Глобальная энергия
4.96K subscribers
3.28K photos
294 videos
5.35K links
Тренды и технологии в мировой энергетике.
Официальный телеграм-канал ассоциации «Глобальная энергия».
Для связи: [email protected]
Download Telegram
ГАЭС на марше

🇫🇴Фареры - не единственная страна, заинтересованная в развитии гидроаккумулирующих электростанций. Строительство ГАЭС набирает всё большую популярность в развитых странах.

👉Например,
🇨🇭швейцарский департамент окружающей среды, транспорта, энергетики и коммуникаций в 2021 г. отобрал 15 проектов ГАЭС, которые должны быть реализованы к 2040 г.: них низ восемь будут расположены в кантоне Вале, три – в Берне, два – в Граубюндене, а по одному – в Тичино и Ури;
🇦🇺в свою очередь, в Австралии планируют построить в штате Квинсленд на востоке страны ГАЭС мощностью 400 МВт, которая будет оборудована аккумуляторной системой хранения энергии на 200 МВт. Проект позволит обеспечивать «чистой» энергией 288 тыс. местных домохозяйств.
Пять трендов в угольной генерации. №2

2️⃣Замедление прироста мощности в Азии
Доминирование Азии в структуре ввода новых электростанций на угле, по большому счёту, не является новостью для рынка. Развивающиеся страны, нуждающиеся в дешёвой энергии для обеспечения экономического роста, были лидерами по темпам строительства угольных электростанций и в предшествующие полтора десятилетия. Например, в период с 2004 по 2009 гг. в Азии было введено 414 ГВт угольных станций, тогда как в Северной Америке – 8 ГВт, а в Великобритании и нынешних 27 странах ЕС – 3 ГВт. Однако темпы строительства новых мощностей в Азии постепенно замедляются: если в 2010-2015 гг. в регионе было введено 478 ГВт угольных электростанций, то в 2016-2021 гг. – 352 ГВт.

🤼‍♀️Уголь терпит всё более сильную конкуренцию со стороны возобновляемых источников, причём не только в развитых, но и в развивающихся странах: на долю Китая в 2021 г. пришлось 40% общемирового ввода солнечных панелей (53 ГВт из 133 ГВт) и чуть более 50% глобального ввода ветрогенераторов (47 ГВт из 93 ГВт). Поэтому в самом Китае темпы строительства угольных станций также замедляются: если в 2004-2009 гг. в стране было введено 367 ГВт мощности на угле, а в 2010-2015 гг. – 335 ГВт, то в 2016-2021 гг. – «лишь» 238 ГВт.
https://t.iss.one/globalenergyprize/3300
В каких отраслях Китай ловит СО2

🇨🇳Комплекс Qilu-Shengli является одним из 16 CCUS-проектов, которые будут реализованы в Китае в период до 2030 г.:
📌шесть из них приходятся на электроэнергетику,
📌шесть – на газопереработку и нефте- и углехимию,
📌четыре – на все прочие отрасли.
При этом в стране появятся четыре CCUS-хаба, оборудованных хранилищами CO2, которые будут расположены в нескольких нефтеносных бассейнах (Сунляо и Бохай Бэй на северо-востоке КНР, Джунгарский на северо-западе и Ордос на севере центральной части страны).

👉Интересно, что по оценке McKinsey, на долю нефтегазохимической промышленности приходится 12% глобальных промышленных выбросов углекислого газа. Лидером по этому показателю является сталелитейная промышленность (26%), за ней следует производство цемента (20%), добыча нефти, газа и угля (21%) и все прочие отрасли (21%).
https://t.iss.one/globalenergyprize/3298
Топливные элементы на дорогах

🚆Проект поезда на топливных элементах внесёт вклад в декарбонизацию железнодорожного транспорта, на долю которого приходится 1% глобальных выбросов транспортного сектора. И это при доле
автомобильного транспорта в 75%,
воздушного – в 13%
и водного - 11%.

