Всем привет!🔥
📆 Завтра (28 февраля) в 16:00
Анастасия Иванова расскажет про
Beyond probability: Dempster-Shafer theory for AI and uncertainty modeling
На встрече мы обсудим теорию Депмстера-Шафера (DST) как альтернативу классическим вероятностным методам для оценки неопределённости и принятии решений на его основе. DST позволяет явно моделировать неопределённость и неполное знание с помощью распределения «доверия» (belief functions). Мы рассмотрим в чём отличия DST от байесовского подхода и в каких задачах DST оказывается полезной для AI на примерах трёх статей:
1. PrefCLM: Enhancing Preference-based Reinforcement Learning with Crowdsourced Large Language Models
2. Prototype-based Aleatoric Uncertainty Quantification for Cross-modal Retrieval
3. Calibrating LLMs with Information Theoretic Evidential Deep Learning
🍿 Ссылка на подключение
Подписаться⤵️
Embodied AI Reading Club
Анастасия Иванова расскажет про
Beyond probability: Dempster-Shafer theory for AI and uncertainty modeling
На встрече мы обсудим теорию Депмстера-Шафера (DST) как альтернативу классическим вероятностным методам для оценки неопределённости и принятии решений на его основе. DST позволяет явно моделировать неопределённость и неполное знание с помощью распределения «доверия» (belief functions). Мы рассмотрим в чём отличия DST от байесовского подхода и в каких задачах DST оказывается полезной для AI на примерах трёх статей:
1. PrefCLM: Enhancing Preference-based Reinforcement Learning with Crowdsourced Large Language Models
2. Prototype-based Aleatoric Uncertainty Quantification for Cross-modal Retrieval
3. Calibrating LLMs with Information Theoretic Evidential Deep Learning
Подписаться
Embodied AI Reading Club
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥9
Всем привет!🔥
📆 Завтра (7 марта) в 16:00
Эллина Алёшина расскажет про
Attacks on LLM-controlled robots
Обсудим атаки на LLM-агентов, направленные на манипуляцию их поведением и побуждение к выполнению вредоносных физических действий. Рассмотрим, как слабые места в механизмах выравнивания моделей позволяют злоумышленникам изменять поведение LLM превращая их в потенциально опасные системы
Статьи:
1. BadRobot: Jailbreaking Embodied LLMs in the Physical World
2. Jailbreaking LLM-Controlled Robots
3. A Mechanistic Understanding of Alignment Algorithms: A Case Study on DPO and Toxicity
4. Stealth edits to large language models
🍿 Ссылка на подключение
Подписаться⤵️
Embodied AI Reading Club
Эллина Алёшина расскажет про
Attacks on LLM-controlled robots
Обсудим атаки на LLM-агентов, направленные на манипуляцию их поведением и побуждение к выполнению вредоносных физических действий. Рассмотрим, как слабые места в механизмах выравнивания моделей позволяют злоумышленникам изменять поведение LLM превращая их в потенциально опасные системы
Статьи:
1. BadRobot: Jailbreaking Embodied LLMs in the Physical World
2. Jailbreaking LLM-Controlled Robots
3. A Mechanistic Understanding of Alignment Algorithms: A Case Study on DPO and Toxicity
4. Stealth edits to large language models
Подписаться
Embodied AI Reading Club
Please open Telegram to view this post
VIEW IN TELEGRAM
❤8🔥2👏1
Всем привет!🔥
📆 Завтра (14 марта) в 16:00
Даниил Зелезецкий расскажет про
Применение техники дистилляции для эффективного трансфера знаний от трансформерных архитектур к более простым моделям
Обсудим подход Actor-Learner Distillation (ALD), позволяющий качественно обучать легковесные рекуррентные модели путём дистилляции знаний от больших трансформеров. Рассмотрим результативность этого метода на POMPD средах, а также обсудим практические преимущества этого подхода в задачах робототехники
Статьи:
1. Efficient Transformers in Reinforcement Learning Using Actor-Learner Distillation
🍿 Ссылка на подключение
Подписаться⤵️
Embodied AI Reading Club
Даниил Зелезецкий расскажет про
Применение техники дистилляции для эффективного трансфера знаний от трансформерных архитектур к более простым моделям
Обсудим подход Actor-Learner Distillation (ALD), позволяющий качественно обучать легковесные рекуррентные модели путём дистилляции знаний от больших трансформеров. Рассмотрим результативность этого метода на POMPD средах, а также обсудим практические преимущества этого подхода в задачах робототехники
Статьи:
