Обучение прогнозированию без оглядки в будущее: мировые модели без прямого предсказания
"Прогнозное моделирование может возникнуть как побочный эффект оптимизации при правильных обстоятельствах".
Отличная работа Дэниела Фримана, Люка Меца , Дэвида Ха на примере анимации модели среды CartPole.
Картпол (известный также как CartPole или Перевернутый маятник) — это модель среды, в которой можно управлять тележкой. По ее центру прикреплен маятник с центром тяжести над точкой поворота. Цель состоит в том, чтобы сохранить равновесие карпола, прикладывая соответствующие усилия к точке поворота.
Чтобы достичь желаемого поведения агента, который учится на своих ошибках и улучшает свою производительность, используется концепция обучения с подкреплением. Это общая концепция, которую можно просто описать с помощью агента, который выполняет действия в среде, чтобы максимизировать его совокупное вознаграждение. Основная идея очень реалистична, поскольку, подобно людям в реальной жизни, агенты в алгоритмах концепции поощряются наказанием за плохие действия и вознаграждением за хорошие.
В 2013 году Google DeepMind опубликовал свою знаменитую статью «Playing Atari with Deep Reinforcement Learning» , в которой представил новый алгоритм Deep Q Network (сокращенно DQN). Он продемонстрировал, как агент ИИ может научиться играть в игры, просто наблюдая за экраном без какого-либо предварительная информация об этих играх. Результат оказался довольно впечатляющим. Эта статья и открыла эпоху так называемого «глубокого обучения с подкреплением», сочетания глубокого обучения и обучения с подкреплением.
"Прогнозное моделирование может возникнуть как побочный эффект оптимизации при правильных обстоятельствах".
Отличная работа Дэниела Фримана, Люка Меца , Дэвида Ха на примере анимации модели среды CartPole.
Картпол (известный также как CartPole или Перевернутый маятник) — это модель среды, в которой можно управлять тележкой. По ее центру прикреплен маятник с центром тяжести над точкой поворота. Цель состоит в том, чтобы сохранить равновесие карпола, прикладывая соответствующие усилия к точке поворота.
Чтобы достичь желаемого поведения агента, который учится на своих ошибках и улучшает свою производительность, используется концепция обучения с подкреплением. Это общая концепция, которую можно просто описать с помощью агента, который выполняет действия в среде, чтобы максимизировать его совокупное вознаграждение. Основная идея очень реалистична, поскольку, подобно людям в реальной жизни, агенты в алгоритмах концепции поощряются наказанием за плохие действия и вознаграждением за хорошие.
В 2013 году Google DeepMind опубликовал свою знаменитую статью «Playing Atari with Deep Reinforcement Learning» , в которой представил новый алгоритм Deep Q Network (сокращенно DQN). Он продемонстрировал, как агент ИИ может научиться играть в игры, просто наблюдая за экраном без какого-либо предварительная информация об этих играх. Результат оказался довольно впечатляющим. Эта статья и открыла эпоху так называемого «глубокого обучения с подкреплением», сочетания глубокого обучения и обучения с подкреплением.
animation (2).gif
26 MB
Потрясающая генерация местности через обучение глубоким нейронным сетям!😱
"Вдохновленные этой новой геометрической проницательностью, мы также предлагаем новый метод ансамблирования под названием «Fast Geometric Ensembling» (FGE)", — в статье Тимура Гарипова, Павла Измайлова и др.
"Вдохновленные этой новой геометрической проницательностью, мы также предлагаем новый метод ансамблирования под названием «Fast Geometric Ensembling» (FGE)", — в статье Тимура Гарипова, Павла Измайлова и др.
Глубокое обучение на Python
Автор: Франсуа Шолле
Книга содержит информацию по основам глубокого обучения. Прочитав эту книгу, вы будете четко понимать, что такое глубокое обучение, когда оно применимо и какие ограничения имеет. Вы познакомитесь со стандартным процессом интерпретации и решения задач машинного обучения и узнаете, как бороться с часто встречающимися проблемами.
#статьядня
Скачать книгу:
https://prglb.ru/1e246
Автор: Франсуа Шолле
Книга содержит информацию по основам глубокого обучения. Прочитав эту книгу, вы будете четко понимать, что такое глубокое обучение, когда оно применимо и какие ограничения имеет. Вы познакомитесь со стандартным процессом интерпретации и решения задач машинного обучения и узнаете, как бороться с часто встречающимися проблемами.