💪Техника на топливных элементах в ближайшие годы получит распространение в морском и воздушном транспорте. Так,
нидерландская верфь Next Generation Shipyards к июню 2023 г. собирается построить первое в мире судно на твёрдом водороде,
🛬а австралийский авиаперевозчик Skytrans и стартап Stralis Aircraft планируют к 2026 г. переоборудовать 19-местный лайнер Beechcraft 1900D, заменив турбовентиляторный двигатель и керосиновую топливную систему водородно-электрической силовой установкой и резервуаром для хранения водорода.
https://t.iss.one/globalenergyprize/3150
https://t.iss.one/globalenergyprize/2953
Геотермальные станции - без ограничений

👉Разработка Fervo Energy позволит «расшить» одно тонкое место. Дело в том, что геотермальные станции, вырабатывающие электричество из тепловой энергии подземных источников, обычно размещаются вблизи гейзеров, выбрасывающих фонтаны горячей воды. Однако гейзерное поле – геологически редкое явление. Наиболее крупные из них расположены на Камчатке, в Исландии, Новой Зеландии, а также в чилийской пустыне Атакама и американском парке Йеллоустоун.

🤔Поэтому география использования геотермальной энергии остаётся узкой: глобальная установленная мощность геотермальных станций к концу 2021 г. достигла 15,6 гигаватт (ГВт), из них треть (5,8 ГВт) приходилась на
🇷🇺Россию,
🇮🇸Исландию,
🇳🇿Новую Зеландию,
🇨🇱Чили,
🇺🇸США.

❗️Изменить ситуацию можно с помощью энергии подземных гейзеров, расположенных на глубине более чем 6 км.
Цеолиты

👉Цеолиты представляют собой особый класс натуральных или синтетических кристаллических микропористых алюмосиликатных структур, характеризующихся высокоупорядоченными узкими порами с полярными оксидными поверхностями, сильно взаимодействующими с углекислым газом посредством полярных связей. Кроме того, специфический химический состав цеолитов влияет на их способность улавливать CO2.

💪Как правило, более низкое соотношение Si/Al увеличивает эффективность поглощения углекислого газа за счёт увеличения отрицательного заряда основной химической цепи и, следовательно, количества внекаркасных катионов (обычно, катионов щелочных металлов). Эти катионы активно взаимодействуют с CO2, что может быть дополнительно усилено за счёт катионного обмена на катионы других щелочных металлов, включая Li+, Na+, K+, Rb+ и Cs+, или ионы щёлочноземельных металлов, такие как Ca2+.

🤔Сильное взаимодействие «катион-CO2» позволяет этим цеолитам обеспечивать высокую поглощающую способность при низком давлении углекислого газа, а их жёсткая структурная основа выдерживает многочисленные циклы улавливания и высвобождения CO2 без существенной потери эффективности сорбента. Вместе с тем, такие структуры демонстрируют ещё более мощную связывающую способность по отношению к воде, конкурирующей с углекислым газом, что приводит к почти нулевому поглощению последнего во влажной среде и требует намного более высокой температуры (> 200°C) для регенерации сорбента. Это ограничивает использование цеолитов для улавливания CO2 строгими сухими условиями эксплуатации, такими как при поглощении углекислого газа из CH4 перед его сжиганием.
https://t.iss.one/globalenergyprize/3294
Стандарт SAE J2954

🚙Это один из широко используемых стандартов беспроводной передачи энергии (БПЭ), применяемых к легковым автомобилям. Он классифицирует системы БПЭ по трём основным категориям, различающимся по пропускной способности. Эти уровни показаны в верхней таблице вместе с данными о необходимой минимальной эффективности.

❗️Зарядные устройства WPT1 и WPT2 относятся к той же категории диапазона мощности, что и токопроводящие зарядные устройства уровня переменного тока 1 и 2. Поскольку потребности в высокой пропускной способности растут, на стадии разработки находятся стандарты для уровней мощности, превышающих WPT3.

👉Также существует три стандартных диапазона воздушного зазора (Z-класса) между передающей и приёмной катушками с максимальным расстоянием 250 мм, как показано в таблице 4. Что касается частоты, стандарт SAE J2954 требует, чтобы частота находилась в диапазоне от 79 кГц до 90 кГц, при этом значение номинальной рабочей точки составляет 85 кГц.

https://t.iss.one/globalenergyprize/3301
Перовскит - вакуум и растворы

☀️Процессы, основанные на использовании вакуума и растворов, представляют собой две доминирующие технологии изготовления перовскитных плёнок. Тем не менее, хотя вакуумные процессы, где источником пара служат неорганические и органические соединения (т.е. PbX¬2 и MAX, соответственно), позволяют получать высококачественные плёнки с достойными характеристиками, они также связаны с использованием трудоёмких этапов осаждения и более дорогостоящего оборудования.

