Forwarded from Библиотека задач по Data Science | тесты, код, задания
Если хочется чувствовать себя уверенно не только в метриках, но и в построении моделей:
— AI-агенты в Data Science
— ML для старта в Data Science
🐸 Библиотека задач по Data Science
— AI-агенты в Data Science
— ML для старта в Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1
🔥 Большое обновление в pandas: Expressions
Pandas исполняется уже 17 лет, и наконец-то в версии 3.0 появляется то, чего ждали многие — выражения (expressions) через
Раньше:
Теперь:
Почему это реально круто:
— Больше никаких непонятных
— Код читается и дебажится проще:
✅ Поддержка
✅ Это первый шаг к полноценной системе выражений в духе Polars.
Пример:
✅ Чище, безопаснее и интуитивнее.
✅ Pandas берёт лучшее у новых библиотек (Polars, Narwhals) и возвращает нас к удобному и современному синтаксису.
🔗 Подробная статья по теме
🐸 Библиотека дата-сайентиста
#свежак
Pandas исполняется уже 17 лет, и наконец-то в версии 3.0 появляется то, чего ждали многие — выражения (expressions) через
pd.col
.Раньше:
df = df.assign(temp_f = lambda x: x['temp_c'] * 9 / 5 + 32)
Теперь:
df = df.assign(temp_f = pd.col('temp_c') * 9 / 5 + 32)
Почему это реально круто:
— Больше никаких непонятных
lambda
, которые ломаются в циклах.— Код читается и дебажится проще:
pd.col('a') + 10 # => (col('a') + 10)
str
, dt
, NumPy ufunc и фильтрации прямо в loc
.Пример:
df.assign(
city_upper = pd.col('city').str.upper(),
log_temp_c = np.log(pd.col('temp_c'))
)
#свежак
Please open Telegram to view this post
VIEW IN TELEGRAM
❤13👍2
Полезная шпаргалка: как выбрать правильное распределение для данных
1️⃣ Начните с гистограммы
— Простая, но мощная визуализация.
— Помогает понять форму данных: колоколообразная (Normal), быстро падающая (Exponential), ровная (Uniform), с несколькими пиками (Mixture).
2️⃣ Протестируйте разные распределения
— Используем библиотеку distfit для подбора распределений.
— Проверяет ~90 типов распределений автоматически:
3️⃣ Визуализируйте подгонку
— Всегда проверяй глазами!
— Используй PDF (распределение) и CDF (кумулятивное распределение):
4️⃣ Не забывайте про нестандартные данные
— Дискретные счётные данные → binomial, Poisson.
— Сложные или многопиковые данные → non-parametric (quantile, percentile).
Пример:
5️⃣ Проверяйте стабильность
— Бутстрэпинг помогает проверить, насколько выбранное распределение устойчиво к случайным выборкам:
🐸 Библиотека дата-сайентиста
#свежак
— Простая, но мощная визуализация.
— Помогает понять форму данных: колоколообразная (Normal), быстро падающая (Exponential), ровная (Uniform), с несколькими пиками (Mixture).
import matplotlib.pyplot as plt
import numpy as np
data = np.random.normal(50, 15, 1000)
plt.hist(data, bins=30, color='skyblue', edgecolor='black', alpha=0.7)
plt.xlabel('Values'); plt.ylabel('Count'); plt.title('Гистограмма данных')
plt.show()
— Используем библиотеку distfit для подбора распределений.
— Проверяет ~90 типов распределений автоматически:
from distfit import distfit
import numpy as np
my_data = np.random.normal(25, 8, 2000)
fitter = distfit(method='parametric')
fitter.fit_transform(my_data)
print("Лучшее распределение:", fitter.model['name'])
print("Параметры:", fitter.model['params'])
— Всегда проверяй глазами!
— Используй PDF (распределение) и CDF (кумулятивное распределение):
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15,6))
fitter.plot(chart='PDF', ax=ax1); ax1.set_title('PDF')
fitter.plot(chart='CDF', ax=ax2); ax2.set_title('CDF')
plt.show()
— Дискретные счётные данные → binomial, Poisson.