#статьядня
Скачать книгу:
https://prglb.ru/1e246
This media is not supported in your browser
VIEW IN TELEGRAM
Танцы под музыку: в этой статье рассказывается о создании танца из музыки через декомпозицию в рамках обучения композиции. На этапе анализа танец разбиается на серию базовых танцевальных единиц, с помощью которых модель учится двигаться. На этапе синтеза модель изучает, как составлять танец, организовывая множество основных танцевальных движений плавно в соответствии с входной музыкой. Pytorch-реализация для танца генерации. :)
«Это было в Симпсонах!» За 30 лет Симпсоны показали, кажется, все сюжетные повороты, которые только можно представить. Или нет?
Создайте свой сценарий к эпизоду культового сериала с помощью машинного обучения на бесплатном марафоне от Нетологии по Data Science и ИИ!
Что вас ждёт:
• вы поймёте, что представляет из себя работа аналитика;
• узнаете, как искать нужные данные;
• ознакомитесь с основными профессиональными инструментами – SQL, Python и Machine Learning;
• классно проведёте время 😉
Регистрируйтесь по ссылке: https://netolo.gy/e6G
Создайте свой сценарий к эпизоду культового сериала с помощью машинного обучения на бесплатном марафоне от Нетологии по Data Science и ИИ!
Что вас ждёт:
• вы поймёте, что представляет из себя работа аналитика;
• узнаете, как искать нужные данные;
• ознакомитесь с основными профессиональными инструментами – SQL, Python и Machine Learning;
• классно проведёте время 😉
Регистрируйтесь по ссылке: https://netolo.gy/e6G
animation.gif
12.7 MB
Робот, оснащенный искусственными аналогами ножек и игл морских ежей, был создан гарвардскими инженерами и представлен на конференции IROS 2019. Статья, в которой он описан, опубликована в IEEE Robotics and Automation Letters.
Несколько открытых инструментов для анализа данных
KNIME Analytics Platform — ведущий open source фреймворк для инноваций, зависящих от данных. Он поможет вам раскрыть скрытый потенциал ваших данных, найти новые свежие идеи, или предсказать будущие тенденции. KNIME Analytics Platform содержит в себе более 1000 модулей, сотни готовых к запуску примеров, широкий спектр интегрированных инструментов и широкий выбор современных доступных алгоритмов, определённо, это идеальный набор инструментов для любого специалиста в data science.
Как и KNIME, RapidMiner работает через визуальное программирование и способен обрабатывать, анализировать и моделировать данные. Благодаря открытому исходному коду платформы подготовки данных, машинного обучения и развертывания моделей RapidMiner дает командам, изучающим Data Science, больший простор для действий. Единая платформа для обработки данных ускоряет построение полных аналитических рабочих процессов — от подготовки данных и машинного обучения до проверки моделей и развертывания их в единой среде, что значительно повышает эффективность и сокращает время, затрачиваемое на проекты в сфере Data Science.
Weka, программное обеспечение с открытым исходным кодом, представляет собой набор алгоритмов машинного обучения для задач интеллектуального анализа данных. Алгоритмы могут быть применены непосредственно к набору данных или вызваны из вашего собственного Java-кода. Он также хорошо подходит для разработки новых схем машинного обучения, поскольку полностью реализован на языке программирования Java, а также поддерживает несколько стандартных задач интеллектуального анализа данных. Для тех, кто некоторое время не программировал, Weka с ее графическим интерфейсом, обеспечивает самый простой переход в мир Data Science. Для пользователей с опытом программирования на Java есть возможность встраивать в библиотеку свой собственный код.
KNIME Analytics Platform — ведущий open source фреймворк для инноваций, зависящих от данных. Он поможет вам раскрыть скрытый потенциал ваших данных, найти новые свежие идеи, или предсказать будущие тенденции. KNIME Analytics Platform содержит в себе более 1000 модулей, сотни готовых к запуску примеров, широкий спектр интегрированных инструментов и широкий выбор современных доступных алгоритмов, определённо, это идеальный набор инструментов для любого специалиста в data science.
Как и KNIME, RapidMiner работает через визуальное программирование и способен обрабатывать, анализировать и моделировать данные. Благодаря открытому исходному коду платформы подготовки данных, машинного обучения и развертывания моделей RapidMiner дает командам, изучающим Data Science, больший простор для действий. Единая платформа для обработки данных ускоряет построение полных аналитических рабочих процессов — от подготовки данных и машинного обучения до проверки моделей и развертывания их в единой среде, что значительно повышает эффективность и сокращает время, затрачиваемое на проекты в сфере Data Science.
