David Baum - Generative AI and LLMs for Dummies (2024).pdf
1.9 MB
Generative AI and LLMs for Dummies
David Baum, 2024
David Baum, 2024
๐4๐ฅ2
Here are 8 concise tips to help you ace a technical AI engineering interview:
๐ญ. ๐๐ ๐ฝ๐น๐ฎ๐ถ๐ป ๐๐๐ ๐ณ๐๐ป๐ฑ๐ฎ๐บ๐ฒ๐ป๐๐ฎ๐น๐ - Cover the high-level workings of models like GPT-3, including transformers, pre-training, fine-tuning, etc.
๐ฎ. ๐๐ถ๐๐ฐ๐๐๐ ๐ฝ๐ฟ๐ผ๐บ๐ฝ๐ ๐ฒ๐ป๐ด๐ถ๐ป๐ฒ๐ฒ๐ฟ๐ถ๐ป๐ด - Talk through techniques like demonstrations, examples, and plain language prompts to optimize model performance.
๐ฏ. ๐ฆ๐ต๐ฎ๐ฟ๐ฒ ๐๐๐ ๐ฝ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐ ๐ฒ๐ ๐ฎ๐บ๐ฝ๐น๐ฒ๐ - Walk through hands-on experiences leveraging models like GPT-4, Langchain, or Vector Databases.
๐ฐ. ๐ฆ๐๐ฎ๐ ๐๐ฝ๐ฑ๐ฎ๐๐ฒ๐ฑ ๐ผ๐ป ๐ฟ๐ฒ๐๐ฒ๐ฎ๐ฟ๐ฐ๐ต - Mention latest papers and innovations in few-shot learning, prompt tuning, chain of thought prompting, etc.
๐ฑ. ๐๐ถ๐๐ฒ ๐ถ๐ป๐๐ผ ๐บ๐ผ๐ฑ๐ฒ๐น ๐ฎ๐ฟ๐ฐ๐ต๐ถ๐๐ฒ๐ฐ๐๐๐ฟ๐ฒ๐ - Compare transformer networks like GPT-3 vs Codex. Explain self-attention, encodings, model depth, etc.
๐ฒ. ๐๐ถ๐๐ฐ๐๐๐ ๐ณ๐ถ๐ป๐ฒ-๐๐๐ป๐ถ๐ป๐ด ๐๐ฒ๐ฐ๐ต๐ป๐ถ๐พ๐๐ฒ๐ - Explain supervised fine-tuning, parameter efficient fine tuning, few-shot learning, and other methods to specialize pre-trained models for specific tasks.
๐ณ. ๐๐ฒ๐บ๐ผ๐ป๐๐๐ฟ๐ฎ๐๐ฒ ๐ฝ๐ฟ๐ผ๐ฑ๐๐ฐ๐๐ถ๐ผ๐ป ๐ฒ๐ป๐ด๐ถ๐ป๐ฒ๐ฒ๐ฟ๐ถ๐ป๐ด ๐ฒ๐ ๐ฝ๐ฒ๐ฟ๐๐ถ๐๐ฒ - From tokenization to embeddings to deployment, showcase your ability to operationalize models at scale.
๐ด. ๐๐๐ธ ๐๐ต๐ผ๐๐ด๐ต๐๐ณ๐๐น ๐พ๐๐ฒ๐๐๐ถ๐ผ๐ป๐ - Inquire about model safety, bias, transparency, generalization, etc. to show strategic thinking.
Free AI Resources: https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
๐ญ. ๐๐ ๐ฝ๐น๐ฎ๐ถ๐ป ๐๐๐ ๐ณ๐๐ป๐ฑ๐ฎ๐บ๐ฒ๐ป๐๐ฎ๐น๐ - Cover the high-level workings of models like GPT-3, including transformers, pre-training, fine-tuning, etc.
๐ฎ. ๐๐ถ๐๐ฐ๐๐๐ ๐ฝ๐ฟ๐ผ๐บ๐ฝ๐ ๐ฒ๐ป๐ด๐ถ๐ป๐ฒ๐ฒ๐ฟ๐ถ๐ป๐ด - Talk through techniques like demonstrations, examples, and plain language prompts to optimize model performance.