👉С другой стороны, хотя изготовление перовскитной плёнки с помощью любого процесса с осаждением раствора представляется альтернативным подходом благодаря его простой концепции, основанной на том, что после отжига в результате фазовой реакции в растворе могут быстро формироваться оба материала, при этом по всей плёнке могут возникнуть нежелательные проколы. В результате была разработана другая технология осаждения, названная вакуумное осаждения из раствора (VASP), сочетающая в себе преимущества обоих процессов.
https://t.iss.one/globalenergyprize/3295
Пять трендов в угольной генерации. №3

3️⃣Отказ от угля в Европе и Северной Америки
В отличие от большинства стран Азии, Европа и Северная Америка в последние годы стремительно отказывались от угольной генерации. Если в 2004-2009 гг. в США и Канаде было законсервировано 9 ГВт мощности станций на угле, то в 2010-2015 гг. – 56 ГВт, а в 2016-2021 гг. – 81 ГВт. Схожая тенденция характерна также для Великобритании и 27 стран ЕС, где вывод угольных станций ускорился за тот же период с 6 ГВт до 38 ГВт и 58 ГВт соответственно.

👉При этом в США причиной отказа от угля стала сланцевая революция, благодаря которой добыча газа в период с 2012 по 2021 гг. выросла на 44% (с 649 млрд. до 934 млрд. куб. м, согласно данным Обзора мировой энергетики BP), а доля газа в структуре генерации – c 30% до 38%.
https://t.iss.one/globalenergyprize/3310
Паровой риформинг метана

Это эндотермический процесс, осуществляемый в присутствии катализаторов при температуре 800–10000С, давлении 0.3–2.5 МПа и высоком отношении Н2О/СН4 = 2.5–3.0. Данный процесс позволяет получать синтез-газ с высоким содержанием водорода H2/CO = 3, однако имеет определённые недостатки, характеризуется
📌высокими капиталовложениями,
📌низкой энергоэффективностью
📌и быстрой дезактивацией катализатора за счёт коксообразования и отравления сероводородом.

https://t.iss.one/globalenergyprize/3292
Фасад как солнечный генератор

🇦🇺Австралийская архитектурная студия Kennon спроектировала восьмиэтажное офисное здание 550 Spencer, фасад которого будет состоять из 1 182 тонкопленочных солнечных панелей от немецкого производителя Avancis. Здание сможет генерировать в 50 раз больше электроэнергии, чем обычные солнечные батареи, устанавливаемые на крышах высоток.

☀️Каждый модуль размером 1 587 х 664 мм будет генерировать от 110 до 140 киловатт (КВт) мощности. Солнечные батареи будут выполнены из меди, селена (хрупкого металла серого цвета), а также индия и галлия, «мягких» металлов серебристо-белого цвета. Толщина каждого модуля составит 3,2 мм, вес – 17 кг, а эффективность (коэффициент преобразования солнечного света в электроэнергию) – чуть более 13%.

💪Здание планируется ввести в эксплуатацию в Мельбурне в 2024 г. Как ожидается, оно будет ежегодно экономить 70 т углекислого газа.
https://globalenergyprize.org/ru/2022/09/06/fasad-ofisa-kak-solnechnyj-generator/
Крупнейший в мире завод электролизёров

🇩🇰Датская Topsoe приняла окончательное инвестиционное решение по проекту завода твёрдооксидных электролизёров общей стоимостью $270 млн. Инвестиции в строительство площадки в городе Хернинг в центральной части Дании станут крупнейшими за 80-летнюю историю компании, которая долгое время специализировалась на производстве катализаторов, а в последние десятилетия «переключилась» на низкоуглеродные технологии.

