Algorithm) میپردازیم که برای فاکتورگیری اعداد بزرگ استفاده میشود و کاربرد مهمی در شکستن رمزنگاریهای کلاسیک دارد.
ادامه دارد...
[برای یا گرفتن چیزای بیشتر اینجا کلیک کن]
Telegram
Python3
🎓 آموزش و پروژههای Python
آموزشهای کاربردی و پروژههای عملی Python برای همه سطوح. 🚀
آموزشهای کاربردی و پروژههای عملی Python برای همه سطوح. 🚀
👍1
آموزش الگوریتمهای کوانتومی – پارت ۶: الگوریتم شُر (Shor’s Algorithm)
هدف پارت ششم
در این بخش، الگوریتم معروف شُر را بررسی میکنیم که در حوزه رمزنگاری اهمیت بالایی دارد. الگوریتم شُر به دلیل توانایی آن در فاکتورگیری اعداد صحیح بزرگ، میتواند بسیاری از سیستمهای رمزنگاری مبتنی بر فاکتورگیری مانند RSA را درهم بشکند.
ایده اصلی الگوریتم شُر
هدف الگوریتم شُر این است که عدد N را به دو عدد اول فاکتورگیری کند. مثلاً برای عدد 15 به دنبال دو عدد 3 و 5 میگردیم.
- روشهای کلاسیک مانند آزمون تقسیم برای اعداد بزرگ ناکارآمد هستند و زمان بسیار زیادی میبرند.
- الگوریتم شُر با استفاده از خاصیتهای کوانتومی مانند تحلیل فوریه کوانتومی (QFT) این کار را بسیار سریعتر انجام میدهد.
مراحل الگوریتم شُر
1. انتخاب یک عدد a که کوچکتر از N باشد و نسبت به N اول باشد (یعنی gcd(a, N) = 1).
2. پیدا کردن دوره تناوب r از تابع f(x) = a^x mod N به طوری که کوچکترین عدد r برای آن a^r mod N = 1 باشد.
3. استفاده از r برای محاسبه فاکتورها: اگر r فرد باشد یا a^(r/2) mod N برابر 1 باشد، مراحل را تکرار میکنیم. در غیر این صورت، فاکتورها را به صورت gcd(a^(r/2) - 1, N) و gcd(a^(r/2) + 1, N) به دست میآوریم.
مثال ساده برای عدد 15
1. عدد a را برابر با 2 انتخاب میکنیم. چون gcd(2, 15) = 1 است، a و N نسبت اول هستند.
2. تابع f(x) = 2^x mod 15 را برای مقادیر مختلف x محاسبه میکنیم:
- 2^1 mod 15 = 2
- 2^2 mod 15 = 4
- 2^3 mod 15 = 8
- 2^4 mod 15 = 1
بنابراین، دوره تناوب r برابر با 4 است.
3. حالا فاکتورها را محاسبه میکنیم:
gcd(2^(4/2) - 1, 15) = gcd(3, 15) = 3
gcd(2^(4/2) + 1, 15) = gcd(5, 15) = 5
بنابراین فاکتورهای عدد 15 به دست آمدند: 3 و 5.
پیادهسازی در Qiskit
در اینجا از Qiskit استفاده میکنیم تا الگوریتم شُر را روی یک شبیهساز اجرا کنیم.
توضیح کد
- ابتدا عدد N را تعریف میکنیم که همان عددی است که میخواهیم فاکتورگیری کنیم.
- با استفاده از کلاس Shor یک نمونه از الگوریتم شُر ایجاد میکنیم.
- الگوریتم روی شبیهساز QASM اجرا شده و فاکتورها بهصورت خروجی نمایش داده میشوند.
تمرین برای شما
1. الگوریتم شُر را برای اعداد 21 و 35 پیادهسازی کنید و نتایج را بررسی کنید.
2. توضیح دهید چرا الگوریتم شُر از نظر تئوری میتواند سیستم رمزنگاری RSA را بشکند.
پارت بعدی
در پارت 7 با مفهوم گیتهای چندکیوبیتی و درهمتنیدگی (Entanglement) آشنا خواهیم شد.
ادامه دارد...
[برای یا گرفتن چیزای بیشتر اینجا کلیک کن]
هدف پارت ششم
در این بخش، الگوریتم معروف شُر را بررسی میکنیم که در حوزه رمزنگاری اهمیت بالایی دارد. الگوریتم شُر به دلیل توانایی آن در فاکتورگیری اعداد صحیح بزرگ، میتواند بسیاری از سیستمهای رمزنگاری مبتنی بر فاکتورگیری مانند RSA را درهم بشکند.
ایده اصلی الگوریتم شُر
هدف الگوریتم شُر این است که عدد N را به دو عدد اول فاکتورگیری کند. مثلاً برای عدد 15 به دنبال دو عدد 3 و 5 میگردیم.
- روشهای کلاسیک مانند آزمون تقسیم برای اعداد بزرگ ناکارآمد هستند و زمان بسیار زیادی میبرند.
- الگوریتم شُر با استفاده از خاصیتهای کوانتومی مانند تحلیل فوریه کوانتومی (QFT) این کار را بسیار سریعتر انجام میدهد.
مراحل الگوریتم شُر
1. انتخاب یک عدد a که کوچکتر از N باشد و نسبت به N اول باشد (یعنی gcd(a, N) = 1).
2. پیدا کردن دوره تناوب r از تابع f(x) = a^x mod N به طوری که کوچکترین عدد r برای آن a^r mod N = 1 باشد.
3. استفاده از r برای محاسبه فاکتورها: اگر r فرد باشد یا a^(r/2) mod N برابر 1 باشد، مراحل را تکرار میکنیم. در غیر این صورت، فاکتورها را به صورت gcd(a^(r/2) - 1, N) و gcd(a^(r/2) + 1, N) به دست میآوریم.
مثال ساده برای عدد 15
1. عدد a را برابر با 2 انتخاب میکنیم. چون gcd(2, 15) = 1 است، a و N نسبت اول هستند.
2. تابع f(x) = 2^x mod 15 را برای مقادیر مختلف x محاسبه میکنیم:
- 2^1 mod 15 = 2
- 2^2 mod 15 = 4
- 2^3 mod 15 = 8
- 2^4 mod 15 = 1
بنابراین، دوره تناوب r برابر با 4 است.
3. حالا فاکتورها را محاسبه میکنیم:
gcd(2^(4/2) - 1, 15) = gcd(3, 15) = 3
gcd(2^(4/2) + 1, 15) = gcd(5, 15) = 5
بنابراین فاکتورهای عدد 15 به دست آمدند: 3 و 5.
پیادهسازی در Qiskit
در اینجا از Qiskit استفاده میکنیم تا الگوریتم شُر را روی یک شبیهساز اجرا کنیم.
from qiskit import Aer, execute
from qiskit.algorithms import Shor
N = 15 # عددی که میخواهیم فاکتورگیری کنیم
shor = Shor() # ایجاد نمونه الگوریتم شُر
backend = Aer.get_backend('qasm_simulator') # انتخاب شبیهساز
result = shor.run(backend, N) # اجرای الگوریتم
print("Factors of", N, ":", result.factors) # نمایش نتیجه
توضیح کد
- ابتدا عدد N را تعریف میکنیم که همان عددی است که میخواهیم فاکتورگیری کنیم.
- با استفاده از کلاس Shor یک نمونه از الگوریتم شُر ایجاد میکنیم.
- الگوریتم روی شبیهساز QASM اجرا شده و فاکتورها بهصورت خروجی نمایش داده میشوند.
تمرین برای شما
1. الگوریتم شُر را برای اعداد 21 و 35 پیادهسازی کنید و نتایج را بررسی کنید.
2. توضیح دهید چرا الگوریتم شُر از نظر تئوری میتواند سیستم رمزنگاری RSA را بشکند.
پارت بعدی
در پارت 7 با مفهوم گیتهای چندکیوبیتی و درهمتنیدگی (Entanglement) آشنا خواهیم شد.
ادامه دارد...