๐ฏ. ๐ฆ๐ต๐ฎ๐ฟ๐ฒ ๐๐๐ ๐ฝ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐ ๐ฒ๐ ๐ฎ๐บ๐ฝ๐น๐ฒ๐ - Walk through hands-on experiences leveraging models like GPT-4, Langchain, or Vector Databases.
๐ฐ. ๐ฆ๐๐ฎ๐ ๐๐ฝ๐ฑ๐ฎ๐๐ฒ๐ฑ ๐ผ๐ป ๐ฟ๐ฒ๐๐ฒ๐ฎ๐ฟ๐ฐ๐ต - Mention latest papers and innovations in few-shot learning, prompt tuning, chain of thought prompting, etc.
๐ฑ. ๐๐ถ๐๐ฒ ๐ถ๐ป๐๐ผ ๐บ๐ผ๐ฑ๐ฒ๐น ๐ฎ๐ฟ๐ฐ๐ต๐ถ๐๐ฒ๐ฐ๐๐๐ฟ๐ฒ๐ - Compare transformer networks like GPT-3 vs Codex. Explain self-attention, encodings, model depth, etc.
๐ฒ. ๐๐ถ๐๐ฐ๐๐๐ ๐ณ๐ถ๐ป๐ฒ-๐๐๐ป๐ถ๐ป๐ด ๐๐ฒ๐ฐ๐ต๐ป๐ถ๐พ๐๐ฒ๐ - Explain supervised fine-tuning, parameter efficient fine tuning, few-shot learning, and other methods to specialize pre-trained models for specific tasks.
๐ณ. ๐๐ฒ๐บ๐ผ๐ป๐๐๐ฟ๐ฎ๐๐ฒ ๐ฝ๐ฟ๐ผ๐ฑ๐๐ฐ๐๐ถ๐ผ๐ป ๐ฒ๐ป๐ด๐ถ๐ป๐ฒ๐ฒ๐ฟ๐ถ๐ป๐ด ๐ฒ๐ ๐ฝ๐ฒ๐ฟ๐๐ถ๐๐ฒ - From tokenization to embeddings to deployment, showcase your ability to operationalize models at scale.
๐ด. ๐๐๐ธ ๐๐ต๐ผ๐๐ด๐ต๐๐ณ๐๐น ๐พ๐๐ฒ๐๐๐ถ๐ผ๐ป๐ - Inquire about model safety, bias, transparency, generalization, etc. to show strategic thinking.
Free AI Resources: https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
๐2
LLM Cheatsheet
Introduction to LLMs
- LLMs (Large Language Models) are AI systems that generate text by predicting the next word.
- Prompts are the instructions or text you give to an LLM.
- Personas allow LLMs to take on specific roles or tones.
- Learning types:
- Zero-shot (no examples given)
- One-shot (one example)
- Few-shot (a few examples)
Transformers
- The core architecture behind LLMs, using self-attention to process input sequences.
- Encoder: Understands input.
- Decoder: Generates output.
- Embeddings: Converts words into vectors.
Types of LLMs
- Encoder-only: Great for understanding (like BERT).
- Decoder-only: Best for generating text (like GPT).
- Encoder-decoder: Useful for tasks like translation and summarization (like T5).
Configuration Settings
- Decoding strategies:
- Greedy: Always picks the most likely next word.
- Beam search: Considers multiple possible sequences.
- Random sampling: Adds creativity by picking among top choices.
- Temperature: Controls randomness (higher value = more creative output).
- Top-k and Top-p: Restrict choices to the most likely words.
LLM Instruction Fine-Tuning & Evaluation
- Instruction fine-tuning: Trains LLMs to follow specific instructions.
- Task-specific fine-tuning: Focuses on a single task.
- Multi-task fine-tuning: Trains on multiple tasks for broader skills.
Model Evaluation
- Evaluating LLMs is hard-metrics like BLEU and ROUGE are common, but human judgment is often needed.
Join our WhatsApp Channel: https://whatsapp.com/channel/0029VazaRBY2UPBNj1aCrN0U
Introduction to LLMs
- LLMs (Large Language Models) are AI systems that generate text by predicting the next word.
- Prompts are the instructions or text you give to an LLM.
- Personas allow LLMs to take on specific roles or tones.
- Learning types:
- Zero-shot (no examples given)
- One-shot (one example)
- Few-shot (a few examples)
Transformers
- The core architecture behind LLMs, using self-attention to process input sequences.
