Грокаем C++
9.37K subscribers
44 photos
1 video
3 files
575 links
Два сеньора C++ - Владимир и Денис - отныне ваши гиды в этом дремучем мире плюсов.

По всем вопросам (+ реклама) @ninjatelegramm

Менеджер: @Spiral_Yuri
Реклама: https://telega.in/c/grokaemcpp
Мы на TGstat: https://tgstat.ru/channel/@grokaemcpp/stat
Download Telegram
Contention
#опытным

Thread Contention (соревнование потоков) — это ситуация в многопоточном программировании, когда несколько потоков одновременно пытаются получить доступ к одному и тому же разделяемому ресурсу, но только один поток может использовать его в данный момент времени.

Это нормальная ситуация, на любом мьютексе потоки соревнуются. Но иногда это выходит за грани нормальности.

Многопоточное программирование же у нас должно повышать эффективность вычислений за счет разделения потоков обработки данных на независимые части и помещать их на свои потоки исполнения. Однако рано или поздно наступает приход в точку синхронизации: потоки конкурируют между собой за доступ к разделяемым данным.

И вот тут может появиться проблема. Один ресурс, а желающих завладеть им слишком много. Только один в итоге овладевает, а все остальные отправляются спать. И это конечно приводит к простою потоков и замедление общего прогресса.


template <Key, Value>
class ThreadSafeMap {
mutable std::mutex mtx;
std::map<Key, Value> map;

public:
void Insert(const Key &key, const Value &value) {
std::lock_guard lg{mtx};
map.insert(key, value);
}
Value &Get(const Key &key) const {
std::lock_guard lg{mtx};
return map.at(key);
}
};


Если к такой мапе одновременно будет получать доступ куча потоков, то все кроме одного будут простаивать. А если таких потоков 10 или 20? Неприятненько.

Как можно снизить Contention?

👉🏿 Read-Write Lock. Если у вас много читателе и мало писателей, то можно разрешить нескольким читателям одновременно получать доступ к данным с помощью std::shared_mutex:

template <Key, Value>
class ThreadSafeMap {
mutable std::shared_mutex mtx;
std::map<Key, Value> map;

public:
void Insert(const Key &key, const Value &value) {
std::unique_lock ul{mtx};
map.insert(key, value);
}
Value &Get(const Key &key) const {
std::shared_lock sl{mtx};
return map.at(key);
}
};


👉🏿 Thread-Local Storage. Потоки пишут данные в свои локальные буферы, которые централизованно синхронизируют данные друг с другом, чтобы как можно меньше блокировать потоки.

👉🏿 Можно организовать свою структуру данных так, чтобы у нее была ячеистая структура и к каждой ячейке был отдельный замок. Теперь потребители данных распределятся по разным ячейкам и не будут толкаться.

template <Key, Value>
class FineGrainedMap {
struct Node {
std::mutex mtx;
std::map<Key, Value> data;
};
std::vector<Node> buckets{16}; // Много мелких блокировок

public:
Value& Get(const Key& key) const {
auto& bucket = buckets[std::hash<Key>{}(key) % buckets.size()];
std::lock_guard lock(bucket.mtx);
return bucket.data.at(key);
}
};


👉🏿 Используйте lock-free структуры данных. Ну как бы тут логично: нет мьютексов, нет и сontention. Не в каждой задаче это реально применить, но иногда все же можно.

Compete and win. Stay cool.

#concurrency
👍2111🔥62
​​Starvation
#опытным

Представьте, вы стоите в очереди в поликлинике. Казалось бы вы вот-вот должны зайти в кабинет, но тут перед вами влезают "мне только спросить". После - опять ваша очередь, но приходит следующий абонент с фразой "мне только больничный лист подписать". Вы уже выходите из себя, готовитесь идти напролом в кабинет, но вас прерывает зав отделением, у которого "очень важное дело". Думаю, что жиза для многих.