[برای یا گرفتن چیزای بیشتر اینجا کلیک کن]
Telegram
Python3
🎓 آموزش و پروژههای Python
آموزشهای کاربردی و پروژههای عملی Python برای همه سطوح. 🚀
آموزشهای کاربردی و پروژههای عملی Python برای همه سطوح. 🚀
👍1
🧠 آموزش هشینگ و دسترسی سریع به دادهها در پایگاه دادهها
🔍 مقدمه
در دنیای فناوری اطلاعات و علوم کامپیوتر، یکی از مهمترین چالشها، مدیریت و جستوجو در پایگاههای داده بزرگ است. دادهها هر روز به طور تصاعدی در حال افزایش هستند، و نیاز داریم که بتوانیم بدون صرف وقت زیادی، به دادههای مورد نظر خود دسترسی پیدا کنیم. 🤖
امروز میخواهیم شما را با یکی از تکنیکهای بسیار مفید و سریع برای دسترسی به دادهها آشنا کنیم: هشینگ (Hashing).
🔑 هشینگ چیست؟
هشینگ یک تکنیک در علوم کامپیوتر است که به کمک آن، میتوان یک کلید ورودی (مثلاً یک کلمه یا شماره) را به یک عدد منحصر به فرد (که همان هش نامیده میشود) تبدیل کرد. این عدد سپس به عنوان ایندکسی برای ذخیرهسازی یا جستوجوی دادهها در ساختارهای دادهای استفاده میشود. ⚡️
با هشینگ، میتوانیم به دادهها به سرعت دسترسی پیدا کنیم، بدون اینکه نیاز به جستوجوی خطی در میان تمامی دادهها داشته باشیم. این روش به ویژه در پایگاه دادههای بزرگ و سیستمهای جستوجو کاربرد فراوانی دارد. 😎
🏃 چطور هشینگ سرعت جستوجو را بالا میبرد؟
🔄 در روشهای سنتی جستوجو، برای پیدا کردن دادهها باید تمامی آیتمها را یکییکی چک کنیم که این میتواند وقتگیر باشد. اما با استفاده از هشینگ، فقط با داشتن یک کلید خاص، میتوانیم بهطور مستقیم به مکان مربوط به داده در حافظه (یا پایگاه داده) دسترسی پیدا کنیم.
به این معنا که وقتی یک داده (مثل کلمه یا شماره) را وارد میکنیم، هشینگ آن را به یک ایندکس عددی تبدیل کرده و ما میتوانیم مستقیماً به آن داده در پایگاه داده برویم، بدون اینکه نیازی به جستوجوی دستی و خطی داشته باشیم! 😱🔥
🛠 ساختار دادهای هشمپ
🔑 در هشینگ، یکی از محبوبترین ساختارهایی که برای ذخیرهسازی دادهها استفاده میشود، هشمپ است. در این ساختار، دادهها به کمک کلیدها (مثل نامها، شمارهها و غیره) ذخیره میشوند و این کلیدها به سرعت به ایندکسهای خاصی تبدیل میشوند که محل دادهها در حافظه را نشان میدهند.
در حقیقت، هشمپها میتوانند دادهها را بهطور سریع و با کمترین زمان دسترسی در پایگاه دادهها نگهداری کنند.
📑 مثال کد به زبان Python
در اینجا یک مثال ساده از پیادهسازی هشینگ با استفاده از هشمپها در زبان پایتون آمده است:
توضیحات کد:
1. هشمپ: در این کد از دیکشنریهای پایتون استفاده کردیم که معادل هشمپ در پایتون هستند.
2. دادهها: با استفاده از
3. دسترسی به دادهها: برای دسترسی به دادهها از
🔑 نکته: در هشمپها، برای دسترسی به دادهها از کلید استفاده میشود و این امکان را فراهم میآورد که به سرعت به ایندکسهای دادههای مورد نظر دسترسی پیدا کنیم.
🚀 مزایای هشینگ
1. سرعت بالا: دسترسی به دادهها به طور معمول با زمان ثابت (O(1)) انجام میشود.
2. کاهش زمان جستوجو: شما دیگر نیازی به جستوجوی خطی در پایگاه داده ندارید.
3. مقیاسپذیری عالی: به راحتی میتوان پایگاههای داده بزرگ را مدیریت کرد.
4. صرفهجویی در منابع: هشینگ به شما این امکان را میدهد که با منابع کمتر، دادهها را سریعتر مدیریت کنید.
⚡️ کدام موقعیتها از هشینگ بهره میبرند؟
- پایگاههای داده: برای ذخیرهسازی و بازیابی دادهها به صورت سریع.
- سیستمهای جستوجو: مانند موتورهای جستوجو که به سرعت اطلاعات را پیدا میکنند.
- سیستمهای مدیریت کاربران: برای ذخیرهسازی سریع اطلاعات کاربران با کلیدهای منحصر به فرد (مثل ایمیل یا شماره تلفن).
- پردازش زبان طبیعی (NLP): برای ذخیرهسازی واژهها و دسترسی به آنها بهطور سریع.
📊 نتیجهگیری
🔍 مقدمه
در دنیای فناوری اطلاعات و علوم کامپیوتر، یکی از مهمترین چالشها، مدیریت و جستوجو در پایگاههای داده بزرگ است. دادهها هر روز به طور تصاعدی در حال افزایش هستند، و نیاز داریم که بتوانیم بدون صرف وقت زیادی، به دادههای مورد نظر خود دسترسی پیدا کنیم. 🤖
امروز میخواهیم شما را با یکی از تکنیکهای بسیار مفید و سریع برای دسترسی به دادهها آشنا کنیم: هشینگ (Hashing).
🔑 هشینگ چیست؟
هشینگ یک تکنیک در علوم کامپیوتر است که به کمک آن، میتوان یک کلید ورودی (مثلاً یک کلمه یا شماره) را به یک عدد منحصر به فرد (که همان هش نامیده میشود) تبدیل کرد. این عدد سپس به عنوان ایندکسی برای ذخیرهسازی یا جستوجوی دادهها در ساختارهای دادهای استفاده میشود. ⚡️
با هشینگ، میتوانیم به دادهها به سرعت دسترسی پیدا کنیم، بدون اینکه نیاز به جستوجوی خطی در میان تمامی دادهها داشته باشیم. این روش به ویژه در پایگاه دادههای بزرگ و سیستمهای جستوجو کاربرد فراوانی دارد. 😎
🏃 چطور هشینگ سرعت جستوجو را بالا میبرد؟
🔄 در روشهای سنتی جستوجو، برای پیدا کردن دادهها باید تمامی آیتمها را یکییکی چک کنیم که این میتواند وقتگیر باشد. اما با استفاده از هشینگ، فقط با داشتن یک کلید خاص، میتوانیم بهطور مستقیم به مکان مربوط به داده در حافظه (یا پایگاه داده) دسترسی پیدا کنیم.
به این معنا که وقتی یک داده (مثل کلمه یا شماره) را وارد میکنیم، هشینگ آن را به یک ایندکس عددی تبدیل کرده و ما میتوانیم مستقیماً به آن داده در پایگاه داده برویم، بدون اینکه نیازی به جستوجوی دستی و خطی داشته باشیم! 😱🔥
🛠 ساختار دادهای هشمپ
🔑 در هشینگ، یکی از محبوبترین ساختارهایی که برای ذخیرهسازی دادهها استفاده میشود، هشمپ است. در این ساختار، دادهها به کمک کلیدها (مثل نامها، شمارهها و غیره) ذخیره میشوند و این کلیدها به سرعت به ایندکسهای خاصی تبدیل میشوند که محل دادهها در حافظه را نشان میدهند.
در حقیقت، هشمپها میتوانند دادهها را بهطور سریع و با کمترین زمان دسترسی در پایگاه دادهها نگهداری کنند.
📑 مثال کد به زبان Python
در اینجا یک مثال ساده از پیادهسازی هشینگ با استفاده از هشمپها در زبان پایتون آمده است:
# ساخت یک هشمپ برای ذخیرهسازی دادهها
data = {}
# افزودن دادهها به هشمپ
data["apple"] = 10
data["banana"] = 20
data["cherry"] = 30
# دسترسی به دادهها با استفاده از کلید
key = "banana"
if key in data:
print(f"Value for {key} is {data[key]}")
else:
print(f"{key} not found!")
