В операционных системах на базе Unix и Linux существует разделение между двумя важными областями памяти: пространством пользователя (user space) и пространством ядра (kernel space). Это разделение важно для обеспечения стабильности и безопасности системы.
Пространство ядра - это область памяти, в которой работает ядро операционной системы и его расширения, включая драйверы устройств. Ядро имеет полный доступ к аппаратным ресурсам системы и может выполнять привилегированные операции.
Ядро имеет прямой доступ к памяти, процессору, устройствам ввода-вывода и другим аппаратным компонентам.
Код, выполняемый в пространстве ядра, работает в привилегированном режиме процессора, что позволяет ему выполнять критически важные и потенциально опасные операции.
Ядро управляет ресурсами системы, такими как память, процессорное время, файловые системы и сетевые соединения.
Ядро обрабатывает системные вызовы от приложений, которые выполняются в пространстве пользователя. Эти вызовы включают операции ввода-вывода, управление памятью, управление процессами и другие.
Пространство пользователя - это область памяти, в которой выполняются пользовательские приложения и процессы. Это пространство изолировано от пространства ядра для обеспечения безопасности и стабильности системы.
Приложения в пространстве пользователя не имеют прямого доступа к аппаратным ресурсам. Все обращения к аппаратуре происходят через системные вызовы, которые передаются ядру.
Код, выполняемый в пространстве пользователя, работает в непривилегированном режиме процессора, что ограничивает его возможности и предотвращает выполнение опасных операций.
Процессы в пространстве пользователя изолированы друг от друга и от пространства ядра. Это предотвращает одну программу от вмешательства в работу другой и защищает ядро от потенциально вредоносных действий.
Взаимодействие между пространством пользователя и ядра происходит через системные вызовы. Когда приложение в пространстве пользователя хочет выполнить операцию, требующую привилегий ядра (например, чтение файла или создание процесса), оно выполняет системный вызов. Ядро обрабатывает этот вызов и возвращает результат в пространство пользователя.
Примером системного вызова является функция
read()
в языке программирования C, которая позволяет читать данные из файла. Тут open()
, read()
, и close()
являются системными вызовами, которые передают управление от пространства пользователя к пространству ядра для выполнения операций с файлами.#include <unistd.h>
#include <fcntl.h>
int main() {
int fd = open("example.txt", O_RDONLY);
if (fd == -1) {
// Ошибка при открытии файла
return 1;
}
char buffer[128];
ssize_t bytesRead = read(fd, buffer, sizeof(buffer));
if (bytesRead == -1) {
// Ошибка при чтении файла
return 1;
}
// Обработка данных
close(fd);
return 0;
}
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥8👍5
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6🔥3
Централизованное управление и мониторинг состояния сертификатов на конечных точках (эндпойнтах) критически важно для обеспечения безопасности и соблюдения регуляторных требований. Для этой цели можно использовать различные инструменты и платформы, которые обеспечивают централизованное обновление, мониторинг и управление сертификатами.
Это мощное средство для управления секретами и сертификатами. Оно поддерживает централизованное управление сертификатами и автоматическое обновление.
Функции:
Хранение и управление сертификатами.
Автоматическое обновление и ротация сертификатов.
API для интеграции с другими системами.
Управление доступом на основе политики.
Это клиент для автоматического получения и обновления сертификатов от Let's Encrypt, бесплатного авторитета сертификации.
Функции:
Автоматическое получение и обновление SSL/TLS сертификатов.
Интеграция с веб-серверами (например, Apache, Nginx).
Скрипты и автоматизация для простоты управления.
Это платформа для защиты машинных идентификаторов, которая обеспечивает централизованное управление сертификатами.
Функции:
Централизованное управление жизненным циклом сертификатов.
Автоматическое обновление и ротация сертификатов.
Мониторинг состояния сертификатов и оповещения о проблемах.
Интеграция с различными облачными провайдерами и DevOps инструментами.