Итого, вы ждете своей очереди, но всегда появляется кто-то важнее вас, который влезает перед вами. А вы продолжаете ждать. Потенциально до окончания приема и полного обугливания жопы.

Эта сцена наглядно демонстрирует еще одну проблему многопоточного мира - starvation или голодание.

Голодовка в многопоточной передаче происходит, когда один или несколько потоков постоянно блокируются при доступе к ресурсам, в результате чего у них редко бывает возможность выполниться(потенциально никогда). В то время как дедлок замораживает все вовлеченные треды, голодание затрагивает только те невезучие потоки, которые остаются «ожидать в очереди», в то время как другие занимают все ресурсы.

Какие предпосылки появления голодания?

👉🏿 Приоритеты потоков. Хоть в стандарте С++ нельзя выставить приоритет потоков, это можно сделать, например, в pthreads. Потоки с большим приоритетом могут забирать всю работу у низкоприоритетных.

👉🏿 Короткий доступ к мьютексу. Есть два вида замков: справедливые и несправедливые. Поток, только что освободивший unfair мьютекс, имеет преимущество по его захвату, потому что мьютекс все еще может быть в кэше этого потока и у него еще не закончилось время на работу. И это может приводить к простую других потоков. Справедливая реализация учитывает порядок запроса блокировки мьютекса, например с помощью очереди.

👉🏿 Все хотят доступ к одному ресурсу. Когда много потоков пытаются получить доступ к ресурсу, охраняемому всего одним мьютексом, то полезную работу делает только один из них, а все остальные ждут.

👉🏿 Длинные задачи под мьютексом. В дополнение к предыдущему пункту. Мало того, что потоки просто долго ждут очереди, чтобы занять замок, так еще и каждый из них вечность делает свою задачу.

Простой пример:

std::mutex mtx;
int counter = 0;

void worker(int id) {
for (int i = 0; i < 100; ++i) {
std::lock_guard lg{mtx};
++counter;
std::cout << "Thread " << id
<< " entered critical section, counter = " << counter
<< std::endl;
// do work
std::this_thread::sleep_for(std::chrono::milliseconds(100));
}
}

int main() {
std::jthread t1(worker, 1);
std::jthread t2(worker, 2);
}


Здесь на первый взгляд все четко, всего два конкурентных потока пытаются залезть в критическую секцию. Вот только незадача: тут конкурентности почти нет. Я конечно не могу говорить за все реализации, но мой личный опыт и годболт подсказывают мне, что практически в каждом прогоне в начале полностью выполнится первый поток, а потом полностью второй.

Но! Если вы добавите слип после релиза мьютекса, то картина становится более справедливой.

Как избавиться от голодания?

Справедливый шедулинг и замки. В стандартных плюсах на это мы не можем повлиять, но в системном апи или самописных реализациях можем.

Минимальный размер критической секции. Она должна менеждить хранение задачи, но не быть ответственной за выполненеие задачи. Это позволит ограничивать простой других потоков.

Грамотно проектируйте разделяемые данные. Если у вас 100 потоков пинают одну несчастную потокобезопасную мапу, то есть высока вероятность пересмотреть архитектуру и межпоточное взаимодействие.

Давайте возможность другим войти в критическую секцию. Учитывая второй пункт, поток, который постоянно стучится в критическую секцию, скорее всего выполняет в ней лишний код. Разгрузите секцию, займите поток чем-нибудь в перерывах между критическими секциями и будет вам счастье.

Remember that you have the highest priority. Stay cool.

#concurrency
13🔥9👍7😁1😱1
Голодание. Приоритетные очереди
#опытным

Голодание бывает не только у потоков, но и у других сущностей с приоритетами.

Допустим у вас есть система задач с 3-мя приоритетами: High, Medium, Low. Продюсеры кладут каждую задачу в очередь, соответствующую ее приоритету. А консюмеры всегда должны потреблять задачи с самым высоким возможным приоритетом.