# دسترسی به کلیدهای دیگر
key = "apple"
print(f"Value for {key} is {data[key]}")
توضیحات کد:
1. هشمپ: در این کد از دیکشنریهای پایتون استفاده کردیم که معادل هشمپ در پایتون هستند.
2. دادهها: با استفاده از
data["apple"] = 10
دادهها را به هشمپ اضافه کردیم. اینجا کلید "apple" به مقدار 10 متصل میشود.3. دسترسی به دادهها: برای دسترسی به دادهها از
data[key]
استفاده میکنیم. اگر کلید وجود داشته باشد، مقدار آن نمایش داده میشود.🔑 نکته: در هشمپها، برای دسترسی به دادهها از کلید استفاده میشود و این امکان را فراهم میآورد که به سرعت به ایندکسهای دادههای مورد نظر دسترسی پیدا کنیم.
🚀 مزایای هشینگ
1. سرعت بالا: دسترسی به دادهها به طور معمول با زمان ثابت (O(1)) انجام میشود.
2. کاهش زمان جستوجو: شما دیگر نیازی به جستوجوی خطی در پایگاه داده ندارید.
3. مقیاسپذیری عالی: به راحتی میتوان پایگاههای داده بزرگ را مدیریت کرد.
4. صرفهجویی در منابع: هشینگ به شما این امکان را میدهد که با منابع کمتر، دادهها را سریعتر مدیریت کنید.
⚡️ کدام موقعیتها از هشینگ بهره میبرند؟
- پایگاههای داده: برای ذخیرهسازی و بازیابی دادهها به صورت سریع.
- سیستمهای جستوجو: مانند موتورهای جستوجو که به سرعت اطلاعات را پیدا میکنند.
- سیستمهای مدیریت کاربران: برای ذخیرهسازی سریع اطلاعات کاربران با کلیدهای منحصر به فرد (مثل ایمیل یا شماره تلفن).
- پردازش زبان طبیعی (NLP): برای ذخیرهسازی واژهها و دسترسی به آنها بهطور سریع.
📊 نتیجهگیری
👍2
هشینگ یک تکنیک فوقالعاده قدرتمند است که میتواند سرعت دسترسی به دادهها را به طور چشمگیری افزایش دهد. با استفاده از هشمپها و هشینگ، میتوانید پایگاه دادههای بزرگ را بهراحتی مدیریت کنید و از جستوجوهای خطی و زمانبر جلوگیری کنید. این روش در دنیای دادههای بزرگ و سیستمهای پیچیده بهطور گستردهای استفاده میشود و میتواند به شما کمک کند که حتی با سیستمهای معمولی، از سرعت بالای پردازش دادهها بهرهمند شوید.
امیدوارم که این آموزش برای شما مفید بوده باشد! 🌟 اگر سوالی دارید یا نیاز به توضیحات بیشتر دارید، حتماً در کامنتها مطرح کنید. 💬
🌟 برای یادگیری بیشتر و آموزشهای جذابتر به کانال ما بپیوندید!
#هشینگ #برنامه_نویسی #Python #کامپیوتر #پایگاه_داده #الگوریتم #پیشرفت #تکنولوژی
امیدوارم که این آموزش برای شما مفید بوده باشد! 🌟 اگر سوالی دارید یا نیاز به توضیحات بیشتر دارید، حتماً در کامنتها مطرح کنید. 💬
🌟 برای یادگیری بیشتر و آموزشهای جذابتر به کانال ما بپیوندید!
#هشینگ #برنامه_نویسی #Python #کامپیوتر #پایگاه_داده #الگوریتم #پیشرفت #تکنولوژی
Telegram
Python3
🎓 آموزش و پروژههای Python
آموزشهای کاربردی و پروژههای عملی Python برای همه سطوح. 🚀
آموزشهای کاربردی و پروژههای عملی Python برای همه سطوح. 🚀
👍2
Python3
هشینگ یک تکنیک فوقالعاده قدرتمند است که میتواند سرعت دسترسی به دادهها را به طور چشمگیری افزایش دهد. با استفاده از هشمپها و هشینگ، میتوانید پایگاه دادههای بزرگ را بهراحتی مدیریت کنید و از جستوجوهای خطی و زمانبر جلوگیری کنید. این روش در دنیای دادههای…
کوپایلوت خیلی خوبه حاجی مثلا همین متن آموزش این هشینگ رو خام دادم بهش اینطوری درستش کرد
نظر شما در باره copilot چیه
نظر شما در باره copilot چیه
👍3
آموزش الگوریتمهای کوانتومی – پارت ۷: گیتهای چندکیوبیتی و درهمتنیدگی (Entanglement)
هدف پارت هفتم
در این پارت، با گیتهای چندکیوبیتی و مفهوم درهمتنیدگی آشنا میشویم. درهمتنیدگی یکی از ویژگیهای منحصر بهفرد سیستمهای کوانتومی است که بهطور گستردهای در الگوریتمهای کوانتومی مانند الگوریتم شُر و الگوریتم گریور استفاده میشود. این ویژگی به ما این امکان را میدهد که اطلاعات را بهطور همزمان در چندین کیوبیت ذخیره کرده و پردازش کنیم.
درهمتنیدگی (Entanglement)
درهمتنیدگی به وضعیتی گفته میشود که در آن دو یا چند کیوبیت بهگونهای با یکدیگر ارتباط دارند که تغییر وضعیت یک کیوبیت بهطور آنی وضعیت دیگر کیوبیتها را تحت تأثیر قرار میدهد. این ویژگی باعث میشود که اطلاعات در سیستمهای کوانتومی بهطور بسیار کارآمدتر از سیستمهای کلاسیک پردازش شوند.
برای درک بهتر این موضوع، بیایید یک نمونه ساده از درهمتنیدگی را بررسی کنیم.
گیتهای چندکیوبیتی و درهمتنیدگی در Qiskit
یکی از ابزارهای اصلی برای ایجاد درهمتنیدگی در سیستمهای کوانتومی استفاده از گیت CNOT (Controlled-NOT) است. این گیت دو کیوبیت را بهگونهای به هم متصل میکند که وضعیت یکی از کیوبیتها (کیوبیت کنترل) میتواند وضعیت دیگری (کیوبیت هدف) را تغییر دهد.
در اینجا یک نمونه کد برای درهمتنیدگی دو کیوبیت با استفاده از گیتهای کوانتومی آورده شده است:
توضیح کد
1. ایجاد مدار کوانتومی:
ابتدا یک مدار کوانتومی با دو کیوبیت ساخته میشود.
2. گیت هادامارد (Hadamard):
گیت هادامارد را روی کیوبیت اول (Q0) اعمال میکنیم. این گیت وضعیت کیوبیت را از حالت پایه (|0⟩) به حالت سوپراپوزیشن تغییر میدهد، بهطوریکه احتمال پیدا شدن کیوبیت در حالت 0 یا 1 برابر است.
3. گیت CNOT:
گیت CNOT که یک گیت کنترل-هدف است، روی کیوبیتهای Q0 (کنترل) و Q1 (هدف) اعمال میشود. این گیت وضعیت کیوبیت هدف (Q1) را فقط در صورتی تغییر میدهد که کیوبیت کنترل (Q0) در حالت 1 باشد.
4. اندازهگیری:
پس از ایجاد درهمتنیدگی بین کیوبیتها، هر دو کیوبیت را اندازهگیری میکنیم.
5. شبیهسازی مدار:
مدار را با استفاده از شبیهساز Qiskit اجرا کرده و نتایج اندازهگیری را مشاهده میکنیم.
نتیجه اجرای کد
اگر این کد را اجرا کنید، نتایج بهصورت زیر خواهد بود:
این نشاندهنده آن است که کیوبیتها در دو حالت درهمتنیده 00 یا 11 قرار دارند، و هر دو حالت با احتمال برابر مشاهده میشوند.
توضیح درهمتنیدگی
در این حالت، کیوبیتهای Q0 و Q1 درهمتنیده هستند. این بدین معنی است که وضعیت یکی از کیوبیتها بهطور آنی وضعیت دیگری را تحت تأثیر قرار میدهد. حتی اگر این کیوبیتها از هم فاصله زیادی داشته باشند، وضعیت آنها همچنان بهطور کوانتومی بههم مرتبط است.