1. Efficient Transformers in Reinforcement Learning Using Actor-Learner Distillation
Подписаться
Embodied AI Reading Club
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥7
Всем привет!🔥
📆 Сегодня (21 марта) в 16:00
Татьяна Земскова и Алексей Староверов расскажут про
Дообучение VLA с помощью обучения с подкреплением
В основе VLA (Vision-Language-Action) модели обычно лежит LLM/LVLM, которая дообучается на заранее собранных наборах данных с помощью обучения с учителем. Дальнейшее дообучение VLA в среде с помощью обучения с подкреплением представляет интерес, т.к. позволило бы повысить устойчивость модели к новым средам. На встрече обсудим, какие особенности имеют VLA при дообучении в среде с помощью RL и рассмотрим методы iRe-VLA и PA-RL, позволяющие повысить устойчивость обучения с подкреплением в среде для VLA
Статьи:
1. Improving Vision-Language-Action Model with Online Reinforcement Learning
2. Policy Agnostic RL: Offline RL and Online RL Fine-Tuning of Any Class and Backbone
🍿 Ссылка на подключение
Подписаться⤵️
Embodied AI Reading Club
Татьяна Земскова и Алексей Староверов расскажут про
Дообучение VLA с помощью обучения с подкреплением
В основе VLA (Vision-Language-Action) модели обычно лежит LLM/LVLM, которая дообучается на заранее собранных наборах данных с помощью обучения с учителем. Дальнейшее дообучение VLA в среде с помощью обучения с подкреплением представляет интерес, т.к. позволило бы повысить устойчивость модели к новым средам. На встрече обсудим, какие особенности имеют VLA при дообучении в среде с помощью RL и рассмотрим методы iRe-VLA и PA-RL, позволяющие повысить устойчивость обучения с подкреплением в среде для VLA
Статьи:
1. Improving Vision-Language-Action Model with Online Reinforcement Learning
2. Policy Agnostic RL: Offline RL and Online RL Fine-Tuning of Any Class and Backbone
Подписаться
Embodied AI Reading Club
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥12👍2🐳2
Всем привет!🔥
📆 Сегодня (11 апреля) в 16:00
Никита Качаев расскажет про
Трансформерные модели для роботизированной 3D манипуляции
На текущий момент ключевыми направлениями исследований в данной области являются многозадачность, обобщение на ранее не встречающиеся сценарии и точная манипуляция. Помимо этого, в последнее время набирает популярность тема памяти в задачах робототехники. В ряде недавно вышедших работ были представлены гибридные трансформерные модели PerAct, RVT-2, ARP+ и SAM2Act, которые благодаря использованию продвинутых perception модулей и трансформерных архитектур способны эффективно решать многие сложные задачи. В докладе основной фокус будет сделан на работе [1]
Статьи:
1. SAM2Act: Integrating Visual Foundation Model with A Memory Architecture for Robotic Manipulation
2. RVT-2: Learning Precise Manipulation from Few Demonstrations
3. SAM-E: Leveraging Visual Foundation Model with Sequence Imitation for Embodied Manipulation
4. Autoregressive Action Sequence Learning for Robotic Manipulation
5. SAM 2: Segment Anything in Images and Videos
🍿 Ссылка на подключение
Подписаться⤵️
Embodied AI Reading Club
Никита Качаев расскажет про
Трансформерные модели для роботизированной 3D манипуляции
На текущий момент ключевыми направлениями исследований в данной области являются многозадачность, обобщение на ранее не встречающиеся сценарии и точная манипуляция. Помимо этого, в последнее время набирает популярность тема памяти в задачах робототехники. В ряде недавно вышедших работ были представлены гибридные трансформерные модели PerAct, RVT-2, ARP+ и SAM2Act, которые благодаря использованию продвинутых perception модулей и трансформерных архитектур способны эффективно решать многие сложные задачи. В докладе основной фокус будет сделан на работе [1]
Статьи:
1. SAM2Act: Integrating Visual Foundation Model with A Memory Architecture for Robotic Manipulation
2. RVT-2: Learning Precise Manipulation from Few Demonstrations
3. SAM-E: Leveraging Visual Foundation Model with Sequence Imitation for Embodied Manipulation
4. Autoregressive Action Sequence Learning for Robotic Manipulation
5. SAM 2: Segment Anything in Images and Videos
Подписаться
Embodied AI Reading Club
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥10👏2🫡2🤡1🐳1
Всем привет!🔥
📆 Сегодня (18 апреля) в 16:00
Данил Григорьев расскажет про