То есть, пока High очередь не опустеет, никто не будет брать Middle задачи. И никто не возьмет в обработку Low задачи, пока High и Middle очереди не пусты.

Может возникнуть такая ситуация, при которой задачи High будут постоянно приходить так, что обработчики редко будут брать задачи Middle и никогда не дойдут до Low очереди
. Таким образом, эти очереди будут голодать от недостатка обработки.

class Scheduler {
private:
std::vector<ThreadSafeQueue<std::string>> queues;
std::vector<std::string> priority_names;

public:
Scheduler() : queues(3), priority_names{"HIGH", "MEDIUM", "LOW"} {}

std::string Get() {
while(true) {
for(int i = 0; i < queues.size(); ++i) {
auto task = queues[i].take();
if (!task)
continue;
std::cout << "Get task " << priority_names[i] << ": " << task << std::endl;
return task;
}
// some kind of waiting mechanism in case of every queue is full
}
}

void AddTask(int priority, const std::string& task) {
queues[priority].push(task);
std::cout << "Add task " << priority_names[priority] << ": " << task << std::endl;
}
};


Допустим, что эта проблема возникает не всегда, а только периодически. Если она постоянная, то проблема здесь в количестве обработчиков и/или их вычислительной мощности, либо вообще ваши задачи нужно обрабатывать как-то по-другому.

Кстати сам алгоритм называется Fixed-priority pre-emptive scheduling. В каждый момент времени выполняется задача с самым высоким приоритетом.

Решение проблемы - сменить алгоритм взятия задач из очередей.


Например, можно установить правило, что вы обрабатываете не более f(priority) элементов в любой данной очереди, прежде чем рассматривать элементы из очереди с более низким приоритетом.

Функция f может быть:

👉🏿 Линейной: f(p) = p. Обрабатывается не более 4 элементов с приоритетом 4 (высший), затем не более 3 с приоритетом 3,..., 1 с приоритетом 1.

👉🏿 Экспоненциальной: f(p) = 2^(p-1). Обрабатывается не более 8 элементов с приоритетом 4 (высший), затем не более 4 с приоритетом 3, затем не более 2 с приоритетом 2,..., 1 с приоритетом 1.

Конкретная функция выбирается из ожидаемой частоты появления задач

Возьмем экспоненциальный случай и предположим, что в каждой очереди много ожидающих задач. Мы планируем: 8 высших, 4 высоких, 2 средних, 1 низкий, 8 высших и т.д... Каждый цикл содержит 8 + 4 + 2 + 1 = 15 задач, поэтому задачи высшего приоритета занимают 8/15 времени потребителя, следующие — 4/15, следующие — 2/15, следующие — 1/15.

Сравниваем эти частоты с ожидаемыми и корректируем коэффициенты или используем другую функцию.

You are the highest priority. Stay cool.

#concurrency
18👍12🔥8
​​Тулзы для поиска проблем многопоточности
#опытным

Мы уже с вами убедились, что в мире многопоточности куча проблем. И шанс на них наткнуться, мягко говоря, немаленький. А на самом деле почти любой мало-мальски полезный конкурентный код, написаный с нуля, будет содержать как минимум одну такую проблему.

А уж если она есть, то просто так вы от нее не отвяжитесь. Это же многопоточность, тут нет места детерминизму. На одной машине все работает, а на другой - зависает. Поэтому очень важно применять полный спектр инструментов для валидации многопоточного кода, как нам и говорят кор гайдлайны. Перечислим некоторые известные инструменты, которые могут помочь.

Юнит тесты. Код без тестов - деньги на ветер. Это я перефразировал известную поговорку, но она и в данном контексте хорошо отражает суть. Если вы не тестируете код, то проблема может проявиться в самый неподходящий момент и это может стоить вам кучу зеленых фантиков.