- Encoder: Understands input.
- Decoder: Generates output.
- Embeddings: Converts words into vectors.
Types of LLMs
- Encoder-only: Great for understanding (like BERT).
- Decoder-only: Best for generating text (like GPT).
- Encoder-decoder: Useful for tasks like translation and summarization (like T5).
Configuration Settings
- Decoding strategies:
- Greedy: Always picks the most likely next word.
- Beam search: Considers multiple possible sequences.
- Random sampling: Adds creativity by picking among top choices.
- Temperature: Controls randomness (higher value = more creative output).
- Top-k and Top-p: Restrict choices to the most likely words.
LLM Instruction Fine-Tuning & Evaluation
- Instruction fine-tuning: Trains LLMs to follow specific instructions.
- Task-specific fine-tuning: Focuses on a single task.
- Multi-task fine-tuning: Trains on multiple tasks for broader skills.
Model Evaluation
- Evaluating LLMs is hard-metrics like BLEU and ROUGE are common, but human judgment is often needed.
Join our WhatsApp Channel: https://whatsapp.com/channel/0029VazaRBY2UPBNj1aCrN0U
๐5
Guys, Big Announcement!
Weโve officially crossed 4 Lakh followers on this journey together โ and itโs time to step up now! โค๏ธ
Iโm launching a Coding Interview Prep Series โ designed for everyone from beginners to those polishing their skills for FAANG-level interviews.
This will be a structured, step-by-step journey โ with short explanations, real coding examples, and mini-challenges after every topic to build real muscle memory.
Hereโs whatโs coming in the next few weeks:
Week 1: The Very Basics
- What is an Algorithm?
- What is Data Structure?
- Understanding Time Complexity (Big O Notation - made simple!)
- Basic Math for Coding Interviews
- Problem Solving Approach (How to break down a question)
Week 2: Arrays & Strings โ Your Building Blocks
- Introduction to Arrays and Strings
- Common Operations (Insert, Delete, Search)
- Two Pointer Techniques (Easy to Medium problems)
- Sliding Window Problems (Optimization techniques)
- String Manipulation Tricks for Interviews
Week 3: Hashing & Recursion
- HashMaps and HashSets (Power tools for coders!)
- Solving Problems using Hashing
- Introduction to Recursion
- Base Case and Recursive Case (Explained like a 5-year-old)
- Classic Recursion Problems
Week 4: Linked Lists, Stacks & Queues
- Singly vs Doubly Linked List
- Stack Operations and Problems (Valid Parentheses, Min Stack)
- Queue and Deque Concepts (with real examples)
- When to Use Stack vs Queue in Interviews
Week 5: Trees & Graphs Essentials
- Binary Trees and BST Basics
- Tree Traversals (Inorder, Preorder, Postorder)
- Graph Representations (Adjacency List, Matrix)
- Breadth-First Search (BFS) and Depth-First Search (DFS) explained simply
Week 6: Sorting, Searching & Interview Patterns
- Core Sorting Algorithms (Selection, Bubble, Insertion)
- Advanced Sorting (Merge Sort, Quick Sort)
- Binary Search Patterns (Find First, Last Occurrence, etc.)
- Mastering Interview Patterns (Two Sum, Three Sum, Subarray Sum, etc.)
Week 7: Dynamic Programming & Advanced Problem Solving
- What is Dynamic Programming (DP)?
- Top-Down vs Bottom-Up Approach
- Memoization and Tabulation Explained
- Classic DP Problems (Fibonacci, 0/1 Knapsack, Longest Subsequence)
Week 8: Real-World Mock Interviews
- Solving Medium to Hard Problems
- Tackling FAANG-level Interview Questions
- Tips to Handle Pressure in Coding Rounds
- Building the Right Mindset for Success
React with โค๏ธ if you're ready for this new coding series
You can join our WhatsApp channel to access it for free: https://whatsapp.com/channel/0029VammZijATRSlLxywEC3X
Weโve officially crossed 4 Lakh followers on this journey together โ and itโs time to step up now! โค๏ธ
Iโm launching a Coding Interview Prep Series โ designed for everyone from beginners to those polishing their skills for FAANG-level interviews.