تمرین برای شما:
1. یک مدار مشابه بسازید که در آن از گیتهای مختلفی مانند گیتهای Toffoli یا گیتهای کنترل شده دیگر استفاده کنید.
2. تأثیر درهمتنیدگی در الگوریتمهای مختلف کوانتومی را بررسی کرده و توضیح دهید که چگونه این ویژگی به بهبود عملکرد الگوریتمهای کوانتومی کمک میکند.
پارت بعدی:
در پارت ۸، با الگوریتم گریور (Grover's Algorithm) آشنا خواهیم شد و نحوه استفاده از درهمتنیدگی و گیتهای چندکیوبیتی را در جستجوهای کوانتومی بررسی خواهیم کرد.
ادامه دارد...
برای بیشتر یاد گرفتن اینجا کلیک کن
هدف پارت هفتم
در این پارت، با گیتهای چندکیوبیتی و مفهوم درهمتنیدگی آشنا میشویم. درهمتنیدگی یکی از ویژگیهای منحصر بهفرد سیستمهای کوانتومی است که بهطور گستردهای در الگوریتمهای کوانتومی مانند الگوریتم شُر و الگوریتم گریور استفاده میشود. این ویژگی به ما این امکان را میدهد که اطلاعات را بهطور همزمان در چندین کیوبیت ذخیره کرده و پردازش کنیم.
درهمتنیدگی (Entanglement)
درهمتنیدگی به وضعیتی گفته میشود که در آن دو یا چند کیوبیت بهگونهای با یکدیگر ارتباط دارند که تغییر وضعیت یک کیوبیت بهطور آنی وضعیت دیگر کیوبیتها را تحت تأثیر قرار میدهد. این ویژگی باعث میشود که اطلاعات در سیستمهای کوانتومی بهطور بسیار کارآمدتر از سیستمهای کلاسیک پردازش شوند.
برای درک بهتر این موضوع، بیایید یک نمونه ساده از درهمتنیدگی را بررسی کنیم.
گیتهای چندکیوبیتی و درهمتنیدگی در Qiskit
یکی از ابزارهای اصلی برای ایجاد درهمتنیدگی در سیستمهای کوانتومی استفاده از گیت CNOT (Controlled-NOT) است. این گیت دو کیوبیت را بهگونهای به هم متصل میکند که وضعیت یکی از کیوبیتها (کیوبیت کنترل) میتواند وضعیت دیگری (کیوبیت هدف) را تغییر دهد.
در اینجا یک نمونه کد برای درهمتنیدگی دو کیوبیت با استفاده از گیتهای کوانتومی آورده شده است:
from qiskit import QuantumCircuit, Aer, execute
# ایجاد یک مدار کوانتومی با 2 کیوبیت
qc = QuantumCircuit(2)
# قرار دادن گیت هادامارد روی کیوبیت اول (Q0)
qc.h(0)
# قرار دادن گیت CNOT (کنترل-هدف) با کیوبیت اول به عنوان کنترل و کیوبیت دوم به عنوان هدف
qc.cx(0, 1)
# اندازهگیری کیوبیتها
qc.measure_all()
# شبیهسازی مدار
backend = Aer.get_backend('aer_simulator')
result = execute(qc, backend, shots=1024).result()
# نمایش نتایج
counts = result.get_counts(qc)
print(counts)
توضیح کد
1. ایجاد مدار کوانتومی:
ابتدا یک مدار کوانتومی با دو کیوبیت ساخته میشود.
2. گیت هادامارد (Hadamard):
گیت هادامارد را روی کیوبیت اول (Q0) اعمال میکنیم. این گیت وضعیت کیوبیت را از حالت پایه (|0⟩) به حالت سوپراپوزیشن تغییر میدهد، بهطوریکه احتمال پیدا شدن کیوبیت در حالت 0 یا 1 برابر است.
3. گیت CNOT:
گیت CNOT که یک گیت کنترل-هدف است، روی کیوبیتهای Q0 (کنترل) و Q1 (هدف) اعمال میشود. این گیت وضعیت کیوبیت هدف (Q1) را فقط در صورتی تغییر میدهد که کیوبیت کنترل (Q0) در حالت 1 باشد.
4. اندازهگیری:
پس از ایجاد درهمتنیدگی بین کیوبیتها، هر دو کیوبیت را اندازهگیری میکنیم.
5. شبیهسازی مدار:
مدار را با استفاده از شبیهساز Qiskit اجرا کرده و نتایج اندازهگیری را مشاهده میکنیم.
نتیجه اجرای کد
اگر این کد را اجرا کنید، نتایج بهصورت زیر خواهد بود:
{'00': 512, '11': 512}
این نشاندهنده آن است که کیوبیتها در دو حالت درهمتنیده 00 یا 11 قرار دارند، و هر دو حالت با احتمال برابر مشاهده میشوند.
توضیح درهمتنیدگی
در این حالت، کیوبیتهای Q0 و Q1 درهمتنیده هستند. این بدین معنی است که وضعیت یکی از کیوبیتها بهطور آنی وضعیت دیگری را تحت تأثیر قرار میدهد. حتی اگر این کیوبیتها از هم فاصله زیادی داشته باشند، وضعیت آنها همچنان بهطور کوانتومی بههم مرتبط است.
تمرین برای شما:
1. یک مدار مشابه بسازید که در آن از گیتهای مختلفی مانند گیتهای Toffoli یا گیتهای کنترل شده دیگر استفاده کنید.
2. تأثیر درهمتنیدگی در الگوریتمهای مختلف کوانتومی را بررسی کرده و توضیح دهید که چگونه این ویژگی به بهبود عملکرد الگوریتمهای کوانتومی کمک میکند.
پارت بعدی:
در پارت ۸، با الگوریتم گریور (Grover's Algorithm) آشنا خواهیم شد و نحوه استفاده از درهمتنیدگی و گیتهای چندکیوبیتی را در جستجوهای کوانتومی بررسی خواهیم کرد.
ادامه دارد...
برای بیشتر یاد گرفتن اینجا کلیک کن
آموزش الگوریتمهای کوانتومی – پارت ۸: آشنایی با گیتهای چندکیوبیتی و entanglement
هدف پارت هشتم
در این بخش، با گیتهای چندکیوبیتی و مفهوم entanglement (درهمتنیدگی) آشنا میشویم که یکی از ویژگیهای اساسی محاسبات کوانتومی است. این مفاهیم نقش کلیدی در ایجاد و پیادهسازی الگوریتمهای کوانتومی دارند.
گیتهای چندکیوبیتی
گیتهای چندکیوبیتی، برخلاف گیتهای تککیوبیتی که تنها روی یک کیوبیت اعمال میشوند، روی دو یا چند کیوبیت به صورت همزمان اثر میگذارند. این گیتها امکان ایجاد ارتباط بین کیوبیتها را فراهم کرده و پایهگذار مفهوم entanglement هستند.
گیتهای رایج دوکیوبیتی
1. گیت CNOT (Controlled-NOT)
این گیت روی دو کیوبیت، به نامهای کنترل و هدف، اعمال میشود. اگر مقدار کیوبیت کنترل برابر 1 باشد، عملگر NOT روی کیوبیت هدف اعمال میشود. جدول صحت این گیت به صورت زیر است:
ورودی | خروجی
00 → 00
01 → 01
10 → 11
11 → 10
2. گیت SWAP
این گیت مقدار دو کیوبیت را با هم جابجا میکند. اگر ورودی دو کیوبیت a و b باشد، خروجی آن به صورت b و a خواهد بود.
Entanglement (درهمتنیدگی)
درهمتنیدگی حالتی است که در آن کیوبیتها به گونهای به هم مرتبط میشوند که وضعیت یک کیوبیت به طور مستقیم با وضعیت کیوبیت دیگر وابسته است، حتی اگر فاصله زیادی بین آنها وجود داشته باشد. این ویژگی یکی از تفاوتهای اصلی بین محاسبات کلاسیک و کوانتومی است.