Даже в рамках отсутствия детерминизма можно написать хорошие тесты. Используйте слипы, а лучше фьючи-промисы для того, чтобы притормозить или остановить одни потоки и зафиксировать стейт, чтобы изолированно проверять работу отдельных потоков. Придумывайте разные сценарии поведения программы и тестируйте их. Обратите особое внимание на граничные случаи - например остановку работы системы.

Cppcheck. Пользуйтесь инструментами статического анализа, например Cppcheck. Определять проблемы синхронизации по коду программы - занятие конечно увлекательное и вряд ли вы много багов так найдете, но собственно почему бы и нет.

Надо лишь установить сам cppcheck, а запускается он просто:

cppcheck --enable=all --inconclusive thread_app.cpp


Thread San. Без динамического анализа в многопоточке никуда. ThreadSanitizer - это детектор гонок данных для C/C++. Санитайзер определяет гонку ровно как в стандарте: если у вас много потоков получают доступ к ячейке памяти и хотя бы один из них - несинхронизированная запись. И это же и является принципом детектирования гонок.

Работает на GCC и Clang. Достаточно лишь при сборке указать нужные флаги и ждать прилета сообщений о багах:

clang++ -fsanitize=thread -g -O2 -o my_app main.cpp

g++ -fsanitize=thread -g -O2 -o my_app main.cpp


Helgrind. Это одна из тулзов Valgrind'а, работающая конкретно с багами многопоточности. Достаточно при запуске валгринда указать --tool=helgrind и ждите писем счастья. Главное, чтобы ваши примитивы синхронизации использовали под капотом pthread.

Helgrind детектирует такие проблемы, как:
- разблокировка невалидного мьютекса
- разблокировка не заблокированного мьютекса
- разблокировка мьютекса, удерживаемого другим потоком
- уничтожение невалидного или заблокированного мьютекса
- рекурсивная блокировка нерекурсивного мьютекса
- освобождение памяти, содержащей заблокированный мьютекс
и еще кучу всего.

Vtune. Не все проблемы конкурентности связаны с некорректным использованием инструментов. С точки зрения стандартов, программа может корректно работать, но в ней будут лайв локи или голодовки. Тогда нужен хороший профилировщик, способный отследить, например, влияние lock contention на общую производительность, неэффективную синхронизацию или неравномерную нагрузку между потоками.

vtune -collect threading -result-dir my_analysis ./my_application


VTune в принципе очень мощный профилировщик даже не касательно многопоточности. Если есть возможность заморочится с ним, то это стоит сделать.

Test your system. Stay cool.

#concurrency #tools
124👍11🔥5😁1
​​Двойной unlock
#опытным

Если не пользоваться RAII, то можно наткнуться на массу проблем. Все знают про double free. Но менее известна проблема double unlock.

Все просто, вы используете ручной lock-unlock мьютекса и возможно попадаете в ситуацию двойного освобождения:

void unsafe_function(int value) {
mtx.lock();

if (value < 0) {
std::cout << "Error: negative value\n";
mtx.unlock();
// forget to return!
}

shared_data = value;
std::cout << "Data has updated: " << shared_data << std::endl;

mtx.unlock(); // second unlock
}


Практически всегда двойной unlock происходит из-за некорректного кода в той или иной степени. Забыть вызвать return кажется детской проблемой, но если вы например не написали тесты на эту ветку, то возможно вы наткнетесь на проблемы только в проде.

А проблемы могут быть примерно любыми. Потому что двойной unlock мьютекса - UB по стандарту. Соответственно, можете получить много непрятностей, от сегфолта до бесконечного ожидания.

Поэтому просто используйте RAII и спина болеть не будет:

void safe_function(int value) {
std::lock_guard lg{mtx};

if (value < 0) {
std::cout << "Error: negative value\n";
return;
}

shared_data = value;
std::cout << "Data has updated: " << shared_data << std::endl;
}


Use safe technics. Stay cool.

#concurrency #cpp11
👍2315🔥8😁3