Weka, программное обеспечение с открытым исходным кодом, представляет собой набор алгоритмов машинного обучения для задач интеллектуального анализа данных. Алгоритмы могут быть применены непосредственно к набору данных или вызваны из вашего собственного Java-кода. Он также хорошо подходит для разработки новых схем машинного обучения, поскольку полностью реализован на языке программирования Java, а также поддерживает несколько стандартных задач интеллектуального анализа данных. Для тех, кто некоторое время не программировал, Weka с ее графическим интерфейсом, обеспечивает самый простой переход в мир Data Science. Для пользователей с опытом программирования на Java есть возможность встраивать в библиотеку свой собственный код.
Default
Data Analytics and AI Platform | Altair RapidMiner
Altair RapidMiner offers a path to modernization for established data analytics teams as well as a path to automation for teams just getting started. With an end-to-end data analytics platform and point solutions, Altair enables you to deliver the right tool…
animation.gif
120.9 KB
Портреты воображаемых людей всего за 19 мазков кистью
SPIRAL — это агент RL (обучения с подкреплением), который генерирует изображения, взаимодействуя с готовым графическим программным обеспечением. Выпущено 9 агентов, обученных рисовать портреты воображаемых людей всего за 19 мазков кистью. Этот репозиторий содержит агентов и среды, описанные в документе ICML'18 «Синтезирующие программы для изображений с использованием усиленного состязательного обучения».
SPIRAL — это агент RL (обучения с подкреплением), который генерирует изображения, взаимодействуя с готовым графическим программным обеспечением. Выпущено 9 агентов, обученных рисовать портреты воображаемых людей всего за 19 мазков кистью. Этот репозиторий содержит агентов и среды, описанные в документе ICML'18 «Синтезирующие программы для изображений с использованием усиленного состязательного обучения».
Шпаргалки "Python for Data Science":
Теорема Байеса: Святой Грааль Data Science
Теорема Байеса — одно из важнейших правил теории вероятностей, применяемых в Data Science.
Теорема Байеса, названная в честь британского математика XVIII века Томаса Байеса, представляет собой математическую формулу для определения условных вероятностей. Эта теорема имеет огромное значение в области науки о данных. Например, одним из многих приложений теоремы Байеса является Байесовский вывод — особый подход к статистическому выводу.
Байесовский вывод — это метод, в котором теорема Байеса используется для обновления вероятности гипотезы по мере получения дополнительных подтверждений или иной информации. Байесовский вывод нашел применение в широком спектре видов деятельности, включая науку, инженерию, философию, медицину, спорт и право.
Так, в финансах теорема Байеса используется для оценки риска кредитования потенциальных заемщиков. В медицине теорема Байеса применяется для определения точности результатов медицинских тестов и вероятности, что у данного человека имеется потенциальное заболевание.
Теорема Байеса — одно из важнейших правил теории вероятностей, применяемых в Data Science.
Теорема Байеса, названная в честь британского математика XVIII века Томаса Байеса, представляет собой математическую формулу для определения условных вероятностей. Эта теорема имеет огромное значение в области науки о данных. Например, одним из многих приложений теоремы Байеса является Байесовский вывод — особый подход к статистическому выводу.
Байесовский вывод — это метод, в котором теорема Байеса используется для обновления вероятности гипотезы по мере получения дополнительных подтверждений или иной информации. Байесовский вывод нашел применение в широком спектре видов деятельности, включая науку, инженерию, философию, медицину, спорт и право.
Так, в финансах теорема Байеса используется для оценки риска кредитования потенциальных заемщиков. В медицине теорема Байеса применяется для определения точности результатов медицинских тестов и вероятности, что у данного человека имеется потенциальное заболевание.
Jupyter Notebook: галерея лучших блокнотов
Jupyter Notebook — это один из самых удобных инструментов для совместной работы над проектами и изучения новых концепций. Ниже представлены блокноты Jupyter, которые будут наиболее полезны специалистам по анализу данных. Ниже представлены блокноты Jupyter, которые будут наиболее полезны обучающимся новичкам.
Вводные курсы в Jupyter Notebook
Учебник по Python
Пособие по Matplotlib
Пошаговый туториал для новичков
Руководство для начинающих
Jupyter Notebook — это один из самых удобных инструментов для совместной работы над проектами и изучения новых концепций. Ниже представлены блокноты Jupyter, которые будут наиболее полезны специалистам по анализу данных. Ниже представлены блокноты Jupyter, которые будут наиболее полезны обучающимся новичкам.
Вводные курсы в Jupyter Notebook
Учебник по Python
Пособие по Matplotlib
Пошаговый туториал для новичков
Руководство для начинающих
Библиотека программиста
JupyterLab и Jupyter Notebook — мощные инструменты Data Science
Подробно рассказываем об инструментах семейства Jupyter – эффективных средствах разработки для задач Data Science и смежных областей.