Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
18.4K subscribers
2.4K photos
119 videos
64 files
4.84K links
Все самое полезное для дата сайентиста в одном канале.

По рекламе: @proglib_adv

Курс по ML: https://clc.to/4hNluQ

Для обратной связи: @proglibrary_feeedback_bot

РКН: https://gosuslugi.ru/snet/67a5b03124c8ba6dcaa121c9
Download Telegram
SmartData – конференция, посвященная техническим вопросам из мира Big Data и обработки данных. Здесь нет разговоров о том, насколько те или иные технологии/подходы перспективны или полезны. У нас уже есть стек: выбирай инструмент, бери и делай. Доклады посвящены применению Big Data подходов в приложении к реальным задачам

#youtubeдня

https://www.youtube.com/channel/UCfCOJWNC_ipu34-LVvPUeCg/about
​​Глубокое обучение. Погружение в мир нейронных сетей
Авторы: Сергей Николенко, А. Кадурин, Екатерина Архангельская

В книге много математики, теории, основ и рассуждений, охватывающих большую часть того, что касается машинного обучения. Подойдёт, в основном, новичкам, желающим подробнее разобраться в этом вопросе.

#книгадня
​​Scikit-Learn Tutorial: Statistical-Learning for Scientific Data Processing
Автор: Andreas Mueller
В книге представлено описание использования методов машинного обучения с целью статистического вывода. Учебник доступен в Интернете бесплатно.

#книгадня

https://gael-varoquaux.info/scikit-learn-tutorial/
Bayesian methods for hackers
Автор: Cam Davidson-Pilon
Эта книга познакомит вас с байесовскими методами и вероятностным программированием с вычислительной точки зрения. Книга в основном является находкой для тех, кто свободно владеет математикой.

#книгадня

https://camdavidsonpilon.github.io/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/
artificial-adversary позволяет создавать тексты и моделировать атаки на модели машинного обучения. Предоставив свою модель этим текстам в автономном режиме, вы сможете лучше подготовиться к ним, когда столкнетесь с ними в реальном времени.

#полезностьдня

Ссылка на GitHub:
https://github.com/airbnb/artificial-adversary
​​Говорят и показывают сеньоры: обучение Junior Data Scientist
Как начать изучение Data Science? Что и где читать? Какие есть подводные камни, советы и уловки? Статья в помощь для Junior Data Scientist.

#статьядня

https://proglib.io/p/senior-says/
Искусственный интеллект - это новое электричество
Форум будущего - это серия дискуссий, в которой рассматриваются тенденции, которые меняют будущее. В своем выступлении профессор Нг рассказал о том, как искусственный интеллект (ИИ) трансформируется от индустрии к индустрии.

Speaker: главный научный сотрудник Baidu, соучредитель Coursera и адъюнкт-профессор Стэнфордского университета Эндрю Нг.
Event: Stanford MSx Future Forum.

#видеодня

https://www.youtube.com/watch?v=21EiKfQYZXc
vid2vid - это реализация Pytorch для работы с видео высокого разрешения (например, 2048×1024) и перевода его в фотореалистичный формат. ПО может быть использовано для превращения семантических меток в photo-realistic-videos, генерации человеческих движений, поз и т. д.

#полезностьдня

Ссылка на Girhub:
https://github.com/NVIDIA/vid2vid
​​Покажем, как использовать docker-compose для Python и Jupyter
В данной статье мы рассмотрим, что такое docker-compose, и как этот инструмент можно использовать для языка Python и Jupyter.

#статьядня

https://proglib.io/p/docker-compose/
​​Любой может научиться кодировать LSTM-RNN в Python
Традиционные нейронные сети не обладают этим свойством, и в этом их главный недостаток. Решить эту проблемы помогают рекуррентые нейронные сети.
Долгая краткосрочная память (LSTM) – особая разновидность архитектуры рекуррентных нейронных сетей, способная к обучению долговременным зависимостям.