VLA: коррекция ошибок и усиление через обучение с подкреплением
В последнее время активно развиваются Vision-Language-Action модели (VLA) для роботизированной манипуляции. Основные задачи: обработка ошибок, адаптация к новым сценариям и оптимизация производительности. Работы [1-4] предлагают новые подходы к решению этих проблем. SC-VLA [1] использует двухсистемную архитектуру с механизмом самокоррекции. RoboDexVLM [2] расширяет возможности VLA для ловкой манипуляции с долгосрочным планированием. LIV [3] объединяет обучение представлениям и функций вознаграждения из видео без действий. RPD [4] применяет дистилляцию стратегий с RL для преобразования обобщенных VLA в высокопроизводительные экспертные модели. Эти методы показывают, как сочетание коррекции ошибок и обучения с подкреплением улучшает возможности VLA моделей
Статьи:
1. A Self-Correcting Vision-Language-Action Model for Fast and Slow System Manipulation
2. RoboDexVLM: Visual Language Model-Enabled Task Planning and Motion Control for Dexterous Robot Manipulation
3. LIV: Language-Image Representations and Rewards for Robotic Control
4. Refined Policy Distillation: From VLA Generalists to RL Experts
🍿 Ссылка на подключение
Подписаться⤵️
Embodied AI Reading Club
Данил Григорьев расскажет про
VLA: коррекция ошибок и усиление через обучение с подкреплением
В последнее время активно развиваются Vision-Language-Action модели (VLA) для роботизированной манипуляции. Основные задачи: обработка ошибок, адаптация к новым сценариям и оптимизация производительности. Работы [1-4] предлагают новые подходы к решению этих проблем. SC-VLA [1] использует двухсистемную архитектуру с механизмом самокоррекции. RoboDexVLM [2] расширяет возможности VLA для ловкой манипуляции с долгосрочным планированием. LIV [3] объединяет обучение представлениям и функций вознаграждения из видео без действий. RPD [4] применяет дистилляцию стратегий с RL для преобразования обобщенных VLA в высокопроизводительные экспертные модели. Эти методы показывают, как сочетание коррекции ошибок и обучения с подкреплением улучшает возможности VLA моделей
Статьи:
1. A Self-Correcting Vision-Language-Action Model for Fast and Slow System Manipulation
2. RoboDexVLM: Visual Language Model-Enabled Task Planning and Motion Control for Dexterous Robot Manipulation
3. LIV: Language-Image Representations and Rewards for Robotic Control
4. Refined Policy Distillation: From VLA Generalists to RL Experts
Подписаться
Embodied AI Reading Club
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥7😁2😨1
Всем привет!🔥
📆 Сегодня (23 мая) в 16:00
Егор Черепанов расскажет про
DBGFQN: компактный трансформер с двунаправленной памятью для POMDP
В частично наблюдаемых средах агенту доступна лишь ограниченная информация о состоянии мира, поэтому для принятия решений он должен опираться на память о прошлом. Классические RNN — лёгкие, но плохо запоминают долгосрочные зависимости; трансформеры справляются с этим лучше, однако становятся громоздкими: до 80 % параметров приходится на feed-forward блоки. Недавняя работа DBGFQN [1] показывает, что эти блоки можно вовсе убрать и заменить всего одним слоем двунаправленного GRU после self-attention. Это снижает число параметров на 25 %, ускоряет обучение и существенно повышает качество — вплоть до +80 п.п. успеха в сложных задачах с частичной наблюдаемостью
На встрече обсудим:
⚫️ Почему FFN-блок не обязателен и где он даже вредит
⚫️ Как двунаправленная GRU дополняет контекст на текущем шаге;
⚫️ Практические выводы для роботов и edge-RL: меньше вес — дольше батарея
Статьи:
1. Bi-directional Recurrence Improves Transformer in Partially Observable Markov Decision Processes
🍿 Ссылка на подключение
Подписаться⤵️
Embodied AI Reading Club
Егор Черепанов расскажет про
DBGFQN: компактный трансформер с двунаправленной памятью для POMDP
В частично наблюдаемых средах агенту доступна лишь ограниченная информация о состоянии мира, поэтому для принятия решений он должен опираться на память о прошлом. Классические RNN — лёгкие, но плохо запоминают долгосрочные зависимости; трансформеры справляются с этим лучше, однако становятся громоздкими: до 80 % параметров приходится на feed-forward блоки. Недавняя работа DBGFQN [1] показывает, что эти блоки можно вовсе убрать и заменить всего одним слоем двунаправленного GRU после self-attention. Это снижает число параметров на 25 %, ускоряет обучение и существенно повышает качество — вплоть до +80 п.п. успеха в сложных задачах с частичной наблюдаемостью