— Сложные или многопиковые данные → non-parametric (quantile, percentile).
Пример:
from scipy.stats import binom
count_data = binom(20, 0.3).rvs(1000)
discrete_fitter = distfit(method='discrete')
discrete_fitter.fit_transform(count_data)
discrete_fitter.plot()
— Бутстрэпинг помогает проверить, насколько выбранное распределение устойчиво к случайным выборкам:
fitter.bootstrap(my_data, n_boots=100)
print(fitter.summary[['name','score','bootstrap_score','bootstrap_pass']])
#свежак
Please open Telegram to view this post
VIEW IN TELEGRAM
❤6👍1
Please open Telegram to view this post
VIEW IN TELEGRAM
😁6
Собрана коллекция из 100+ Colab-ноутбуков с пошаговыми гайдами по fine-tuning любых семейств языковых моделей.
Всё в одном месте — запускай, пробуй и адаптируй под свои задачи.
Подходит для:
🔥 экспериментов с разными архитектурами LLM
🔥 быстрого прототипирования
🔥 обучения и изучения техник fine-tuning
Отличный ресурс, чтобы не тратить время на настройку окружения и сразу переходить к практике.
#буст
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8❤5🔥1
🚀 Как запустить Random Forest на GPU и получить ускорение в 40 раз
Оказалось, это реально просто — и даже open-source. Фреймворк Hummingbird компилирует обученные ML-модели в тензорные вычисления.
Что это даёт:
— модель можно гонять на GPU, TPU и других ускорителях,
— при этом сохраняется исходная точность,
— а инференс становится до 40 раз быстрее.
📌 Это особенно полезно, если модель уже обучена, а вам важно её быстро и эффективно задеплоить.
Для обучения на GPU есть альтернатива — RAPIDS CuML.
🐸 Библиотека дата-сайентиста
#буст
Оказалось, это реально просто — и даже open-source. Фреймворк Hummingbird компилирует обученные ML-модели в тензорные вычисления.
Что это даёт:
— модель можно гонять на GPU, TPU и других ускорителях,
— при этом сохраняется исходная точность,
— а инференс становится до 40 раз быстрее.
📌 Это особенно полезно, если модель уже обучена, а вам важно её быстро и эффективно задеплоить.
Для обучения на GPU есть альтернатива — RAPIDS CuML.
#буст
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2👍2👏1
Переворачиваем календарь — а там скидки, которые уже закончились.
Но мы их вернули на последний день 🤔
До 00:00 третьего сентября (цены как до 1 сентября):
▪️ Математика для Data Science — 35.199 ₽ вместо 44.900 ₽
▪️ Алгоритмы и структуры данных — 31.669 ₽ вместо 39.900 ₽
▪️ Основы IT — 14.994 ₽ вместо 19.900 ₽
▪️ Архитектуры и шаблоны — 24.890 ₽ вместо 32.900 ₽
▪️ Python — 24.990 ₽ вместо 32.900 ₽
▪️ ML для Data Science — 34.000 ₽ вместо 44. 000 ₽
▪️ AI-агенты — 49.000 ₽ вместо 59.000 ₽
👉 Хватаем скидки из прошлого
P.S. Машину времени одолжили у дяди Миши
Но мы их вернули на последний день 🤔
До 00:00 третьего сентября (цены как до 1 сентября):
▪️ Математика для Data Science — 35.199 ₽ вместо 44.900 ₽
▪️ Алгоритмы и структуры данных — 31.669 ₽ вместо 39.900 ₽
▪️ Основы IT — 14.994 ₽ вместо 19.900 ₽
▪️ Архитектуры и шаблоны — 24.890 ₽ вместо 32.900 ₽
▪️ Python — 24.990 ₽ вместо 32.900 ₽
▪️ ML для Data Science — 34.000 ₽ вместо 44. 000 ₽
▪️ AI-агенты — 49.000 ₽ вместо 59.000 ₽
👉 Хватаем скидки из прошлого
P.S. Машину времени одолжили у дяди Миши
❤3
This media is not supported in your browser
VIEW IN TELEGRAM
✍️ AI by Hand: рекуррентные нейросети (RNN)
Новое упражнение для практики:
➡️ табличная версия RNN, где можно вводить свои значения, следить за вычислениями и изучать уравнения,
➡️ классическая графическая схема RNN для наглядного сопоставления с матричной записью.