Позволяет легко управлять сертификатами в облачной инфраструктуре AWS.
Функции:
Автоматическое обновление сертификатов.
Простая интеграция с AWS сервисами (например, Elastic Load Balancing, CloudFront).
Централизованное управление сертификатами в AWS.
Azure Key Vault предоставляет возможности для централизованного управления сертификатами в облаке Microsoft Azure.
Функции:
Хранение и управление сертификатами.
Автоматическое обновление сертификатов.
Интеграция с другими сервисами Azure.
Управление доступом на основе ролей (RBAC).
Google Cloud Certificate Manager помогает управлять сертификатами в инфраструктуре Google Cloud Platform.
Функции:
Управление и обновление сертификатов.
Интеграция с Load Balancers и другими сервисами GCP.
Мониторинг и оповещения о состоянии сертификатов.
sudo apt-get update
sudo apt-get install certbot python3-certbot-nginx
sudo certbot --nginx -d example.com -d www.example.com
sudo crontab -e
0 0 * * * /usr/bin/certbot renew --quiet --no-self-upgrade
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍10
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6
Переменные могут иметь значения по умолчанию, определенные в файлах конфигурации Terraform (
.tf
файлы). variable "example" {
description = "An example variable"
type = string
default = "default_value"
}
Переменные можно задавать через переменные окружения. Для этого используется префикс
TF_VAR_
перед именем переменной. export TF_VAR_example="env_var_value"
Файл
terraform.tfvars
или файлы с расширением .auto.tfvars
автоматически считываются Terraform и применяются при запуске.`terraform.tfvars`
example = "tfvars_value"
`variables.auto.tfvars`
example = "auto_tfvars_value"
Вы можете указать файлы переменных явно с помощью флага
-var-file
при выполнении команд terraform plan
или terraform apply
. terraform apply -var-file="custom.tfvars"
`custom.tfvars`.
example = "custom_tfvars_value"
Вы можете задать переменные непосредственно в командной строке с помощью флага
-var
. terraform apply -var="example=command_line_value"
Допустим, у вас есть следующая переменная в конфигурации Terraform - main.tf
variable "example" {
description = "An example variable"
type = string
default = "default_value"
}
output "example" {
value = var.example
}
Вы можете задать значение этой переменной различными способами, и приоритет будет следующим:
default_value
.export TF_VAR_example="env_var_value"
Значение из
terraform.tfvars
example = "tfvars_value"
Значение из явно указанного файла
terraform apply -var-file="custom.tfvars"
example = "custom_tfvars_value"
Значение из командной строки
terraform apply -var="example=command_line_value"
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4❤1
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👀9🔥4👍2
Команда
git clone
в системе управления версиями Git используется для создания копии удаленного репозитория на локальной машине. При выполнении команды git clone
Git создает локальный репозиторий, содержащий все файлы и историю изменений удаленного репозитория. Это один из самых часто используемых способов начала работы с существующим проектом, хранящимся в удаленном репозитории.Команда
git clone
создает полную копию удаленного репозитория, включая все ветки, коммиты и файлы.На локальной машине создается новый каталог, в котором будет размещен локальный репозиторий. По умолчанию, этот каталог будет иметь то же имя, что и удаленный репозиторий.
После клонирования создается ссылка на удаленный репозиторий с именем
origin
, что позволяет легко получать обновления и отправлять изменения обратно в удаленный репозиторий.git clone <repository-url> [<directory>]
URL удаленного репозитория, который нужно клонировать. Это может быть URL репозитория на GitHub, GitLab или любом другом Git-сервере.
Опциональный параметр, указывающий имя каталога, в который будет клонирован репозиторий. Если не указано, будет создан каталог с именем репозитория.