ایجاد درهمتنیدگی با استفاده از گیت هادامارد و CNOT
یک روش ساده برای ایجاد entanglement بین دو کیوبیت به صورت زیر است:
1. اعمال گیت هادامارد روی کیوبیت اول برای ایجاد حالت ابرموقعیت.
2. اعمال گیت CNOT با کیوبیت اول به عنوان کنترل و کیوبیت دوم به عنوان هدف.
این عملیات حالت entانگل شده زیر را ایجاد میکند:
|ψ⟩ = (1 / √2) (|00⟩ + |11⟩)
این بدان معناست که اگر کیوبیت اول را اندازهگیری کرده و مقدار آن 0 باشد، کیوبیت دوم نیز 0 خواهد بود و اگر کیوبیت اول برابر 1 باشد، کیوبیت دوم نیز 1 خواهد بود.
مثال از پیادهسازی entanglement در Qiskit
در ادامه، یک کد ساده برای ایجاد درهمتنیدگی بین دو کیوبیت را مشاهده میکنید:
توضیح کد
1. ابتدا یک مدار کوانتومی با دو کیوبیت تعریف شده است.
2. گیت هادامارد روی کیوبیت اول اعمال شده تا حالت ابرموقعیت ایجاد شود.
3. گیت CNOT روی دو کیوبیت اعمال شده تا entanglement ایجاد شود.
4. در نهایت، کیوبیتها اندازهگیری شده و نتیجه اجرا به صورت هیستوگرام نمایش داده میشود.
نتیجه اجرای کد
خروجی به صورت یک هیستوگرام خواهد بود که نشان میدهد حالات 00 و 11 با احتمال مساوی ظاهر میشوند، در حالی که حالات 01 و 10 اصلاً دیده نمیشوند. این نشاندهنده ایجاد موفقیتآمیز درهمتنیدگی بین دو کیوبیت است.
پارت بعدی:
در پارت ۹، با الگوریتم دیچک (Deutsch Algorithm) آشنا خواهیم شد که یکی از اولین الگوریتمهای کوانتومی است و نشان میدهد چگونه محاسبات کوانتومی میتوانند از محاسبات کلاسیک سریعتر باشند.
ادامه دارد...
برای بیشتر یاد گرفتن اینجا کلیک کن
هدف پارت هشتم
در این بخش، با گیتهای چندکیوبیتی و مفهوم entanglement (درهمتنیدگی) آشنا میشویم که یکی از ویژگیهای اساسی محاسبات کوانتومی است. این مفاهیم نقش کلیدی در ایجاد و پیادهسازی الگوریتمهای کوانتومی دارند.
گیتهای چندکیوبیتی
گیتهای چندکیوبیتی، برخلاف گیتهای تککیوبیتی که تنها روی یک کیوبیت اعمال میشوند، روی دو یا چند کیوبیت به صورت همزمان اثر میگذارند. این گیتها امکان ایجاد ارتباط بین کیوبیتها را فراهم کرده و پایهگذار مفهوم entanglement هستند.
گیتهای رایج دوکیوبیتی
1. گیت CNOT (Controlled-NOT)
این گیت روی دو کیوبیت، به نامهای کنترل و هدف، اعمال میشود. اگر مقدار کیوبیت کنترل برابر 1 باشد، عملگر NOT روی کیوبیت هدف اعمال میشود. جدول صحت این گیت به صورت زیر است:
ورودی | خروجی
00 → 00
01 → 01
10 → 11
11 → 10
2. گیت SWAP
این گیت مقدار دو کیوبیت را با هم جابجا میکند. اگر ورودی دو کیوبیت a و b باشد، خروجی آن به صورت b و a خواهد بود.
Entanglement (درهمتنیدگی)
درهمتنیدگی حالتی است که در آن کیوبیتها به گونهای به هم مرتبط میشوند که وضعیت یک کیوبیت به طور مستقیم با وضعیت کیوبیت دیگر وابسته است، حتی اگر فاصله زیادی بین آنها وجود داشته باشد. این ویژگی یکی از تفاوتهای اصلی بین محاسبات کلاسیک و کوانتومی است.
ایجاد درهمتنیدگی با استفاده از گیت هادامارد و CNOT
یک روش ساده برای ایجاد entanglement بین دو کیوبیت به صورت زیر است:
1. اعمال گیت هادامارد روی کیوبیت اول برای ایجاد حالت ابرموقعیت.
2. اعمال گیت CNOT با کیوبیت اول به عنوان کنترل و کیوبیت دوم به عنوان هدف.
این عملیات حالت entانگل شده زیر را ایجاد میکند:
|ψ⟩ = (1 / √2) (|00⟩ + |11⟩)
این بدان معناست که اگر کیوبیت اول را اندازهگیری کرده و مقدار آن 0 باشد، کیوبیت دوم نیز 0 خواهد بود و اگر کیوبیت اول برابر 1 باشد، کیوبیت دوم نیز 1 خواهد بود.
مثال از پیادهسازی entanglement در Qiskit
در ادامه، یک کد ساده برای ایجاد درهمتنیدگی بین دو کیوبیت را مشاهده میکنید:
from qiskit import QuantumCircuit, Aer, assemble
from qiskit.visualization import plot_histogram
# ایجاد مدار کوانتومی با 2 کیوبیت
qc = QuantumCircuit(2)
# اعمال گیت هادامارد روی کیوبیت اول
qc.h(0)
# اعمال گیت CNOT با کیوبیت 0 به عنوان کنترل و کیوبیت 1 به عنوان هدف
qc.cx(0, 1)
# اندازهگیری
qc.measure_all()
# اجرای مدار
backend = Aer.get_backend('qasm_simulator')
qobj = assemble(qc)
result = backend.run(qobj).result()
counts = result.get_counts()
# نمایش هیستوگرام نتایج
plot_histogram(counts)
توضیح کد
1. ابتدا یک مدار کوانتومی با دو کیوبیت تعریف شده است.
2. گیت هادامارد روی کیوبیت اول اعمال شده تا حالت ابرموقعیت ایجاد شود.
3. گیت CNOT روی دو کیوبیت اعمال شده تا entanglement ایجاد شود.
4. در نهایت، کیوبیتها اندازهگیری شده و نتیجه اجرا به صورت هیستوگرام نمایش داده میشود.
نتیجه اجرای کد
خروجی به صورت یک هیستوگرام خواهد بود که نشان میدهد حالات 00 و 11 با احتمال مساوی ظاهر میشوند، در حالی که حالات 01 و 10 اصلاً دیده نمیشوند. این نشاندهنده ایجاد موفقیتآمیز درهمتنیدگی بین دو کیوبیت است.
پارت بعدی:
در پارت ۹، با الگوریتم دیچک (Deutsch Algorithm) آشنا خواهیم شد که یکی از اولین الگوریتمهای کوانتومی است و نشان میدهد چگونه محاسبات کوانتومی میتوانند از محاسبات کلاسیک سریعتر باشند.
ادامه دارد...
برای بیشتر یاد گرفتن اینجا کلیک کن
آموزش الگوریتمهای کوانتومی – پارت ۹: گیتهای چندکیوبیتی و درهمتنیدگی (Entanglement)
هدف پارت نهم
در این پارت، به بررسی گیتهای چندکیوبیتی و مفهوم درهمتنیدگی (Entanglement) میپردازیم که یکی از مهمترین ویژگیهای محاسبات کوانتومی است. درهمتنیدگی به ما این امکان را میدهد که با استفاده از گیتهای خاص، حالتهایی ایجاد کنیم که بین چند کیوبیت بهطور وابسته عمل میکنند.
گیت CNOT
یکی از مهمترین گیتهای دوکیوبیتی، گیت CNOT است که یک گیت کنترلی است. این گیت به این شکل عمل میکند:
- اگر کیوبیت کنترلی برابر با 0 باشد، کیوبیت هدف تغییر نمیکند.
- اگر کیوبیت کنترلی برابر با 1 باشد، کیوبیت هدف NOT میشود (حالتش برعکس میشود).