This will be a structured, step-by-step journey โ with short explanations, real coding examples, and mini-challenges after every topic to build real muscle memory.
Hereโs whatโs coming in the next few weeks:
Week 1: The Very Basics
- What is an Algorithm?
- What is Data Structure?
- Understanding Time Complexity (Big O Notation - made simple!)
- Basic Math for Coding Interviews
- Problem Solving Approach (How to break down a question)
Week 2: Arrays & Strings โ Your Building Blocks
- Introduction to Arrays and Strings
- Common Operations (Insert, Delete, Search)
- Two Pointer Techniques (Easy to Medium problems)
- Sliding Window Problems (Optimization techniques)
- String Manipulation Tricks for Interviews
Week 3: Hashing & Recursion
- HashMaps and HashSets (Power tools for coders!)
- Solving Problems using Hashing
- Introduction to Recursion
- Base Case and Recursive Case (Explained like a 5-year-old)
- Classic Recursion Problems
Week 4: Linked Lists, Stacks & Queues
- Singly vs Doubly Linked List
- Stack Operations and Problems (Valid Parentheses, Min Stack)
- Queue and Deque Concepts (with real examples)
- When to Use Stack vs Queue in Interviews
Week 5: Trees & Graphs Essentials
- Binary Trees and BST Basics
- Tree Traversals (Inorder, Preorder, Postorder)
- Graph Representations (Adjacency List, Matrix)
- Breadth-First Search (BFS) and Depth-First Search (DFS) explained simply
Week 6: Sorting, Searching & Interview Patterns
- Core Sorting Algorithms (Selection, Bubble, Insertion)
- Advanced Sorting (Merge Sort, Quick Sort)
- Binary Search Patterns (Find First, Last Occurrence, etc.)
- Mastering Interview Patterns (Two Sum, Three Sum, Subarray Sum, etc.)
Week 7: Dynamic Programming & Advanced Problem Solving
- What is Dynamic Programming (DP)?
- Top-Down vs Bottom-Up Approach
- Memoization and Tabulation Explained
- Classic DP Problems (Fibonacci, 0/1 Knapsack, Longest Subsequence)
Week 8: Real-World Mock Interviews
- Solving Medium to Hard Problems
- Tackling FAANG-level Interview Questions
- Tips to Handle Pressure in Coding Rounds
- Building the Right Mindset for Success
React with โค๏ธ if you're ready for this new coding series
You can join our WhatsApp channel to access it for free: https://whatsapp.com/channel/0029VammZijATRSlLxywEC3X
โค8๐1
You can use ChatGPT to make money online.
Here are 10 prompts by ChatGPT
1. Develop Email Newsletters:
Make interesting email newsletters to keep audience updated and engaged.
Prompt: "I run a local community news website. Can you help me create a weekly email newsletter that highlights key local events, stories, and updates in a compelling way?"
2. Create Online Course Material:
Make detailed and educational online course content.
Prompt: "I'm creating an online course about basic programming for beginners. Can you help me generate a syllabus and detailed lesson plans that cover fundamental concepts in an easy-to-understand manner?"
Read more......
Here are 10 prompts by ChatGPT
1. Develop Email Newsletters:
Make interesting email newsletters to keep audience updated and engaged.
Prompt: "I run a local community news website. Can you help me create a weekly email newsletter that highlights key local events, stories, and updates in a compelling way?"
2. Create Online Course Material:
Make detailed and educational online course content.
Prompt: "I'm creating an online course about basic programming for beginners. Can you help me generate a syllabus and detailed lesson plans that cover fundamental concepts in an easy-to-understand manner?"
Read more......