Этот пример клонирует репозиторий
repository
пользователя username
из GitHub в каталог с именем repository
.git clone https://github.com/username/repository.git
Этот пример использует SSH для клонирования репозитория.
git clone [email protected]:username/repository.git
Этот пример клонирует репозиторий в каталог
my_directory
вместо каталога по умолчанию.git clone https://github.com/username/repository.git my_directory
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍10
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍9
Команда
git remote
в системе управления версиями Git используется для управления удаленными репозиториями, связанными с локальным репозиторием. Удаленные репозитории представляют собой версии проекта, которые находятся на сервере и могут быть доступны для совместной работы. Команда git remote
позволяет добавлять, удалять и просматривать удаленные репозитории, а также управлять их настройками.Команда
git remote
без аргументов выводит список всех удаленных репозиториев, настроенных для текущего локального репозитория. Команда git remote -v
выводит список удаленных репозиториев вместе с их URL.Команда
git remote add <name> <url>
добавляет новый удаленный репозиторий с указанным именем и URL.Команда
git remote remove <name>
удаляет указанный удаленный репозиторий из списка.Команда
git remote rename <old-name> <new-name>
переименовывает существующий удаленный репозиторий.Команда
git remote set-url <name> <newurl>
изменяет URL для указанного удаленного репозитория.Список имен удаленных репозиториев
git remote
Список имен и URL удаленных репозиториев
git remote -v
git remote add origin https://github.com/username/repository.git
git remote remove origin
git remote rename origin new-origin
git remote set-url origin https://github.com/username/new-repository-url.git
git remote add upstream https://github.com/anotheruser/another-repository.git
git remote -v
Вывод
origin https://github.com/username/repository.git (fetch)
origin https://github.com/username/repository.git (push)
upstream https://github.com/anotheruser/another-repository.git (fetch)
upstream https://github.com/anotheruser/another-repository.git (push)
В этом примере удаленный репозиторий
origin
переименовывается в old-origin
.git remote rename origin old-origin
Этот пример изменяет URL удаленного репозитория
origin
.git remote set-url origin [email protected]:username/new-repository.git
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥7❤1
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5🔥2
Это открытая база данных в памяти, работающая по принципу ключ-значение. Она широко используется благодаря своим уникальным возможностям и производительности.
Быстродействие: Redis хранит данные в оперативной памяти, что обеспечивает очень низкую задержку при доступе к данным. Операции чтения и записи могут выполняться за миллисекунды.
Поддержка миллионов запросов в секунду: Благодаря своему дизайну и хранению данных в памяти, Redis может обрабатывать миллионы запросов в секунду на мощном оборудовании.
Простота использования: Redis поддерживает простую модель данных ключ-значение, что делает его легким в освоении и использовании.
Разнообразие типов данных: Помимо стандартных строк, Redis поддерживает такие типы данных, как списки, множества, упорядоченные множества, хеши, битовые карты и гиперлоги, что позволяет решать широкий спектр задач.
Публикация/подписка (Pub/Sub): Redis поддерживает механизм публикации/подписки, что позволяет использовать его для создания систем обмена сообщениями в реальном времени.
Транзакции: Redis поддерживает атомарные операции через механизм транзакций, что позволяет группировать несколько команд в одну транзакцию.
Lua-скрипты: Возможность выполнения скриптов на языке Lua непосредственно на сервере позволяет оптимизировать выполнение сложных операций.
Репликация: Redis поддерживает асинхронную мастеровую репликацию, что позволяет создавать отказоустойчивые и высокодоступные конфигурации.
Сентинел (Sentinel): Redis Sentinel обеспечивает автоматическое обнаружение сбоев и автоматическое переключение на резервные узлы, что повышает надежность системы.
Кластеризация: Redis Cluster позволяет распределять данные по нескольким узлам, обеспечивая масштабируемость и высокую доступность.
Гибкость настройки: Redis предоставляет множество опций для настройки, что позволяет оптимизировать его под конкретные рабочие нагрузки.
