std::signbit
В прошлом посте мы уже упоминали std::signbit. Сегодня мы посмотрим на эту сущность по-подробнее.
По сути, это самый говорящий и плюсовый чтоли способ узнать знаковый бит числа, который появился в нашем арсенале с приходом С++11. Причем не только целого, но и числа с плавающей точкой. Хотя на самом деле даже наоборот.
вот такие перегрузки мы имеем для floating-point чисел. А вот такую:
для целых. Последняя перегрузка является дополнительной. Это значит, что в имплементации стандартной библиотеки она не обязана выглядеть прям в точности так. Единственное требование - перегрузки должны быть достаточными, чтобы определить попадание интегрального типа в функцию.
В чем особенность целочисленной перегрузки. В том, что число, которое туда попадает трактуется, как double. Поэтому выражение std::signbit(num) эквивалентно std::signbit(static_cast<double>(num)).
Также эта функция детектирует наличие знакового бита у нулей, бесконечностей и NaN'ов. Да, да. У нуля есть знак. Так что 0.0 и -0.0 - не одно и то же. И если вы внимательные, то заметили даже у NaN есть знак. И std::signbit - один из двух возможных кроссфплатформенных способов узнать знак NaN. Этот факт еще больше мотивирует использовать эту функцию(в ситуациях, где это свойство решает).
Начиная с 23 стандарта функция становится constexpr, что не может не радовать любителей compile-time вычислений.
Для языка С тоже кстати есть похожая сущность. Только там это макрос
И для него гарантируется такое поведение: для положительных чисел возвращаем ноль, а для отрицательных - ненулевое целое число.
Мне кажется, что в повседневной разработке(там где не нужно выжимать все возможные такты и кода) плюсовое решение будет более предпочтительным, по сравнению с аналогами. Говорящее название и поддержка стандрата - наши главные друзья.
Look for signs in life. Stay cool.
#cpp23 #cpp11 #goodoldc
В прошлом посте мы уже упоминали std::signbit. Сегодня мы посмотрим на эту сущность по-подробнее.
По сути, это самый говорящий и плюсовый чтоли способ узнать знаковый бит числа, который появился в нашем арсенале с приходом С++11. Причем не только целого, но и числа с плавающей точкой. Хотя на самом деле даже наоборот.
bool signbit( float num );
bool signbit( double num );
bool signbit( long double num );
вот такие перегрузки мы имеем для floating-point чисел. А вот такую:
template< class Integer >
bool signbit( Integer num );
для целых. Последняя перегрузка является дополнительной. Это значит, что в имплементации стандартной библиотеки она не обязана выглядеть прям в точности так. Единственное требование - перегрузки должны быть достаточными, чтобы определить попадание интегрального типа в функцию.
В чем особенность целочисленной перегрузки. В том, что число, которое туда попадает трактуется, как double. Поэтому выражение std::signbit(num) эквивалентно std::signbit(static_cast<double>(num)).
Также эта функция детектирует наличие знакового бита у нулей, бесконечностей и NaN'ов. Да, да. У нуля есть знак. Так что 0.0 и -0.0 - не одно и то же. И если вы внимательные, то заметили даже у NaN есть знак. И std::signbit - один из двух возможных кроссфплатформенных способов узнать знак NaN. Этот факт еще больше мотивирует использовать эту функцию(в ситуациях, где это свойство решает).
Начиная с 23 стандарта функция становится constexpr, что не может не радовать любителей compile-time вычислений.
Для языка С тоже кстати есть похожая сущность. Только там это макрос
#define signbit( arg ) /* implementation defined */
И для него гарантируется такое поведение: для положительных чисел возвращаем ноль, а для отрицательных - ненулевое целое число.
Мне кажется, что в повседневной разработке(там где не нужно выжимать все возможные такты и кода) плюсовое решение будет более предпочтительным, по сравнению с аналогами. Говорящее название и поддержка стандрата - наши главные друзья.
Look for signs in life. Stay cool.
#cpp23 #cpp11 #goodoldc
👍13❤7🔥7
Обновления в отношениях static_assert и if constexpr
Наш подписчик Вадим упомянул о важном изменении в отношениях static_assert и if constexpr. Эти изменения вступили в силу с приходом С++23 и говорят о том, что теперь программа не считается ill-formed, даже если static_assert фейлится для всех специализаций.