👉Твёрдооксидные электролизеры используют тепло и электроэнергию для расщепления молекул воды на кислород и водород при температуре свыше 1 000 градусов Цельсия. Электролизы этого типа расходуют меньше электричества, чем установки с щелочной или протообменной мембраной (PEM). Однако им требуется внешний источник тепловой энергии, поэтому заказчиками Topsoe могут стать компании, стремящиеся решить проблему утилизации отработанного тепла, в том числе производители аммиака и водорода.
https://globalenergyprize.org/ru/2022/09/06/krupnejshij-v-mire-zavod-elektrolizerov/
Чем обуздать энергию ветра

💨Инновация World Wide Wind в случае успешных испытаний и дальнейшей коммерциализации пополнит ряд вертикальных ветроустановок, которые будут особенно востребованы в Балтийском и Северном морях. А эти водоёмы - ключевой европейский хаб морской ветроэнергетики.

👉Ранее шведская SeaTwirl создала прототип плавучей ветряной турбины, надводная часть которой состоит из статичного корпуса и вращающейся башни, скреплённой с распорками и роторными лопастями, а подводная – из «поплавка», на наконечнике которого расположен китель с фиксированным балластом. SeaTwirl планирует наладить коммерческое производство таких установок в 2025 г.
Мирный атом и ветер - самые углеродно нейтральные энергоносители.
Компенсационная топология

🚙Продолжаем разговор про БПЭ. Базовые блоки компенсации состоят из конденсаторов, подключённых последовательно или параллельно к катушкам. Это даёт
общие и классические компенсационные топологии
📌«последовательно-последовательная» (SS),
📌«последовательно-параллельная» (SP),
📌«параллельно-последовательная» (PS)
📌и «параллельно-параллельная» (PP).

👉Компенсация SS является наиболее широко используемой из указанных четырёх топологий, поскольку частота переключения, необходимая для достижения резонанса, не зависит от нагрузки и коэффициента связи между катушками. При проектировании и выборе топологии схемы компенсации необходимо учитывать некоторые дополнительные факторы, такие как
✔️режим вывода постоянного напряжения или постоянного тока на батарее,
✔️реализация мягкого переключения на инверторе первичной стороны для минимизации потерь переключения полупроводников,
✔️недопущение бифуркации, могущей повлиять на устойчивость системы.
Сообщества = рынки

💡Местные энергетические сообщества прочно укоренились в европейских странах; они существуют в
🇩🇪Германии,
🇩🇰Дании,
🇳🇱Нидерландах,
🇪🇸Испании
🇺🇳и других частях мира
в виде местных кооперативов, занимающихся производством электроэнергии из возобновляемых источников, а также коммунальных систем централизованного теплоснабжения. На сегодняшний день важным фактором в переходе к энергетически устойчивому будущему, признана роль активных граждан — продуктивных потребителей, так называемых «просьюмеров», способных формировать собственные профили энергопотребления и самостоятельно производить энергию на местном уровне.

👍Идеальным средством для стимулирования этой роли являются как раз местные энергетические сообщества. Согласно Директиве ЕС по электроэнергии COM (2016) 864/2, местное энергетическое сообщество определяется как ассоциация, кооператив, товарищество, некоммерческая организация или другое юридическое лицо, которое эффективно контролируется местными акционерами или членами, и которое, как правило, ориентировано на ценности, а не на получение прибыли. Такое сообщество занимается распределенной генерацией и осуществляет функции оператора системы распределения, поставщика или агрегатора на локальном уровне, в том числе трансграничном.
https://t.iss.one/globalenergyprize/3299
Схематическая диаграмма, показывающая преобразование энергии из концентрированной высококачественной ископаемой энергии в распределённую и мало пригодную для повторного использования «высокоэнтропийную» энергию. Как только возникнет дефицит ископаемой энергии, мы столкнемся с настоящим энергетическим кризисом.

В развитие темы
Пять трендов в угольной генерации. №4

4️⃣Рост интереса к углю в Африке
На этом фоне привлекает внимание факт роста интереса к угольной генерации в Африке. Если
📍в 2004-2009 гг. в регионе было введено 125 МВт станций на угле,
📍то в 2010-2015 гг. – 2,3 ГВт,
📍а в 2016-2021 гг. – 8,5 ГВт.
Наибольший вклад в этот прирост вносят ЮАР и Марокко, которые в 2010-2015 гг. ввели 1,5 ГВт мощности, а в 2016-2021 гг. – 8,1 ГВт.