На встрече обсудим:
Статьи:
1. Bi-directional Recurrence Improves Transformer in Partially Observable Markov Decision Processes
Подписаться
Embodied AI Reading Club
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥10🥴1
Всем привет!🔥
📆 В эту пятницу (6 июня) в 17:00 Дарья Гиталова расскажет про
Подходы к измерению и контролю неопределённости в planning- и reasoning-сценариях с LLM
Большие языковые модели всё чаще используются для планирования и генерации формальных знаний — от логических доказательств до инструкций для роботов. Однако их вывод сопровождается различными формами неопределённости, которые важно уметь выявлять и контролировать
В докладе рассматриваются современные методы выявления и калибровки неопределённости LLM — от вероятностных контекстно-свободных грамматик (PCFG) до attention-based маргинализации цепочек рассуждений. Обсудим, как грамматические структуры помогают предсказывать провалы в логических задачах, почему роботы «теряются» при расплывчатых референциях в пользовательских инструкциях и как количество примеров влияет на эпистемическую неопределённость в сложных задачах
Статьи:
1. REI-Bench: Can Embodied Agents Understand Vague Human Instructions in Task Planning?
2. Grammars of Formal Uncertainty: When to Trust LLMs in Automated Reasoning Tasks
3. Uncertainty Unveiled: Can Exposure to More In-context Examples Mitigate Uncertainty for Large Language Models?
4. Language Model Uncertainty Quantification with Attention Chain
🍿 Ссылка на подключение
Подписаться⤵️
Embodied AI Reading Club
Подходы к измерению и контролю неопределённости в planning- и reasoning-сценариях с LLM
Большие языковые модели всё чаще используются для планирования и генерации формальных знаний — от логических доказательств до инструкций для роботов. Однако их вывод сопровождается различными формами неопределённости, которые важно уметь выявлять и контролировать
В докладе рассматриваются современные методы выявления и калибровки неопределённости LLM — от вероятностных контекстно-свободных грамматик (PCFG) до attention-based маргинализации цепочек рассуждений. Обсудим, как грамматические структуры помогают предсказывать провалы в логических задачах, почему роботы «теряются» при расплывчатых референциях в пользовательских инструкциях и как количество примеров влияет на эпистемическую неопределённость в сложных задачах
Статьи:
1. REI-Bench: Can Embodied Agents Understand Vague Human Instructions in Task Planning?
2. Grammars of Formal Uncertainty: When to Trust LLMs in Automated Reasoning Tasks
3. Uncertainty Unveiled: Can Exposure to More In-context Examples Mitigate Uncertainty for Large Language Models?
4. Language Model Uncertainty Quantification with Attention Chain
Подписаться
Embodied AI Reading Club
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8🔥6
Всем привет!🔥
📆 В эту пятницу (4 июля) в 17:00 Алиса Петрова расскажет про
Как научить LLM задавать уточняющие вопросы и работать с неоднозначными инструкциями?
Современные LLM всё чаще используются в диалоговых агентах и инструментах автоматизации, но их работа часто страдает из-за неясных или двусмысленных запросов. Как научить модели распознавать неопределённость и просить уточнения? Какие типы неоднозначностей мешают им чаще всего? И как самоисправление помогает в использовании инструментов?
В докладе разберём ключевые подходы к генерации уточняющих вопросов — от предсказания будущих реплик в диалоге до классификации типов неоднозначностей. Обсудим, почему LLM часто молчат вместо того, чтобы переспросить, как моделировать контекст для лучшего уточнения и какие методы self-correction улучшают работу с инструментами
Статьи:
1. Learning to Ask: When LLM Agents Meet Unclear Instruction
2. Modeling Future Conversation Turns to Teach LLMs to Ask Clarifying Questions
3. Clarifying Ambiguities: on the Role of Ambiguity Types in Prompting Methods for Clarification Generation
4. AskToAct: Enhancing LLMs Tool Use via Self-Correcting Clarification
🍿 Ссылка на подключение
Подписаться⤵️
Embodied AI Reading Club
Как научить LLM задавать уточняющие вопросы и работать с неоднозначными инструкциями?