Отличный способ разобрать RNN руками и понять, как они реально работают.
🔗 Упражнение: https://clc.to/t3YQvQ
🐸 Библиотека дата-сайентиста
#буст
Новое упражнение для практики:
Отличный способ разобрать RNN руками и понять, как они реально работают.
🔗 Упражнение: https://clc.to/t3YQvQ
#буст
Please open Telegram to view this post
VIEW IN TELEGRAM
❤5👍2🔥1
😎 Сколько баллов набрали вы?
Голосуйте, какой у вас уровень разработчика:
😁 — 5-12 баллов (стажер)
👍 — 13-25 баллов (джуниор)
⚡️ — 26-40 баллов (джуниор+)
👏 — 41-60 баллов (миддл)
🔥 — 61-80 баллов (миддл+)
🎉 — 81-100 баллов (сеньор)
🤩 — 100+ баллов (тимлид)
Но вот в чем прикол — опытный разработчик набирает баллы не случайными косяками, а осознанными решениями.
👉 Научим, как быстро прокачаться от стажера до сеньора
Голосуйте, какой у вас уровень разработчика:
😁 — 5-12 баллов (стажер)
👍 — 13-25 баллов (джуниор)
⚡️ — 26-40 баллов (джуниор+)
👏 — 41-60 баллов (миддл)
🔥 — 61-80 баллов (миддл+)
🎉 — 81-100 баллов (сеньор)
🤩 — 100+ баллов (тимлид)
Но вот в чем прикол — опытный разработчик набирает баллы не случайными косяками, а осознанными решениями.
👉 Научим, как быстро прокачаться от стажера до сеньора
😁3🤩2👍1
Colour — это open-source пакет для Python, включающий:
#буст
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2👍2🤔1
📊 6 лучших библиотек Python для визуализации
Если вы начинаете работать с визуализацией в Python, выбор может показаться бесконечным: Matplotlib, seaborn, Plotly, Bokeh, Altair, Pygal… Какая библиотека лучше?
Всё зависит от задачи:
➕ Matplotlib — мощная и гибкая, но требует больше кода.
➕ Seaborn — удобна для статистических графиков.
➕ Plotly — интерактивные и красивые графики.
➕ Bokeh — для веб-визуализации.
➕ Altair — декларативный стиль, быстрый старт.
➕ Pygal — SVG-графики для встраивания.
В статье сравниваются плюсы и минусы каждой библиотеки, чтобы вам было проще выбрать подходящую под задачу.
🔗 Ссылка на статью: https://clc.to/nuqZPg
🐸 Библиотека дата-сайентиста
#буст
Если вы начинаете работать с визуализацией в Python, выбор может показаться бесконечным: Matplotlib, seaborn, Plotly, Bokeh, Altair, Pygal… Какая библиотека лучше?
Всё зависит от задачи:
В статье сравниваются плюсы и минусы каждой библиотеки, чтобы вам было проще выбрать подходящую под задачу.
#буст
Please open Telegram to view this post
VIEW IN TELEGRAM
❤5
Большинство датасетов для Vision-Language моделей остаются закрытыми и недоступными для сообщества.