👉Что касается стран в других регионах мира, то здесь можно выделить несколько «маяков»:
🇹🇷Турцию, на долю которой пришлось 70% ввода угольных станций в странах Европы, не входящих в состав ЕС (4,2 ГВт из 6,1 ГВт);
🇵🇰Пакистан, который ввёл 5 ГВт в 2016-2021 гг. (против нуля в 2010-2015 гг.);
🇨🇱🇧🇷а также Чили и Бразилию, доля которых в структуре ввода угольных станций в Южной Америке в 2010-2015 гг. составила чуть более 70% (4,4 ГВт из 5,9 ГВт), а в 2016-2021 гг. – 40% (1,3 ГВт из 3,2 ГВт).
Микрогидроустановка для промпотребителей

🇯🇵Японская Yumes Frontier разработала микрогидроустановку мощностью 2,7 киловатт (кВт), которую можно монтировать в водопроводную систему с перепадом высот более 4 метров и водонапором не менее 4 литров в секунду. Агрегат может использоваться для частичного перевода на автономное энергоснабжение промышленных и офисных зданий, а также водоочистных сооружений.

💰Гидроустановка, предназначенная для герметичных трубопроводов, использует для выработки электроэнергии перепад давления воды. Устройство
📌весом 30 кг
📌и размером 580 мм x 330 мм
📌оснащено роторным генератором, скорость вращения которого колеблется от 450 до 5 000 оборотов в минуту.
Стоимость установки составляет 980 тыс. японских йен ($6 760). По оценке Yumes Frontier, «отбить» эти вложения можно за восемь-девять лет, при том что устройство рассчитано на эксплуатацию в течение двух десятилетий.

👉Разработка Yumes Frontier пополнит череду инноваций в малой гидроэнергетике. Ранее компания VerdErg создала мини-гидрогенератор, который может вырабатывать электричество в мелководных водоемах. Установка, внешне напоминающая трубку Вентури (прибор для измерения скорости потока воды), состоит из трёх частей: входного конуса, в котором установлена турбина, а также суженной середины, где происходит ускорение потока воды, и расширяющего диффузора, где этот поток замедляется.. Устройство мощностью 30 кВт было опробовано в прошлом году в английском графстве Кембриджшир, где с её помощью было обеспечено энергоснабжение более трех десятков частных домохозяйств.
https://globalenergyprize.org/ru/2022/09/08/mikrogidroustanovka-dlya-promyshlennyh-potrebitelej/
🚙Электрокары становятся всё серьёзнее: в ближайшие годы американские компании пустят по дорогам свои первые седельные тягачи на электрической тяге. А вот продукция китайской BYD уже развозит грузы, точнее - пиво🍺

🤔Но пока электротягачи не могут тягаться со своими коллегами с ДВС ни скоростью зарядки (она занимает несколько часов), но дальнобойностью (от 241 километра на одном заряде).
Суэц - центр производства «зелёного» водорода

🇪🇬Производитель возобновляемой энергии Globeleq подписал с правительством Египта меморандум по проекту в области «зелёного» водорода, который будет реализован в Экономической зоне Суэцкого канала. Документ предполагает строительство 3,6 гигаватт (ГВт) электролизных мощностей и 9 ГВт ветрогенераторов и солнечных панелей.

📝Соглашение было подписано при участии
✔️египетского Управления по новым и возобновляемым источникам энергии,
✔️Генерального управления экономического зоны Суэцкого канала,
✔️Суверенного фонда Египта и Египетской компании по передаче электроэнергии.
Первый этап проекта подразумевает строительство пилотных электролизных мощностей на 100 мегаватт (МВт), водород с которых будет использоваться для производства «зелёного» аммиака. Подспорьем для дальнейшего развития проекта станет выгодное географическое расположение Суэцкого канала, на долю которого приходится 13% мировых товарных потоков и который в ближайшие годы может стать крупным хабом в сфере «чистой» энергии.
https://globalenergyprize.org/ru/2022/09/08/suec-stanet-centrom-proizvodstva-zelenogo-vodoroda/