Современные LLM всё чаще используются в диалоговых агентах и инструментах автоматизации, но их работа часто страдает из-за неясных или двусмысленных запросов. Как научить модели распознавать неопределённость и просить уточнения? Какие типы неоднозначностей мешают им чаще всего? И как самоисправление помогает в использовании инструментов?
В докладе разберём ключевые подходы к генерации уточняющих вопросов — от предсказания будущих реплик в диалоге до классификации типов неоднозначностей. Обсудим, почему LLM часто молчат вместо того, чтобы переспросить, как моделировать контекст для лучшего уточнения и какие методы self-correction улучшают работу с инструментами
Статьи:
1. Learning to Ask: When LLM Agents Meet Unclear Instruction
2. Modeling Future Conversation Turns to Teach LLMs to Ask Clarifying Questions
3. Clarifying Ambiguities: on the Role of Ambiguity Types in Prompting Methods for Clarification Generation
4. AskToAct: Enhancing LLMs Tool Use via Self-Correcting Clarification
Подписаться
Embodied AI Reading Club
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6🔥3
Всем привет!🔥
📆 Сегодня (8 августа) в 17:00 Даниил Казачков расскажет про то
Как ускорить мультимодальные модели без потери качества (эффективное сокращение визуальных токенов)
Современные мультимодальные модели способны хорошо обрабатывать тексты, изображения и видео. Но за эту универсальность приходится платить: за счет большего числа токенов от фото-видео данных, растет необходимость в больших вычислительных ресурсах, падает скорость инференса. Можно ли уменьшить количество визуальных токенов, не жертвуя точностью?
В докладе разберём ключевые подходы к сжатию визуальной информации в LLM-пайплайне: от удаления малозначимых токенов до их кластеризации и отбора максимально разнообразного подмножества. Обсудим, как решается задача отбора токенов без обучения и почему классические метрики важности не работают в эгоцентричных видео. Покажем, как архитектуры вроде PACT, EgoPrune, DivPrune и HiPrune делают визуально-языковые модели быстрее и легче, сохраняя при этом высокую точность на десятках датасетов
Статьи:
1. DivPrune: Diversity-based Visual Token Pruning for Large Multimodal Models
2. PACT: Pruning and Clustering-Based Token Reduction for Faster Visual Language Models
3. EgoPrune: Efficient Token Pruning for Egomotion Video Reasoning in Embodied Agent
4. HiPrune: Training-Free Visual Token Pruning via Hierarchical Attention in Vision-Language Models
🍿 Ссылка на подключение
Подписаться⤵️
Embodied AI Reading Club
Как ускорить мультимодальные модели без потери качества (эффективное сокращение визуальных токенов)
Современные мультимодальные модели способны хорошо обрабатывать тексты, изображения и видео. Но за эту универсальность приходится платить: за счет большего числа токенов от фото-видео данных, растет необходимость в больших вычислительных ресурсах, падает скорость инференса. Можно ли уменьшить количество визуальных токенов, не жертвуя точностью?
В докладе разберём ключевые подходы к сжатию визуальной информации в LLM-пайплайне: от удаления малозначимых токенов до их кластеризации и отбора максимально разнообразного подмножества. Обсудим, как решается задача отбора токенов без обучения и почему классические метрики важности не работают в эгоцентричных видео. Покажем, как архитектуры вроде PACT, EgoPrune, DivPrune и HiPrune делают визуально-языковые модели быстрее и легче, сохраняя при этом высокую точность на десятках датасетов
Статьи:
1. DivPrune: Diversity-based Visual Token Pruning for Large Multimodal Models
2. PACT: Pruning and Clustering-Based Token Reduction for Faster Visual Language Models
3. EgoPrune: Efficient Token Pruning for Egomotion Video Reasoning in Embodied Agent
4. HiPrune: Training-Free Visual Token Pruning via Hierarchical Attention in Vision-Language Models
Подписаться
Embodied AI Reading Club
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥9❤1