Please open Telegram to view this post
VIEW IN TELEGRAM
😁10❤2
Почему библиотека Pandas получила такое название?
Anonymous Quiz
14%
В честь медведя панды
70%
От слов «panel data»
4%
В честь автора с фамилией Panda
12%
Просто шутка про животное
❤1
🧵 Архитектуры и данные
— The Parallelism Mesh Zoo — схемный разбор стратегий параллелизации в PyTorch и JAX через понятие device mesh. Отличный способ проверить, понимаете ли вы, как работает масштабирование на GPU. Читать
— 3 Questions: Synthetic Data — MIT о плюсах и минусах синтетических данных: от приватности и экономии до ограничений и рисков. Читать
🧠 Новые модели и AI-сервисы
— Google EmbeddingGemma — новая open-модель эмбеддингов для офлайн-работы прямо на ноутбуках и смартфонах. Подробнее
— OpenAI Jobs Platform — AI-платформа для поиска работы и сертификации AI-навыков. Подробнее
— Google NotebookLM — теперь умеет аудио-обзоры в 4 форматах: Deep Dive, Brief, Critique и Debate + более естественные голоса. Подробнее
📚 Лонгриды и статьи
— ML Q & AI. Глава 8. Успех трансформеров
—Очеловечить компьютер: как развивалось машинное обучение в середине XX века
— Интерпретация и оптимизация перцептрона Розенблатта
— Что такое детерминизм и как с ним бороться?
— Когда YOLO не спасает: как один параметр может испортить всё
#свежак
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3👍3
⚡️ Будь как этот гений с картинки — предлагай свои условия работодателю, а не наоборот!
Кто нужен?
Но если вы пока джун — я бы предложил:
- Full-time контракт: 180к/мес после курса + опцион на карьеру в топ-компаниях
- Либо фикс за проект: стань ML-инженером за 39к вместо 44к с промокодом LASTCALL
🔗 Старт 9 сентября
Кто нужен?
Senior ML-Engineer с опытом работы более 6 месяцев в FAANG компаниях. Требование: разработать кросс-платформенное приложение-трекер зарплат с AI-распознаванием вакансий по резюме.
Но если вы пока джун — я бы предложил:
- Full-time контракт: 180к/мес после курса + опцион на карьеру в топ-компаниях
- Либо фикс за проект: стань ML-инженером за 39к вместо 44к с промокодом LASTCALL
🔗 Старт 9 сентября
Forwarded from Библиотека задач по Data Science | тесты, код, задания
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1
Forwarded from Библиотека задач по Data Science | тесты, код, задания
Иногда реально ощущение, что нас держат в Матрице.
Большинство сидит, читает статьи про ML, смотрит ролики «как это работает» — и всё.
❗ Сегодня последний день промокода Lastcall (−5000 ₽).
Уже завтра стартует первый вебинар по Машинному обучению — полный набор для выхода из Матрицы.
Кто готов вырваться из симуляции и ворваться в сезон найма?
👾 — я уже в команде Нео
👍 — хочу красную таблетку
🤔 — пока думаю, но интересно
👉 Забронируй место сейчас
Большинство сидит, читает статьи про ML, смотрит ролики «как это работает» — и всё.
❗ Сегодня последний день промокода Lastcall (−5000 ₽).
Уже завтра стартует первый вебинар по Машинному обучению — полный набор для выхода из Матрицы.
Кто готов вырваться из симуляции и ворваться в сезон найма?
👾 — я уже в команде Нео
👍 — хочу красную таблетку
🤔 — пока думаю, но интересно
👉 Забронируй место сейчас
❤1
🔥 AI и неструктурированные данные: возможности для дата-сайентистов
Google Cloud выпустил практическое руководство по Data Science, где показываются реальные кейсы применения AI для работы с корпоративными данными.
Вот что вы можете делать с такими данными:
▫️ Выявлять причины падения продаж — AI анализирует отзывы клиентов и говорит, какие функции продукта надо улучшить.
▫️ Создать визуальный поиск — клиенты находят товар по картинке, а не по тексту.
▫️ Автоматизировать анализ контрактов — извлекать ключевую информацию из юридических документов за секунды.
▫️ Прогнозировать спрос — точные прогнозы для каждого продукта и магазина, чтобы избежать потерь и перепроизводства.
Это огромная возможность: неструктурированные данные больше не головная боль — это источник инсайтов и новых моделей.
🔗 Ссылка на гайд
🐸 Библиотека дата-сайентиста
#буст
Google Cloud выпустил практическое руководство по Data Science, где показываются реальные кейсы применения AI для работы с корпоративными данными.
Вот что вы можете делать с такими данными:
Это огромная возможность: неструктурированные данные больше не головная боль — это источник инсайтов и новых моделей.
#буст
Please open Telegram to view this post
VIEW IN TELEGRAM
❤6👍1
This media is not supported in your browser
VIEW IN TELEGRAM
Выбор правильной архитектуры под задачу — это половина успеха в AI-проектах. Каждая из них рождена под конкретный тип данных и обрабатывает информацию по-своему:
Фильтры свёртки находят края и паттерны в изображениях, pooling снижает размерность, fully connected слои собирают фичи в прогноз. Отлично подходят для распознавания изображений, медицинских снимков и любых задач со spatial-отношениями.
Обрабатывают данные по шагам, сохраняя скрытое состояние с контекстом. Хорошо работают с текстом, временными рядами, переводами и прогнозами, где важен порядок.
Заменили пошаговую обработку механизмом внимания: модель смотрит на всю последовательность сразу и решает, что важнее. Это быстрее и эффективнее для long-range зависимостей. На трансформерах построены GPT, BERT и большинство современных LLM.
Передают информацию между узлами в графе (message passing), захватывая локальные и глобальные связи. Подходят для анализа соцсетей, молекулярных свойств и рекомендательных систем.
Архитектура выбирается под структуру данных:
А в реальных проектах часто комбинируют несколько: CNN для feature extraction + Transformer для reasoning, или GNN для связей между пользователями + RNN для рекомендаций.
#буст
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2👍1