Посмотрим на уже заезженном примере:
Создали структуру пустышку и использовали функцию to_str по всем трем веткам условия. И если закомментировать последний вывод в консоль - все корректно компилируется и выполняется. Но как только мы инстанцируем специализацию с пессимистичной веткой условия, компиляция падает на ассерте.
Не у многих есть возможность попробовать 23-е плюсы на своих машинках, поэтому оставлю ссылку на годболт, чтобы вы могли поиграться с примером.
До прихода 23-х плюсов была очевидная проблема с этим static_assert'ом. Вроде бы это очень логично писать условия как в примере выше и ожидать, что это сработает. Да и наличие смешного донельзя воркэраунда с шаблонным типозависимым выражением, которое все равно возвращает false, как бы намекает, что что-то не так. Радостно видеть развитие языка и закрытие таких болючих пробелов.
Fix your flaws. Stay cool.
#cpp23 #template
Наш подписчик Вадим упомянул о важном изменении в отношениях static_assert и if constexpr. Эти изменения вступили в силу с приходом С++23 и говорят о том, что теперь программа не считается ill-formed, даже если static_assert фейлится для всех специализаций.
Посмотрим на уже заезженном примере:
template <typename T>
std::string to_str(T t) {
if constexpr (std::is_constructible_v<std::string, T>)
return t;
else if constexpr (std::is_arithmetic_v<T>)
return std::to_string(t);
else
static_assert(false, "cannot convert type to std::string");
}
class A{};
int main()
{
std::cout << to_str("qwe") << std::endl; // OK
std::cout << to_str(5.0) << std::endl; // OK
std::cout << to_str(A{}) << std::endl; // static_assert failed
}
Создали структуру пустышку и использовали функцию to_str по всем трем веткам условия. И если закомментировать последний вывод в консоль - все корректно компилируется и выполняется. Но как только мы инстанцируем специализацию с пессимистичной веткой условия, компиляция падает на ассерте.
Не у многих есть возможность попробовать 23-е плюсы на своих машинках, поэтому оставлю ссылку на годболт, чтобы вы могли поиграться с примером.
До прихода 23-х плюсов была очевидная проблема с этим static_assert'ом. Вроде бы это очень логично писать условия как в примере выше и ожидать, что это сработает. Да и наличие смешного донельзя воркэраунда с шаблонным типозависимым выражением, которое все равно возвращает false, как бы намекает, что что-то не так. Радостно видеть развитие языка и закрытие таких болючих пробелов.
Fix your flaws. Stay cool.
#cpp23 #template
👍11🔥6❤4👎1
Доступ к элементам многомерных структур
#опытным
Если вы спросите разработчиков C++ о том, как они получают доступ к элементам многомерных массивов, скорее всего, вы получите несколько различных ответов в зависимости от их опыта.
Если вы спросите кого-то, кто не очень опытен или работает в нематематической области, есть большая вероятность, что ответ будет таким, что вы должны использовать несколько операторов[] подряд: myMatrix[x][y].
Есть несколько проблем с таким подходом:
⛔️ Это не очень удобно чисто внешне. Все номальные люди используют синтаксис [x, y].
⛔️ Это работает "из коробки" на реально многомерных структурах, типа вложенных массивов(типа вектора векторов). Чтобы поддержать даже такой синтаксис для кастомных классов, придется несколько приседать.
⛔️ Поэтому многие находят лазейки, чтобы делать что-то похожее на [x, y], этих лазеек много, нет какого-то стандарта.
⛔️ Стандарт использует operator[] с одним аргументом для получения доступа к элементам массивов.
⛔️ Лазейки неконсистентны с одноразмерными массивами в плане получения доступа к элементам.
⛔️ Некоторые из них преполагают спорную семантику, а некоторые делают практически нечитаемыми сообщения об ошибках компиляции.
⛔️ Возможные проблемы с инлайнингом.
Рассмотрим лазейки в будущем, а сейчас сфокусируемся на решении проблемы.
В С++23 наконец завезли многоаргументный operator[]. Теперь при проектировании своей матрицы или даже тензора перегружать оператор[] для 1, 2, 3 и более входных аргументов. Так для матрицы можно возвращать элемент, если мы передали 2 размерности, или возвращать всю строку, если мы передали только одну размерность.