Масштабируемость: Возможность горизонтального масштабирования через Redis Cluster делает его подходящим для использования в крупных распределенных системах.
Снапшоты и журналы изменений (AOF): Redis поддерживает создание снапшотов (RDB) и журналов изменений (AOF) для обеспечения долговременного хранения данных и восстановления после сбоев.
Персистентность: Эти механизмы позволяют сохранять данные на диск, что обеспечивает долговременное хранение и восстановление данных после перезапуска.
Открытый исходный код: Redis является проектом с открытым исходным кодом, что позволяет сообществу активно участвовать в его развитии и улучшении.
Поддержка и документация: Широкая поддержка и обширная документация делают Redis доступным для использования и внедрения в различных проектах.
Быстрое кэширование данных для ускорения доступа и уменьшения нагрузки на базу данных.
Хранение данных сеансов пользователей в веб-приложениях.
Использование списков и множества для создания очередей задач и обработки фоновых задач.
Реализация систем реального времени для чатов и уведомлений через механизм Pub/Sub.
Хранение и обработка временных рядов данных для аналитики и мониторинга.
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8🔥1
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍10👾5🤔1
Документно-ориентированная модель: MongoDB использует JSON-подобные документы (BSON) для хранения данных. Это позволяет хранить сложные вложенные структуры и динамические схемы данных, что делает ее более гибкой по сравнению с реляционными базами данных.
Схема-менее: MongoDB не требует предварительно определенной схемы, что позволяет легко вносить изменения в структуру данных без необходимости изменения всей базы данных.
Горизонтальное масштабирование: MongoDB поддерживает шардирование, что позволяет распределять данные по нескольким серверам и обеспечивать масштабируемость по мере роста данных и нагрузки.
Автоматическое управление шардированием: MongoDB автоматически управляет распределением данных и балансировкой нагрузки между шардов.
Высокая скорость операций: MongoDB обеспечивает высокую производительность для операций чтения и записи, что делает ее подходящей для приложений с высокими требованиями к скорости доступа к данным.
Индексы: MongoDB поддерживает создание индексов на любые поля в документах, что значительно ускоряет операции поиска и сортировки.
MongoDB Atlas: Это облачная платформа, предоставляющая полностью управляемую базу данных MongoDB с автоматическим управлением инфраструктурой, мониторингом и безопасностью.
Широкий спектр драйверов: MongoDB поддерживает множество языков программирования и платформ, включая JavaScript, Python, Java, C#, Go и другие.
Агрегации: MongoDB предоставляет мощный фреймворк агрегации, который позволяет выполнять сложные запросы и операции над данными, включая фильтрацию, сортировку, группировку и преобразование данных.
Поддержка MapReduce: MongoDB поддерживает MapReduce для выполнения сложных аналитических задач и обработки больших объемов данных.
Репликация: MongoDB поддерживает репликационные наборы (replica sets), которые обеспечивают высокую доступность и отказоустойчивость данных за счет создания копий данных на нескольких серверах.
Автоматическое переключение (failover): В случае сбоя основного сервера, MongoDB автоматически переключает операции на один из вторичных серверов, что обеспечивает непрерывность работы.
Аутентификация и авторизация: MongoDB предоставляет механизмы для аутентификации пользователей и авторизации доступа к данным, включая поддержку ролей и привилегий.
Шифрование данных: MongoDB поддерживает шифрование данных в состоянии покоя и при передаче, что обеспечивает защиту конфиденциальных данных.
MongoDB идеально подходит для хранения данных пользователей, сеансов, контента и метаданных в динамических веб-приложениях.
Гибкость и масштабируемость MongoDB делают ее подходящей для хранения и анализа данных, собираемых с устройств IoT.
Возможности агрегации и MapReduce позволяют эффективно обрабатывать и анализировать большие объемы данных.
MongoDB может использоваться для хранения и обработки данных пользователей, сообщений, комментариев и взаимодействий в реальном времени.