به زبان ساده:
ایجاد درهمتنیدگی با گیت CNOT و H
حالا میخواهیم با استفاده از گیت هادامارد (H) و گیت CNOT یک حالت درهمتنیده ایجاد کنیم. حالت درهمتنیده معروف Bell به شکل زیر ساخته میشود:
1. ابتدا هر دو کیوبیت در حالت اولیه |0⟩ هستند.
2. یک گیت هادامارد روی کیوبیت اول اعمال میکنیم:
3. سپس یک گیت CNOT روی هر دو کیوبیت اعمال میکنیم که کیوبیت اول بهعنوان کنترلی عمل میکند:
این حالت درهمتنیدگی کامل دو کیوبیت را نشان میدهد، به این معنی که اگر یکی از کیوبیتها را اندازهگیری کنیم، کیوبیت دیگر نیز بهطور آنی وضعیت متناظر را خواهد داشت.
مثال پیادهسازی در Qiskit
در اینجا، یک مدار ساده برای ایجاد حالت Bell را پیادهسازی میکنیم:
توضیح کد
1. ایجاد مدار:
مدار شامل دو کیوبیت و دو بیت کلاسیک است که برای ذخیره نتایج اندازهگیری استفاده میشوند.
2. اعمال گیت هادامارد:
گیت هادامارد روی کیوبیت 0 اعمال شده و آن را در حالت سوپریپوزیشن قرار میدهد.
3. اعمال گیت CNOT:
این گیت کیوبیت 1 را با توجه به وضعیت کیوبیت 0 تغییر میدهد و حالت درهمتنیده ایجاد میکند.
4. اندازهگیری:
کیوبیتها اندازهگیری شده و نتایج آنها در بیتهای کلاسیک ذخیره میشود.
5. نمایش نتیجه:
نتیجه شامل مقادیر اندازهگیریشده خواهد بود که بهطور معمول شامل حالتهای 00 و 11 است.
نتیجه اجرای کد
خروجی ممکن است به شکل زیر باشد:
این خروجی نشان میدهد که مدار کوانتومی بهدرستی حالت Bell را ایجاد کرده است.
تمرین برای شما:
1. مدار را بهگونهای تغییر دهید که به جای ایجاد حالت |00⟩ + |11⟩، حالت |01⟩ + |10⟩ ایجاد کند.
2. توضیح دهید که چگونه درهمتنیدگی در الگوریتمهای کوانتومی مانند الگوریتم شُر و الگوریتم گروور استفاده میشود.
پارت بعدی:
در پارت ۱۰، به بررسی تحلیل فوریه کوانتومی (QFT) و کاربرد آن در الگوریتمهای کوانتومی میپردازیم.
ادامه دارد...
برای بیشتر یاد گرفتن اینجا کلیک کن
هدف پارت نهم
در این پارت، به بررسی گیتهای چندکیوبیتی و مفهوم درهمتنیدگی (Entanglement) میپردازیم که یکی از مهمترین ویژگیهای محاسبات کوانتومی است. درهمتنیدگی به ما این امکان را میدهد که با استفاده از گیتهای خاص، حالتهایی ایجاد کنیم که بین چند کیوبیت بهطور وابسته عمل میکنند.
گیت CNOT
یکی از مهمترین گیتهای دوکیوبیتی، گیت CNOT است که یک گیت کنترلی است. این گیت به این شکل عمل میکند:
- اگر کیوبیت کنترلی برابر با 0 باشد، کیوبیت هدف تغییر نمیکند.
- اگر کیوبیت کنترلی برابر با 1 باشد، کیوبیت هدف NOT میشود (حالتش برعکس میشود).
به زبان ساده:
CNOT |00⟩ = |00⟩
CNOT |01⟩ = |01⟩
CNOT |10⟩ = |11⟩
CNOT |11⟩ = |10⟩
ایجاد درهمتنیدگی با گیت CNOT و H
حالا میخواهیم با استفاده از گیت هادامارد (H) و گیت CNOT یک حالت درهمتنیده ایجاد کنیم. حالت درهمتنیده معروف Bell به شکل زیر ساخته میشود:
1. ابتدا هر دو کیوبیت در حالت اولیه |0⟩ هستند.
2. یک گیت هادامارد روی کیوبیت اول اعمال میکنیم:
|ψ⟩ = H|0⟩ = 1/√2 * (|0⟩ + |1⟩)
3. سپس یک گیت CNOT روی هر دو کیوبیت اعمال میکنیم که کیوبیت اول بهعنوان کنترلی عمل میکند:
|ψ⟩ = 1/√2 * (|00⟩ + |11⟩)
این حالت درهمتنیدگی کامل دو کیوبیت را نشان میدهد، به این معنی که اگر یکی از کیوبیتها را اندازهگیری کنیم، کیوبیت دیگر نیز بهطور آنی وضعیت متناظر را خواهد داشت.
مثال پیادهسازی در Qiskit
در اینجا، یک مدار ساده برای ایجاد حالت Bell را پیادهسازی میکنیم:
from qiskit import QuantumCircuit, Aer, execute
# ایجاد یک مدار کوانتومی با 2 کیوبیت و 2 کلاسیک
qc = QuantumCircuit(2, 2)
# اعمال گیت هادامارد روی کیوبیت 0
qc.h(0)
# اعمال گیت CNOT با کیوبیت 0 بهعنوان کنترل و کیوبیت 1 بهعنوان هدف
qc.cx(0, 1)
# اندازهگیری کیوبیتها
qc.measure([0, 1], [0, 1])
# اجرای مدار روی شبیهساز
backend = Aer.get_backend('qasm_simulator')
result = execute(qc, backend, shots=1000).result()
# نمایش نتیجه
counts = result.get_counts()
print("نتایج اندازهگیری:", counts)
توضیح کد
1. ایجاد مدار:
مدار شامل دو کیوبیت و دو بیت کلاسیک است که برای ذخیره نتایج اندازهگیری استفاده میشوند.
2. اعمال گیت هادامارد:
گیت هادامارد روی کیوبیت 0 اعمال شده و آن را در حالت سوپریپوزیشن قرار میدهد.
3. اعمال گیت CNOT:
این گیت کیوبیت 1 را با توجه به وضعیت کیوبیت 0 تغییر میدهد و حالت درهمتنیده ایجاد میکند.
4. اندازهگیری:
کیوبیتها اندازهگیری شده و نتایج آنها در بیتهای کلاسیک ذخیره میشود.
5. نمایش نتیجه:
نتیجه شامل مقادیر اندازهگیریشده خواهد بود که بهطور معمول شامل حالتهای 00 و 11 است.
نتیجه اجرای کد
خروجی ممکن است به شکل زیر باشد:
نتایج اندازهگیری: {'00': 512, '11': 488}
این خروجی نشان میدهد که مدار کوانتومی بهدرستی حالت Bell را ایجاد کرده است.
تمرین برای شما:
1. مدار را بهگونهای تغییر دهید که به جای ایجاد حالت |00⟩ + |11⟩، حالت |01⟩ + |10⟩ ایجاد کند.
2. توضیح دهید که چگونه درهمتنیدگی در الگوریتمهای کوانتومی مانند الگوریتم شُر و الگوریتم گروور استفاده میشود.
پارت بعدی:
در پارت ۱۰، به بررسی تحلیل فوریه کوانتومی (QFT) و کاربرد آن در الگوریتمهای کوانتومی میپردازیم.
ادامه دارد...
برای بیشتر یاد گرفتن اینجا کلیک کن
👍1
آموزش الگوریتمهای کوانتومی – پارت ۱۰: تحلیل فوریه کوانتومی (QFT)
هدف پارت دهم
در این پارت به معرفی و بررسی تحلیل فوریه کوانتومی (Quantum Fourier Transform) میپردازیم که یکی از اساسیترین الگوریتمها در محاسبات کوانتومی است. QFT نقش مهمی در الگوریتمهای معروفی مانند الگوریتم شُر (Shor’s Algorithm) و الگوریتم تخمین فاز (Phase Estimation Algorithm) ایفا میکند.