#статьядня

https://iamtrask.github.io/2015/11/15/anyone-can-code-lstm/
TensorFlow поддерживает все необходимые этапы работы с моделями нейросетей, позволяя осуществлять не только их построение, но и тестирование, обучение и хранение обученных моделей для применения в промышленных проектах.
Чтобы познкомиться с фреймворком поближе, рекомендуем Стэнфордский курс CS 20: Tensorflow for Deep Learning Research

#youtubeдня

https://www.youtube.com/playlist?list=PLDuNt91tg0urwwTQNKyUbncSDvMEl74ww
Машинное обучение: анализ временных рядов Azure Machine Learning для поиска аномалий
В данной статье автор рассказывает, как использовать модуль Time Series Anomaly Detection сервиса машинного обучения Azure Machine Learning для определения аномальных показателей датчиков.

#статьядня

https://habr.com/company/microsoft/blog/343188/
Математика в машинном обучении
В данном видео автор ответит на вопрос, нужно ли знать математику, чтобы заниматься машинным обучением и рассмотрит 4 основные математические дисциплины, составляющие машинное обучение - линейная алгебра, теория вероятностей, исчисление и статистика. А также, на примерах, покажет, как их использовать.

#видеодня

https://www.youtube.com/watch?v=8onB7rPG4Pk
​​AI and Analytics: Accelerating Business Decisions
Автор: Sameer Dhanrajani
Необходимая к прочтению книга, предназначенная для руководителей и начинающих предпринимателей в области ИИ и Data Science. Она располагает бизнес-идеями, которые помогут стимулировать изменения в организации, используя популярные технологии: чат-боты, блокчейн и криптовалюту. Основное внимание уделено комплексным стратегиям и методологиям в аналитике. Автор охватывает большинство популярных отраслей бизнеса, таких как банковское дело, здравоохранение, страхование, розничная торговля и т. д.

#книгадня
На пути к виртуальному каскадеру
Проблемы контроля динамики движения в последнее время вошли в круг стандартных задач обучения с подкреплением. Методы глубокого обучения показали здесь высокую эффективность для широкого круга проблем.

#видеодня

https://www.youtube.com/watch?v=vppFvq2quQ0
Классификация изображений за 10 минут с помощью набора данных MNIST
Когда вы начинаете изучать глубокое обучение с помощью нейронной сети, вы понимаете, что одним из наиболее мощных контролируемых методов глубокого обучения являются сверточные нейронные сети (сокращенно «CNN»). Окончательная структура CNN на самом деле очень похожа на обычные нейронные сети (RegularNets), где есть нейроны с весами и смещениями. CNN в основном используются для классификации изображений.

#статьядня

https://towardsdatascience.com/image-classification-in-10-minutes-with-mnist-dataset-54c35b77a38d
​​Введение в анализ данных. Учебник и практикум
Автор: Борис Миркин
Чтобы понять, какие методы машинного обучения можно применить к вашему набору данных или как его лучше подготовить, вы должны уметь производить предварительный анализ данных.
В данном учебнике, подготовленном на основе большого международного опыта исследований и преподавания, излагаются основные методы анализа данных, относящихся прежде всего к одному или двум изучаемым признакам. Подробно рассмотрены вопросы анализа и интерпретации связей между двумя количественными, двумя качественными, а также качественным и количественным признаками.

#книгадня
​​6 шагов, которые помогут стать специалистом по Data Science
Давно думали разобраться в науке о данных, но не знали, с чего начать? Мы собрали материалы, которые помогут стать специалистом по Data Science.

#статьядня

https://proglib.io/p/data-science-basics/
​​Deep Learning with Python
Автор: Francois Chollet
Столь сложную тему, как глубокое обучение, лучше изучать с помощью этой книги Python. Вы разберетесь с практической частью работы компьютерного зрения, обработки языка и генеративных моделей.

#книгадня
​​Машины опорных векторов на практике
Машины опорных векторов (SVM) представляют собой особенно мощный и гибкий класс контролируемых алгоритмов как для классификации, так и для регрессии. В этом разделе мы разработаем интуицию, лежащую в основе машин опорных векторов, и их использование в задачах классификации.

#статьядня

https://jakevdp.github.io/PythonDataScienceHandbook/05.07-support-vector-machines.html
​​Введение в математическую теорию обучаемых распознающих систем и нейронных сете
Автор: Аркадий Гелиг, Алексей Матвеев

В пособии систематически излагаются основы математической теории обучаемых распознающих систем и нейронных сетей. Сочетая математическую строгость изложения с содержательной мотивацией и интерпретацией материала, авторы знакомят читателя с основными методами построения обучаемых распознающих систем, базовыми постановками задач и важнейшими типами алгоритмов.

#книгадня