Здесь мы создали матрицу 4х3, заполнили ее буквами алфавита и вывели на экран каждый элемент через matrix[x, y]. А также дальше получили целую строку матрицы через matrix[x] и вывели ее содержимое на экран:
В качестве обертки для строки используем std::span из С++20.
Очень красиво и удобно. Разработчикам математических библиотек сделали большой подарок.
Be consistent. Stay cool.
#cpp23 #cpp20
#опытным
Если вы спросите разработчиков C++ о том, как они получают доступ к элементам многомерных массивов, скорее всего, вы получите несколько различных ответов в зависимости от их опыта.
Если вы спросите кого-то, кто не очень опытен или работает в нематематической области, есть большая вероятность, что ответ будет таким, что вы должны использовать несколько операторов[] подряд: myMatrix[x][y].
Есть несколько проблем с таким подходом:
⛔️ Это не очень удобно чисто внешне. Все номальные люди используют синтаксис [x, y].
⛔️ Это работает "из коробки" на реально многомерных структурах, типа вложенных массивов(типа вектора векторов). Чтобы поддержать даже такой синтаксис для кастомных классов, придется несколько приседать.
⛔️ Поэтому многие находят лазейки, чтобы делать что-то похожее на [x, y], этих лазеек много, нет какого-то стандарта.
⛔️ Стандарт использует operator[] с одним аргументом для получения доступа к элементам массивов.
⛔️ Лазейки неконсистентны с одноразмерными массивами в плане получения доступа к элементам.
⛔️ Некоторые из них преполагают спорную семантику, а некоторые делают практически нечитаемыми сообщения об ошибках компиляции.
⛔️ Возможные проблемы с инлайнингом.
Рассмотрим лазейки в будущем, а сейчас сфокусируемся на решении проблемы.
В С++23 наконец завезли многоаргументный operator[]. Теперь при проектировании своей матрицы или даже тензора перегружать оператор[] для 1, 2, 3 и более входных аргументов. Так для матрицы можно возвращать элемент, если мы передали 2 размерности, или возвращать всю строку, если мы передали только одну размерность.
template <typename T, std::size_t ROWS, std::size_t COLS>
class Martrix {
std::array<T, ROWS * COLS> a;
public:
Martrix() = default;
Martrix(Martrix const&) = default;
constexpr T& operator[](std::size_t row, std::size_t col) { // C++23 required
assert(row < ROWS and col < COLS);
return a[COLS * row + col];
}
constexpr std::span<T> operator[](std::size_t row) {
assert(row < ROWS);
return std::span{a.data() + row * COLS, COLS};
}
constexpr auto& underlying_array() { return a; }
};
int main() {
constexpr size_t ROWS = 4;
constexpr size_t COLS = 3;
Martrix<char, ROWS, COLS> matrix;
// fill in the underlying 1D array
auto& arr = matrix.underlying_array();
std::iota(arr.begin(), arr.end(), 'A');
for (auto row {0U}; row < ROWS; ++row) {
std::cout << "│ ";
for (auto col {0U}; col < COLS; ++col) {
std::cout << matrix[row, col] << " │ ";
}
std::cout << "\n";
}
std::cout << "\n";
auto row = matrix[1];
for (auto col {0U}; col < COLS; ++col) {
std::cout << row[col] << ' ';
}
}
Здесь мы создали матрицу 4х3, заполнили ее буквами алфавита и вывели на экран каждый элемент через matrix[x, y]. А также дальше получили целую строку матрицы через matrix[x] и вывели ее содержимое на экран:
│ A │ B │ C │
│ D │ E │ F │
│ G │ H │ I │
│ J │ K │ L │
D E F
В качестве обертки для строки используем std::span из С++20.
Очень красиво и удобно. Разработчикам математических библиотек сделали большой подарок.
Be consistent. Stay cool.
#cpp23 #cpp20
🔥39👍17❤7👎5🤯2❤🔥1
std::mdspan
#опытным
"Я понял, что можно перегружать оператор[] для разного числа аргументов. Но это только для моих классов. А что делать со стандартными контейнерами типа std::vector? Могу я как-то на нем использовать многоаргументный оператор, если по факту я храню в нем матрицу?"