تحلیل فوریه کوانتومی چیست؟
QFT یک نسخه کوانتومی از تبدیل فوریه گسسته (DFT) است که به ما امکان میدهد حالتهای کوانتومی را به فضای فرکانسی تبدیل کنیم. در حالت کلی، اگر یک حالت کوانتومی |ψ⟩ با n کیوبیت به شکل زیر داشته باشیم:
تحلیل فوریه کوانتومی حالت زیر را به دست میآورد:
که در آن ضرایب β_k به صورت زیر تعریف میشوند:
پیادهسازی مدار QFT
برای پیادهسازی QFT از گیتهای کوانتومی H (هادامارد) و گیتهای چرخش (Controlled Phase Rotation Gates) استفاده میشود. مدار QFT به صورت بازگشتی طراحی میشود و شامل مراحل زیر است:
1. اعمال گیت هادامارد روی کیوبیت هدف.
2. اعمال گیتهای چرخش کنترلشده روی سایر کیوبیتها.
3. فراخوانی بازگشتی QFT روی کیوبیتهای باقیمانده.
مدار QFT برای 3 کیوبیت
برای مثال، مدار QFT برای 3 کیوبیت به این صورت طراحی میشود:
1. اعمال گیت H روی کیوبیت 0.
2. اعمال گیتهای چرخش کنترلشده بین کیوبیت 0 و سایر کیوبیتها.
3. اعمال بازگشتی QFT روی کیوبیتهای 1 و 2.
کد پیادهسازی QFT در Qiskit
در ادامه، یک پیادهسازی ساده از QFT برای 3 کیوبیت آورده شده است:
توضیح کد
1. تابع qft:
این تابع مدار QFT را برای n کیوبیت ایجاد میکند. گیت هادامارد روی هر کیوبیت اعمال شده و سپس گیتهای چرخش کنترلشده (Controlled Phase) بین کیوبیتها اعمال میشود.
2. ایجاد مدار:
یک مدار کوانتومی با 3 کیوبیت ایجاد میشود.
3. اعمال QFT:
تابع qft روی مدار فراخوانی شده و QFT روی هر سه کیوبیت اعمال میشود.
4. نمایش مدار:
مدار حاصل بهصورت تصویری نمایش داده میشود.
تمرین برای شما:
1. مدار QFT را برای 4 کیوبیت ایجاد کنید و نتیجه را با مقدار تحلیلی QFT مقایسه کنید.
2. توضیح دهید که چگونه میتوان با استفاده از QFT، الگوریتم شُر را برای فاکتورگیری عددهای صحیح پیادهسازی کرد.
پارت بعدی:
در پارت ۱۱، به بررسی الگوریتم تخمین فاز (Phase Estimation Algorithm) میپردازیم که یکی از کاربردهای مهم QFT است.
ادامه دارد...
[لینک کانال ما]
هدف پارت دهم
در این پارت به معرفی و بررسی تحلیل فوریه کوانتومی (Quantum Fourier Transform) میپردازیم که یکی از اساسیترین الگوریتمها در محاسبات کوانتومی است. QFT نقش مهمی در الگوریتمهای معروفی مانند الگوریتم شُر (Shor’s Algorithm) و الگوریتم تخمین فاز (Phase Estimation Algorithm) ایفا میکند.
تحلیل فوریه کوانتومی چیست؟
QFT یک نسخه کوانتومی از تبدیل فوریه گسسته (DFT) است که به ما امکان میدهد حالتهای کوانتومی را به فضای فرکانسی تبدیل کنیم. در حالت کلی، اگر یک حالت کوانتومی |ψ⟩ با n کیوبیت به شکل زیر داشته باشیم:
|ψ⟩ = Σ (x از 0 تا 2^n - 1) α_x |x⟩
تحلیل فوریه کوانتومی حالت زیر را به دست میآورد:
QFT(|ψ⟩) = Σ (k از 0 تا 2^n - 1) β_k |k⟩
که در آن ضرایب β_k به صورت زیر تعریف میشوند:
β_k = 1/√(2^n) * Σ (x از 0 تا 2^n - 1) α_x * exp(2πixk / 2^n)
پیادهسازی مدار QFT
برای پیادهسازی QFT از گیتهای کوانتومی H (هادامارد) و گیتهای چرخش (Controlled Phase Rotation Gates) استفاده میشود. مدار QFT به صورت بازگشتی طراحی میشود و شامل مراحل زیر است:
1. اعمال گیت هادامارد روی کیوبیت هدف.
2. اعمال گیتهای چرخش کنترلشده روی سایر کیوبیتها.
3. فراخوانی بازگشتی QFT روی کیوبیتهای باقیمانده.
مدار QFT برای 3 کیوبیت
برای مثال، مدار QFT برای 3 کیوبیت به این صورت طراحی میشود:
1. اعمال گیت H روی کیوبیت 0.
2. اعمال گیتهای چرخش کنترلشده بین کیوبیت 0 و سایر کیوبیتها.
3. اعمال بازگشتی QFT روی کیوبیتهای 1 و 2.
کد پیادهسازی QFT در Qiskit
در ادامه، یک پیادهسازی ساده از QFT برای 3 کیوبیت آورده شده است:
from qiskit import QuantumCircuit, Aer, execute
import numpy as np
# تابع برای ایجاد مدار QFT
def qft(qc, n):
for i in range(n):
qc.h(i)
for j in range(i+1, n):
qc.cp(np.pi / 2**(j-i), j, i)
# ایجاد مدار کوانتومی با 3 کیوبیت
qc = QuantumCircuit(3)
# اعمال QFT روی کیوبیتها
qft(qc, 3)
# نمایش مدار
qc.draw('mpl')
توضیح کد
1. تابع qft:
این تابع مدار QFT را برای n کیوبیت ایجاد میکند. گیت هادامارد روی هر کیوبیت اعمال شده و سپس گیتهای چرخش کنترلشده (Controlled Phase) بین کیوبیتها اعمال میشود.
2. ایجاد مدار:
یک مدار کوانتومی با 3 کیوبیت ایجاد میشود.
3. اعمال QFT:
تابع qft روی مدار فراخوانی شده و QFT روی هر سه کیوبیت اعمال میشود.
4. نمایش مدار:
مدار حاصل بهصورت تصویری نمایش داده میشود.
تمرین برای شما:
1. مدار QFT را برای 4 کیوبیت ایجاد کنید و نتیجه را با مقدار تحلیلی QFT مقایسه کنید.
2. توضیح دهید که چگونه میتوان با استفاده از QFT، الگوریتم شُر را برای فاکتورگیری عددهای صحیح پیادهسازی کرد.
پارت بعدی:
در پارت ۱۱، به بررسی الگوریتم تخمین فاز (Phase Estimation Algorithm) میپردازیم که یکی از کاربردهای مهم QFT است.
ادامه دارد...
[لینک کانال ما]
👍1
آموزش الگوریتمهای کوانتومی – پارت ۱۱: الگوریتم تخمین فاز (Phase Estimation Algorithm)
هدف پارت یازدهم
در این بخش، به بررسی الگوریتم تخمین فاز میپردازیم که یکی از مهمترین الگوریتمهای کوانتومی است و در هسته بسیاری از الگوریتمهای پیشرفته کوانتومی مانند الگوریتم شُر و الگوریتم سیمولاسیون هامیلتونی به کار میرود.
ایده اصلی الگوریتم تخمین فاز
فرض کنید یک عملگر کوانتومی U و یک بردار ویژه |ψ⟩ داریم بهطوریکه:
U |ψ⟩ = e^(2πiθ) |ψ⟩
در این رابطه، θ یک عدد حقیقی بین ۰ و ۱ است. هدف الگوریتم این است که مقدار θ را با دقت بالا تخمین بزند.
مراحل الگوریتم تخمین فاز
1. ایجاد رجیسترهای کوانتومی:
الگوریتم از دو رجیستر کوانتومی استفاده میکند:
- رجیستر اول با n کیوبیت که برای ذخیرهسازی مقدار تخمین زده شده از فاز استفاده میشود.
- رجیستر دوم که در حالت اولیه |ψ⟩ قرار دارد.