๐1
List of AI Project Ideas ๐จ๐ปโ๐ป๐ค -
Beginner Projects
๐น Sentiment Analyzer
๐น Image Classifier
๐น Spam Detection System
๐น Face Detection
๐น Chatbot (Rule-based)
๐น Movie Recommendation System
๐น Handwritten Digit Recognition
๐น Speech-to-Text Converter
๐น AI-Powered Calculator
๐น AI Hangman Game
Intermediate Projects
๐ธ AI Virtual Assistant
๐ธ Fake News Detector
๐ธ Music Genre Classification
๐ธ AI Resume Screener
๐ธ Style Transfer App
๐ธ Real-Time Object Detection
๐ธ Chatbot with Memory
๐ธ Autocorrect Tool
๐ธ Face Recognition Attendance System
๐ธ AI Sudoku Solver
Advanced Projects
๐บ AI Stock Predictor
๐บ AI Writer (GPT-based)
๐บ AI-powered Resume Builder
๐บ Deepfake Generator
๐บ AI Lawyer Assistant
๐บ AI-Powered Medical Diagnosis
๐บ AI-based Game Bot
๐บ Custom Voice Cloning
๐บ Multi-modal AI App
๐บ AI Research Paper Summarizer
Join for more: https://t.iss.one/machinelearning_deeplearning
Beginner Projects
๐น Sentiment Analyzer
๐น Image Classifier
๐น Spam Detection System
๐น Face Detection
๐น Chatbot (Rule-based)
๐น Movie Recommendation System
๐น Handwritten Digit Recognition
๐น Speech-to-Text Converter
๐น AI-Powered Calculator
๐น AI Hangman Game
Intermediate Projects
๐ธ AI Virtual Assistant
๐ธ Fake News Detector
๐ธ Music Genre Classification
๐ธ AI Resume Screener
๐ธ Style Transfer App
๐ธ Real-Time Object Detection
๐ธ Chatbot with Memory
๐ธ Autocorrect Tool
๐ธ Face Recognition Attendance System
๐ธ AI Sudoku Solver
Advanced Projects
๐บ AI Stock Predictor
๐บ AI Writer (GPT-based)
๐บ AI-powered Resume Builder
๐บ Deepfake Generator
๐บ AI Lawyer Assistant
๐บ AI-Powered Medical Diagnosis
๐บ AI-based Game Bot
๐บ Custom Voice Cloning
๐บ Multi-modal AI App
๐บ AI Research Paper Summarizer
Join for more: https://t.iss.one/machinelearning_deeplearning
๐3
How do you start AI and ML ?
Where do you go to learn these skills? What courses are the best?
Thereโs no best answer๐ฅบ. Everyoneโs path will be different. Some people learn better with books, others learn better through videos.
Whatโs more important than how you start is why you start.
Start with why.
Why do you want to learn these skills?
Do you want to make money?
Do you want to build things?
Do you want to make a difference?
Again, no right reason. All are valid in their own way.
Start with why because having a why is more important than how. Having a why means when it gets hard and it will get hard, youโve got something to turn to. Something to remind you why you started.
Got a why? Good. Time for some hard skills.
I can only recommend what Iโve tried every week new course lauch better than others its difficult to recommend any course
You can completed courses from (in order):
Treehouse / youtube( free) - Introduction to Python
Udacity - Deep Learning & AI Nanodegree
fast.ai - Part 1and Part 2
Theyโre all world class. Iโm a visual learner. I learn better seeing things being done/explained to me on. So all of these courses reflect that.
If youโre an absolute beginner, start with some introductory Python courses and when youโre a bit more confident, move into data science, machine learning and AI.
Join for more: https://t.iss.one/machinelearning_deeplearning
Like for more โค๏ธ
All the best ๐๐
Where do you go to learn these skills? What courses are the best?
Thereโs no best answer๐ฅบ. Everyoneโs path will be different. Some people learn better with books, others learn better through videos.
Whatโs more important than how you start is why you start.
Start with why.
Why do you want to learn these skills?
Do you want to make money?
Do you want to build things?
Do you want to make a difference?
Again, no right reason. All are valid in their own way.
Start with why because having a why is more important than how. Having a why means when it gets hard and it will get hard, youโve got something to turn to. Something to remind you why you started.
Got a why? Good. Time for some hard skills.
I can only recommend what Iโve tried every week new course lauch better than others its difficult to recommend any course
You can completed courses from (in order):
Treehouse / youtube( free) - Introduction to Python
Udacity - Deep Learning & AI Nanodegree
fast.ai - Part 1and Part 2
Theyโre all world class. Iโm a visual learner. I learn better seeing things being done/explained to me on. So all of these courses reflect that.
If youโre an absolute beginner, start with some introductory Python courses and when youโre a bit more confident, move into data science, machine learning and AI.
Join for more: https://t.iss.one/machinelearning_deeplearning
Like for more โค๏ธ
All the best ๐๐
โค3๐1