И нет, и да.
Интерфейс семантически одномерного контейнера никто менять не будет.
Однако вместе с С++23 появился еще один полезный класс std::mdspan. Это фактически тот же std::span, то есть это view над одномерной последовательностью элементов, только он интерпретирует ее, как многомерный массив.
То есть вы теперь буквально можете интерпретировать свой std::array или std::vector, как многомерный массив.
И! У std::mdspan переопределен оператор[], который может принимать несколько измеренений и выдает ссылку на соответствующий элемент.
Вывод:
В этом примере мы интерпретируем один и тот же массив, как матрицу и как такую кубическую структуру. Ну и играемся с выводом, чтобы продемонстировать, что мы реально можем манипулировать многомерной структурой, как хотим. В начале заполняем массив, как матрицу с двумя строчками(значения в строчках отличаются на 1000). Дальше читаем массив, как 3-хмерную структуру 2х3х2. Разрезаем ее на 2 части и получаются две матрицы 3х2, которые и выводим на экран.
Для создания mdspan нужно передать в конструктор начальный итератор и последовательные размерности. Их может быть сколько угодно. Число элементов или последний элемент последовательности не нужны, так как набор размерностей однозначно задает число элементов.
Метод extend возвращает размер вьюхи по заданному ранк индексу.
Так что скоро можно даже будет обойтись без сооружения своих оберток над стандартными контейнерами для получения доступа к многомерному оператору[]. И использовать стандартный инструмент std::mdspan.
Use standard things. Stay cool.
#cpp23 #STL
#опытным
"Я понял, что можно перегружать оператор[] для разного числа аргументов. Но это только для моих классов. А что делать со стандартными контейнерами типа std::vector? Могу я как-то на нем использовать многоаргументный оператор, если по факту я храню в нем матрицу?"
И нет, и да.
Интерфейс семантически одномерного контейнера никто менять не будет.
Однако вместе с С++23 появился еще один полезный класс std::mdspan. Это фактически тот же std::span, то есть это view над одномерной последовательностью элементов, только он интерпретирует ее, как многомерный массив.
То есть вы теперь буквально можете интерпретировать свой std::array или std::vector, как многомерный массив.
И! У std::mdspan переопределен оператор[], который может принимать несколько измеренений и выдает ссылку на соответствующий элемент.
std::vector v{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12};
// View data as contiguous memory representing 2 rows of 6 ints each
auto ms2 = std::mdspan(v.data(), 2, 6);
// View the same data as a 3D array 2 x 3 x 2
auto ms3 = std::mdspan(v.data(), 2, 3, 2);
// Write data using 2D view
for (std::size_t i = 0; i != ms2.extent(0); i++)
for (std::size_t j = 0; j != ms2.extent(1); j++)
ms2[i, j] = i * 1000 + j;
// Read back using 3D view
for (std::size_t i = 0; i != ms3.extent(0); i++)
{
std::println("slice @ i = {}", i);
for (std::size_t j = 0; j != ms3.extent(1); j++)
{
for (std::size_t k = 0; k != ms3.extent(2); k++)
std::print("{} ", ms3[i, j, k]);
std::println("");
}
}Вывод:
slice @ i = 0
0 1
2 3
4 5
slice @ i = 1
1000 1001
1002 1003
1004 1005
В этом примере мы интерпретируем один и тот же массив, как матрицу и как такую кубическую структуру. Ну и играемся с выводом, чтобы продемонстировать, что мы реально можем манипулировать многомерной структурой, как хотим. В начале заполняем массив, как матрицу с двумя строчками(значения в строчках отличаются на 1000). Дальше читаем массив, как 3-хмерную структуру 2х3х2. Разрезаем ее на 2 части и получаются две матрицы 3х2, которые и выводим на экран.
Для создания mdspan нужно передать в конструктор начальный итератор и последовательные размерности. Их может быть сколько угодно. Число элементов или последний элемент последовательности не нужны, так как набор размерностей однозначно задает число элементов.
Метод extend возвращает размер вьюхи по заданному ранк индексу.
Так что скоро можно даже будет обойтись без сооружения своих оберток над стандартными контейнерами для получения доступа к многомерному оператору[]. И использовать стандартный инструмент std::mdspan.