2. اعمال تبدیل هادامارد روی رجیستر اول:
روی هر یک از کیوبیتهای رجیستر اول، گیت هادامارد H اعمال میشود تا به یک ابرموقعیت یکنواخت برسیم:
|0⟩^(⊗n) → (1/√(2^n)) ∑(k=0)^(2^n-1) |k⟩
3. اعمال عملگر کنترل شده U^(2^j):
برای هر کیوبیت در رجیستر اول، عملگر کنترل شده U^(2^j) روی رجیستر دوم اعمال میشود، که در آن j نمایانگر شماره کیوبیت است.
4. اعمال تبدیل فوریه معکوس:
تبدیل فوریه کوانتومی معکوس QFT^(-1) روی رجیستر اول اعمال میشود تا مقدار تخمینی θ به دست آید.
5. اندازهگیری رجیستر اول:
با اندازهگیری رجیستر اول، مقدار تخمین زده شده از θ به دست میآید.
مثال ساده از الگوریتم تخمین فاز
فرض کنید عملگر U به شکل زیر باشد:
U =
[1, 0]
[0, e^(2πi/3)]
و بردار ویژه |ψ⟩ = |1⟩ با فاز θ = 1/3 را داشته باشیم.
مراحل الگوریتم به این صورت پیش میرود:
1. رجیستر اول در حالت |0⟩ قرار میگیرد و تبدیل هادامارد روی آن اعمال میشود.
2. عملگر کنترل شده U روی رجیستر دوم اعمال میشود.
3. با اعمال تبدیل فوریه معکوس و اندازهگیری، مقدار θ ≈ 1/3 به دست میآید.
پیادهسازی الگوریتم تخمین فاز در Qiskit
در اینجا مثالی از پیادهسازی ساده الگوریتم تخمین فاز را با استفاده از Qiskit مشاهده میکنید:
توضیح کد
1. تعریف مدار کوانتومی:
ابتدا یک مدار کوانتومی با ۴ کیوبیت ایجاد میکنیم که سه کیوبیت اول برای تخمین فاز و کیوبیت چهارم برای اعمال عملگر کنترل شده استفاده میشود.
2. اعمال گیت هادامارد:
گیت هادامارد روی هر سه کیوبیت اول اعمال میشود.
3. اعمال گیت کنترل شده:
عملگر U بهصورت یک گیت کنترل شده با زاویه θ = 1/3 اعمال میشود.
4. اندازهگیری:
پس از اعمال تبدیل فوریه معکوس، کیوبیتها اندازهگیری شده و نتیجه به صورت یک هیستوگرام نمایش داده میشود.
نتیجه اجرای کد
خروجی به صورت یک هیستوگرام خواهد بود که مقدار تخمینی θ را نشان میدهد. با افزایش تعداد کیوبیتها، دقت تخمین بالاتر میرود.
پارت بعدی:
در پارت ۱۲، با الگوریتم جستجوی گروور (Grover’s Search Algorithm) آشنا خواهیم شد که برای جستجوی یک آیتم در یک پایگاه داده بزرگ با استفاده از کیوبیتها استفاده میشود.
ادامه دارد...
[لینک کانال ما]
هدف پارت یازدهم
در این بخش، به بررسی الگوریتم تخمین فاز میپردازیم که یکی از مهمترین الگوریتمهای کوانتومی است و در هسته بسیاری از الگوریتمهای پیشرفته کوانتومی مانند الگوریتم شُر و الگوریتم سیمولاسیون هامیلتونی به کار میرود.
ایده اصلی الگوریتم تخمین فاز
فرض کنید یک عملگر کوانتومی U و یک بردار ویژه |ψ⟩ داریم بهطوریکه:
U |ψ⟩ = e^(2πiθ) |ψ⟩
در این رابطه، θ یک عدد حقیقی بین ۰ و ۱ است. هدف الگوریتم این است که مقدار θ را با دقت بالا تخمین بزند.
مراحل الگوریتم تخمین فاز
1. ایجاد رجیسترهای کوانتومی:
الگوریتم از دو رجیستر کوانتومی استفاده میکند:
- رجیستر اول با n کیوبیت که برای ذخیرهسازی مقدار تخمین زده شده از فاز استفاده میشود.
- رجیستر دوم که در حالت اولیه |ψ⟩ قرار دارد.
2. اعمال تبدیل هادامارد روی رجیستر اول:
روی هر یک از کیوبیتهای رجیستر اول، گیت هادامارد H اعمال میشود تا به یک ابرموقعیت یکنواخت برسیم:
|0⟩^(⊗n) → (1/√(2^n)) ∑(k=0)^(2^n-1) |k⟩
3. اعمال عملگر کنترل شده U^(2^j):
برای هر کیوبیت در رجیستر اول، عملگر کنترل شده U^(2^j) روی رجیستر دوم اعمال میشود، که در آن j نمایانگر شماره کیوبیت است.
4. اعمال تبدیل فوریه معکوس:
تبدیل فوریه کوانتومی معکوس QFT^(-1) روی رجیستر اول اعمال میشود تا مقدار تخمینی θ به دست آید.
5. اندازهگیری رجیستر اول:
با اندازهگیری رجیستر اول، مقدار تخمین زده شده از θ به دست میآید.
مثال ساده از الگوریتم تخمین فاز
فرض کنید عملگر U به شکل زیر باشد:
U =
[1, 0]
[0, e^(2πi/3)]
و بردار ویژه |ψ⟩ = |1⟩ با فاز θ = 1/3 را داشته باشیم.
مراحل الگوریتم به این صورت پیش میرود:
1. رجیستر اول در حالت |0⟩ قرار میگیرد و تبدیل هادامارد روی آن اعمال میشود.
2. عملگر کنترل شده U روی رجیستر دوم اعمال میشود.
3. با اعمال تبدیل فوریه معکوس و اندازهگیری، مقدار θ ≈ 1/3 به دست میآید.
پیادهسازی الگوریتم تخمین فاز در Qiskit
در اینجا مثالی از پیادهسازی ساده الگوریتم تخمین فاز را با استفاده از Qiskit مشاهده میکنید:
from qiskit import QuantumCircuit, Aer, transpile, assemble
from qiskit.visualization import plot_histogram
import numpy as np
# تعریف تعداد کیوبیتها
n_qubits = 3
qc = QuantumCircuit(n_qubits + 1, n_qubits)
# اعمال گیت هادامارد روی رجیستر اول
for qubit in range(n_qubits):
qc.h(qubit)
# تعریف زاویه برای عملگر U
theta = 1 / 3
# اعمال عملگر کنترل شده
for qubit in range(n_qubits):
qc.cp(2 * np.pi * theta * (2 ** qubit), qubit, n_qubits)
# اعمال تبدیل فوریه معکوس
qc.append(qc.qft_dagger(range(n_qubits)), range(n_qubits))
# اندازهگیری
qc.measure(range(n_qubits), range(n_qubits))
# اجرای مدار
backend = Aer.get_backend('qasm_simulator')
qobj = assemble(transpile(qc, backend))
result = backend.run(qobj).result()
counts = result.get_counts()
# نمایش نتیجه
plot_histogram(counts)
توضیح کد
1. تعریف مدار کوانتومی:
ابتدا یک مدار کوانتومی با ۴ کیوبیت ایجاد میکنیم که سه کیوبیت اول برای تخمین فاز و کیوبیت چهارم برای اعمال عملگر کنترل شده استفاده میشود.
2. اعمال گیت هادامارد:
گیت هادامارد روی هر سه کیوبیت اول اعمال میشود.
3. اعمال گیت کنترل شده:
عملگر U بهصورت یک گیت کنترل شده با زاویه θ = 1/3 اعمال میشود.
4. اندازهگیری:
پس از اعمال تبدیل فوریه معکوس، کیوبیتها اندازهگیری شده و نتیجه به صورت یک هیستوگرام نمایش داده میشود.
نتیجه اجرای کد
خروجی به صورت یک هیستوگرام خواهد بود که مقدار تخمینی θ را نشان میدهد. با افزایش تعداد کیوبیتها، دقت تخمین بالاتر میرود.
پارت بعدی:
در پارت ۱۲، با الگوریتم جستجوی گروور (Grover’s Search Algorithm) آشنا خواهیم شد که برای جستجوی یک آیتم در یک پایگاه داده بزرگ با استفاده از کیوبیتها استفاده میشود.
ادامه دارد...
[لینک کانال ما]