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥14👍7
Базы данных различаются по нескольким ключевым аспектам, включая модель данных, язык запросов, масштабируемость, схему данных и многие другие характеристики. Вот основные различия между SQL и NoSQL базами данных:
Реляционная модель: SQL базы данных используют реляционную модель, где данные хранятся в таблицах, состоящих из строк и столбцов. Таблицы могут быть связаны друг с другом с помощью ключей (первичных и внешних).
Схема: Строгая схема данных, которая требует определения структуры данных (таблиц, столбцов и типов данных) перед вставкой данных.
Нереляционные модели: NoSQL базы данных используют различные модели данных, включая документные, графовые, ключ-значение и колоночные модели.
Гибкая схема: NoSQL базы данных часто не требуют предварительного определения схемы, что позволяет легко изменять структуру данных.
Язык SQL: Используют Structured Query Language (SQL) для выполнения операций с базой данных, таких как создание, чтение, обновление и удаление данных (CRUD-операции).
Разнообразные языки запросов: В зависимости от типа NoSQL базы данных, могут использоваться разные языки запросов и API. Например, MongoDB использует запросы на основе JSON, а Cassandra использует CQL (Cassandra Query Language).
Вертикальная масштабируемость: SQL базы данных обычно масштабируются путем увеличения ресурсов (памяти, процессоров) на одном сервере.
Ограниченная горизонтальная масштабируемость: Хотя можно настроить кластеризацию и репликацию, горизонтальная масштабируемость может быть сложной и ограниченной.
Горизонтальная масштабируемость: NoSQL базы данных изначально спроектированы для горизонтального масштабирования, что позволяет распределять данные и нагрузку по множеству серверов.
Легкость масштабирования: Добавление новых узлов в кластер часто происходит без значительных изменений в архитектуре приложения.
ACID-свойства: Поддержка свойств ACID (Atomicity, Consistency, Isolation, Durability), что обеспечивает надежную обработку транзакций и согласованность данных.
BASE-свойства: Поддержка свойств BASE (Basically Available, Soft state, Eventual consistency), что позволяет достичь высокой доступности и производительности, но может допускать временную несогласованность данных.
Традиционные бизнес-приложения: Финансовые системы, CRM-системы, ERP-системы, где важна согласованность данных и транзакционная целостность.
Веб-приложения и социальные сети: Где данные могут быть неструктурированными или полуструктурированными и требуется высокая скорость доступа к данным.
Интернет вещей (IoT): Для хранения больших объемов данных, собираемых с различных устройств.
Аналитика и большие данные: Где требуется быстрое чтение и запись больших объемов данных, часто в реальном времени.
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍16❤1
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍14🔥6
Самым популярным in-memory (в памяти) хранилищем данных для Java является Hazelcast. Это распределенное in-memory хранилище данных, которое обеспечивает высокую доступность, масштабируемость и производительность. Hazelcast часто используется в Java-приложениях для кэширования, управления сеансами, распределенных вычислений и многого другого.
Hazelcast легко интегрируется с Java-приложениями. Библиотека Hazelcast доступна через Maven и Gradle, что делает процесс подключения простым и удобным.
Так как данные хранятся в памяти, доступ к ним происходит очень быстро, что значительно улучшает производительность приложений.
Hazelcast поддерживает горизонтальное масштабирование, что позволяет добавлять новые узлы в кластер без значительных изменений в конфигурации приложения. Это обеспечивает гибкость и возможность обрабатывать увеличивающиеся нагрузки.
Hazelcast предоставляет различные структуры данных, такие как карты (maps), множества (sets), очереди (queues), списки (lists) и другие, которые можно использовать в распределенном режиме.
Hazelcast поддерживает репликацию данных между узлами кластера, что обеспечивает высокую доступность и отказоустойчивость системы.
В Hazelcast можно выполнять распределенные вычисления с использованием MapReduce, входящих задач и прочих механизмов.