Use standard things. Stay cool.
#cpp23 #STL
👍19❤12🔥8😁2
Ответ
На самом деле в код выше я упустил оператор delete[], поэтому в нем есть утечка памяти. Этого я не учел, так как на другом концентировался.
Моя ошибка, но соль примера была в другом. Поэтому сейчас будем разбирать такой код:
Такой код соберется выведет на консоль "10 0" и успешно завершится.
Но то, что код успешно завершается не значит, что он понятен и работает, как мы ожидаем.
Основная загвоздка в том, что в С++ запятая - это не просто знак препинания. Это оператор! У него есть вполне четкое и прописанное поведение - он игнорирует результат любого выражения, кроме последнего.
То есть
Все выражения вычислятся, но результатом комбинированного выражения будет результат Expression3.
Поэтому когда мы пишем [i, j] до с++23, то это полностью эквивалентно [j]. Компилятор видит несколько параметров в [] и, так как сам оператор индексации не принимает несколько параметров, то выход только один - парсить через оператор запятая.
Получается, что с помощью
Ну и вообще, весь код полностью эквивалентен следующему:
На самом деле компилятор умеет выдавать предупреждения на использование оператора запятая. Поэтому использовании флагов компиляции -Werror -Wall, которые разрешают предупреждения и превращают их в ошибки компиляции, сборка упадет. Так что первый вариант ответа тоже был верным с какой-то стороны.
Теперь, почему
При аггрегированной инициализации мы можем в фигурных скобках указывать меньше элементов, чем может поместиться в массив или структуру. При этом остальные элементов будут инициализироваться так, как если бы они инициализировались от пустых скобок(аля array_elem = {};). Для интов это значит, что все элементы, кроме первого будут иметь нулевое значение.
То есть, никакого мусора. При использовании аггрегированной инициализации все поля будут иметь корректное и понятное значение.
Вот такая противная запятая.
Don't be confused. Stay cool.
#cpp23 #cppcore
На самом деле в код выше я упустил оператор delete[], поэтому в нем есть утечка памяти. Этого я не учел, так как на другом концентировался.
Моя ошибка, но соль примера была в другом. Поэтому сейчас будем разбирать такой код:
#include <iostream>
int main() {
auto array = new int[10, 20]{10};
std::cout << array[1, 0] << " " << array[11, 1] << std::endl;
delete[] array;
}
Такой код соберется выведет на консоль "10 0" и успешно завершится.
Но то, что код успешно завершается не значит, что он понятен и работает, как мы ожидаем.
Основная загвоздка в том, что в С++ запятая - это не просто знак препинания. Это оператор! У него есть вполне четкое и прописанное поведение - он игнорирует результат любого выражения, кроме последнего.
То есть
Expression1, Expression2, Expression3
Все выражения вычислятся, но результатом комбинированного выражения будет результат Expression3.
Поэтому когда мы пишем [i, j] до с++23, то это полностью эквивалентно [j]. Компилятор видит несколько параметров в [] и, так как сам оператор индексации не принимает несколько параметров, то выход только один - парсить через оператор запятая.
Получается, что с помощью
new int[10, 20] мы создали одномерный массив на 20 элементов.Ну и вообще, весь код полностью эквивалентен следующему:
#include <iostream>
int main() {
auto array = new int[20]{10};
std::cout << array[0] << " " << array[1] << std::endl;
delete[] array;
}
На самом деле компилятор умеет выдавать предупреждения на использование оператора запятая. Поэтому использовании флагов компиляции -Werror -Wall, которые разрешают предупреждения и превращают их в ошибки компиляции, сборка упадет. Так что первый вариант ответа тоже был верным с какой-то стороны.
Теперь, почему
10 0.При аггрегированной инициализации мы можем в фигурных скобках указывать меньше элементов, чем может поместиться в массив или структуру. При этом остальные элементов будут инициализироваться так, как если бы они инициализировались от пустых скобок(аля array_elem = {};). Для интов это значит, что все элементы, кроме первого будут иметь нулевое значение.
То есть, никакого мусора. При использовании аггрегированной инициализации все поля будут иметь корректное и понятное значение.
Вот такая противная запятая.
Don't be confused. Stay cool.
#cpp23 #cppcore
👍37🔥15❤9😱3🤣3