FineVision — огромный мультимодальный датасет:
— 24 млн сэмплов
— 17M изображений
— 89M QA-диалогов
— 10B токенов ответов
— Оценка качества с помощью 32B VLM по 4 метрикам
Для дата-сайентистов это полезно, потому что:
#буст
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2🔥1
🎮 КВЕСТОВАЯ ЛИНИЯ: «Путь Data Scientist'а»
⮕ Твой стартовый набор искателя данных:
⚡️ АКТИВЕН ВРЕМЕННЫЙ БАФФ: «Щедрость наставника»
Эффект: –30% к цене полного набора ДСника
Было: 121.800 ₽ → Стало: 84.900 ₽
☞ Что ждет тебя в этом квесте
📎 Забрать бафф
Рассрочки: 3 мес | 6 мес | 12 мес
⮕ Твой стартовый набор искателя данных:
Python — твое легендарное оружие (урон по багам +∞)
Математика — твой базовый интеллект (влияет на понимание алгоритмов)
Машинное обучение — твое дерево навыков (открывает новые способности)
⚡️ АКТИВЕН ВРЕМЕННЫЙ БАФФ: «Щедрость наставника»
Эффект: –30% к цене полного набора ДСника
Было: 121.800 ₽ → Стало: 84.900 ₽
☞ Что ждет тебя в этом квесте
— Получение артефактов: портфолио проектов и сертификаты— Прокачка от новичка до Senior Data Scientist— Босс-файты с реальными задачами из индустрии— Доступ к гильдии единомышленников
📎 Забрать бафф
Рассрочки: 3 мес | 6 мес | 12 мес
Please open Telegram to view this post
VIEW IN TELEGRAM
😁10❤2
Почему библиотека Pandas получила такое название?
Anonymous Quiz
14%
В честь медведя панды
70%
От слов «panel data»
4%
В честь автора с фамилией Panda
12%
Просто шутка про животное
❤1
🧵 Архитектуры и данные
— The Parallelism Mesh Zoo — схемный разбор стратегий параллелизации в PyTorch и JAX через понятие device mesh. Отличный способ проверить, понимаете ли вы, как работает масштабирование на GPU. Читать
— 3 Questions: Synthetic Data — MIT о плюсах и минусах синтетических данных: от приватности и экономии до ограничений и рисков. Читать
🧠 Новые модели и AI-сервисы
— Google EmbeddingGemma — новая open-модель эмбеддингов для офлайн-работы прямо на ноутбуках и смартфонах. Подробнее
— OpenAI Jobs Platform — AI-платформа для поиска работы и сертификации AI-навыков. Подробнее
— Google NotebookLM — теперь умеет аудио-обзоры в 4 форматах: Deep Dive, Brief, Critique и Debate + более естественные голоса. Подробнее
📚 Лонгриды и статьи
— ML Q & AI. Глава 8. Успех трансформеров
—Очеловечить компьютер: как развивалось машинное обучение в середине XX века
— Интерпретация и оптимизация перцептрона Розенблатта
— Что такое детерминизм и как с ним бороться?
— Когда YOLO не спасает: как один параметр может испортить всё
#свежак
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3👍3
⚡️ Будь как этот гений с картинки — предлагай свои условия работодателю, а не наоборот!
Кто нужен?
Но если вы пока джун — я бы предложил:
- Full-time контракт: 180к/мес после курса + опцион на карьеру в топ-компаниях
- Либо фикс за проект: стань ML-инженером за 39к вместо 44к с промокодом LASTCALL
🔗 Старт 9 сентября
Кто нужен?
Senior ML-Engineer с опытом работы более 6 месяцев в FAANG компаниях. Требование: разработать кросс-платформенное приложение-трекер зарплат с AI-распознаванием вакансий по резюме.
Но если вы пока джун — я бы предложил:
- Full-time контракт: 180к/мес после курса + опцион на карьеру в топ-компаниях
- Либо фикс за проект: стань ML-инженером за 39к вместо 44к с промокодом LASTCALL
🔗 Старт 9 сентября
Forwarded from Библиотека задач по Data Science | тесты, код, задания
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1
Forwarded from Библиотека задач по Data Science | тесты, код, задания