<dependency>
<groupId>com.hazelcast</groupId>
<artifactId>hazelcast</artifactId>
<version>4.2.5</version>
</dependency>
import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.HazelcastInstance;
import com.hazelcast.map.IMap;
public class HazelcastExample {
public static void main(String[] args) {
// Создаем экземпляр Hazelcast
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
// Получаем ссылку на распределенную карту
IMap<Integer, String> map = hazelcastInstance.getMap("my-distributed-map");
// Добавляем данные в карту
map.put(1, "value1");
map.put(2, "value2");
// Получаем данные из карты
String value1 = map.get(1);
String value2 = map.get(2);
// Выводим значения
System.out.println("Value for key 1: " + value1);
System.out.println("Value for key 2: " + value2);
// Закрываем экземпляр Hazelcast
hazelcastInstance.shutdown();
}
}
Это распределенная in-memory платформа, которая предоставляет как in-memory хранилище, так и возможности для распределенных вычислений и обработки данных в реальном времени.
Простое и мощное кэширование в памяти, часто используемое для ускорения доступа к часто запрашиваемым данным. Поддерживает интеграцию с Hibernate.
В то время как Redis чаще используется как отдельный сервер для in-memory данных, он также может использоваться в Java-приложениях через клиентские библиотеки, такие как Jedis и Lettuce.
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍13🔥2
Это механизм в Kubernetes, позволяющий пользователям определять свои собственные ресурсы (Custom Resources) и управлять ими так же, как и встроенными ресурсами Kubernetes (например, Pod, Service, Deployment). CRD расширяет API Kubernetes, предоставляя возможность создать пользовательские объекты с уникальными схемами и поведением.
CRD позволяет разработчикам расширять стандартный API Kubernetes, добавляя новые типы ресурсов, специфичные для их приложений или доменов.
Пользователи могут определить схему (структуру) своих пользовательских ресурсов с помощью YAML или JSON. Это включает описание полей, типов данных, обязательных полей и других ограничений.
Для управления состоянием пользовательских ресурсов можно разработать кастомные контроллеры (Custom Controllers), которые будут следить за изменениями в этих ресурсах и выполнять соответствующие действия.
Создаем YAML-файл для определения CRD, который будет описывать пользовательский ресурс типа
MyResource
: apiVersion: apiextensions.k8s.io/v1
kind: CustomResourceDefinition
metadata:
name: myresources.example.com
spec:
group: example.com
versions:
- name: v1
served: true
storage: true
schema:
openAPIV3Schema:
type: object
properties:
spec:
type: object
properties:
field1:
type: string
field2:
type: integer
scope: Namespaced
names:
plural: myresources
singular: myresource
kind: MyResource
shortNames:
- myr
Примените файл CRD, чтобы создать новый тип ресурса в Kubernetes:
kubectl apply -f myresource-crd.yaml
После создания CRD можно создавать объекты пользовательского ресурса:
apiVersion: example.com/v1
kind: MyResource
metadata:
name: my-custom-resource
spec:
field1: "value1"
field2: 42
Примените файл с пользовательским ресурсом:
kubectl apply -f my-custom-resource.yaml
Чтобы управлять состоянием пользовательских ресурсов, необходимо создать контроллер. Контроллеры обычно пишутся на Go с использованием фреймворка
kubebuilder
или operator-sdk
.Установка Kubebuilder. Заполнение логики контроллера в сгенерированных файлах и деплой оператора в кластер.
curl -L -o kubebuilder https://github.com/kubernetes-sigs/kubebuilder/releases/download/vX.Y.Z/kubebuilder_linux_amd64
chmod +x kubebuilder
mv kubebuilder /usr/local/bin/
Создание нового проекта оператора:
kubebuilder init --domain example.com --repo github.com/your-repo/my-operator
kubebuilder create api --group example --version v1 --kind MyResource
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8🔥5