Что выведет код с картинки выше?
  Anonymous Quiz
    2%
    50
      
    67%
    30
      
    10%
    20
      
    21%
    Вызовет исключение IndexError
      
    Что выведет код с картинки выше?
  Anonymous Quiz
    39%
    torch.int64
      
    23%
    torch.float32
      
    17%
    torch.uint8
      
    21%
    torch.float64
      
    ✍️ Разбираем сложные задачи прошедшей недели
1️⃣ Автокодировщик (англ. autoencoder) — это специальная архитектура нейронных сетей, основная идея которой научиться сжимать входные данные в компактное представление и затем восстанавливать эти данные обратно к их исходному виду или как можно ближе к нему.
Автокодировщик состоит из двух частей: энкодера и декодера. Энкодер переводит входной сигнал в его представление, а декодер восстанавливает сигнал по этому представлению. При этом в центре нейронной сети создаётся узкий слой — бутылочное горлышко. Количество нейронов в нём должно быть на порядок меньше, чем у входа. Так мы заставляем нейросеть находить в объекте самую важную информацию и передавать через бутылочное горлышко только её.
2️⃣ В этой задаче сначала мы создаём numpy-массив, состоящий только из элементов-единиц. Автоматически используется тип данных numpy.float64 (если не указать иное). torch.from_numpy в свою очередь автоматически наследует тип данных массива numpy.
#разбор_задач
1️⃣ Автокодировщик (англ. autoencoder) — это специальная архитектура нейронных сетей, основная идея которой научиться сжимать входные данные в компактное представление и затем восстанавливать эти данные обратно к их исходному виду или как можно ближе к нему.
Автокодировщик состоит из двух частей: энкодера и декодера. Энкодер переводит входной сигнал в его представление, а декодер восстанавливает сигнал по этому представлению. При этом в центре нейронной сети создаётся узкий слой — бутылочное горлышко. Количество нейронов в нём должно быть на порядок меньше, чем у входа. Так мы заставляем нейросеть находить в объекте самую важную информацию и передавать через бутылочное горлышко только её.
2️⃣ В этой задаче сначала мы создаём numpy-массив, состоящий только из элементов-единиц. Автоматически используется тип данных numpy.float64 (если не указать иное). torch.from_numpy в свою очередь автоматически наследует тип данных массива numpy.
#разбор_задач
❤2
  🤖 Напоминаем, что у нас есть еженедельная email-рассылка, посвященная последним новостям и тенденциям в мире искусственного интеллекта. 
В ней:
● Новости о прорывных исследованиях в области машинного обучения и нейросетей
● Материалы о применении ИИ в разных сферах
● Статьи об этических аспектах развития технологий
● Подборки лучших онлайн-курсов и лекций по машинному обучению
● Обзоры инструментов и библиотек для разработки нейронных сетей
● Ссылки на репозитории с открытым исходным кодом ИИ-проектов
● Фильмы, сериалы и книги
👉Подписаться👈
  В ней:
● Новости о прорывных исследованиях в области машинного обучения и нейросетей
● Материалы о применении ИИ в разных сферах
● Статьи об этических аспектах развития технологий
● Подборки лучших онлайн-курсов и лекций по машинному обучению
● Обзоры инструментов и библиотек для разработки нейронных сетей
● Ссылки на репозитории с открытым исходным кодом ИИ-проектов
● Фильмы, сериалы и книги
👉Подписаться👈
🤔3
  🥱14❤1
  Выше дана нейросеть с известными значениями весов. Все функции активации — это Relu. Чему равен выход нейросети, если х=2? 
  Anonymous Quiz
    13%
    15
      
    15%
    16
      
    39%
    4
      
    33%
    14
      
    🥱7🔥4
  Какой алгоритм оптимизации известен своей способностью выходить из локальных минимумов с помощью момента и адаптивных скоростей обучения?
  Anonymous Quiz
    27%
    Стохастический градиентный спуск (SGD)
      
    49%
    Adam
      
    12%
    RMSprop
      
    13%
    Adagrad
      
    Каков результат выполнения кода с картинки выше?
  Anonymous Quiz
    21%
    [3 7 5]
      
    7%
    [1 5 9]
      
    15%
    [4 6 8]
      
    57%
    Ошибка выполнения
      
    ✍️ Разбираем задачи прошедшей недели
1️⃣ По умолчанию для новых тензоров в PyTorch параметр requires_grad установлен в False. Он указывает, нужно ли вычислять градиенты для тензора во время операций обратного распространения ошибки. Чтобы добиться этого, следует явно установить requires_grad=True при создании тензора.
2️⃣ Для классической линейной регрессии действует предположение о том, что дисперсия ошибок модели остаётся постоянной на протяжении всех значений независимых переменных. Гетероскедастичность — это нарушение данного предположения. То есть наличие гетероскедастичности можно заподозрить, если отклонения наблюдений от линии выборочной регрессии (остатки) достаточно сильно различаются.
3️⃣ Здесь нужно считать так:
- Первое умножение весов и прибавление смещений: 2*1 + 1 и 2*2 — 5 —> 3 и -1.
- Первое применение Relu: relu(3) = 3 и relu(-1) = 0.
- Второе умножение весов и прибавление смещений: 3*-2 + 0*4 = —6. —6 + 10 = 4.
- Второе применение Relu: relu(4) = 4.
4️⃣ Название Adam можно расшифровать как ADAptive Momentum. Этот метод объединяет две идеи: использование момента и адаптивных скоростей обучения. Вместо того чтобы адаптировать скорость обучения параметров на основе среднего первого момента, как в RMSProp, Adam также использует среднее значение вторых моментов градиентов.
5️⃣ Хорошее объяснение для этой задачи было дано в комментариях.
#разбор_задач
1️⃣ По умолчанию для новых тензоров в PyTorch параметр requires_grad установлен в False. Он указывает, нужно ли вычислять градиенты для тензора во время операций обратного распространения ошибки. Чтобы добиться этого, следует явно установить requires_grad=True при создании тензора.
2️⃣ Для классической линейной регрессии действует предположение о том, что дисперсия ошибок модели остаётся постоянной на протяжении всех значений независимых переменных. Гетероскедастичность — это нарушение данного предположения. То есть наличие гетероскедастичности можно заподозрить, если отклонения наблюдений от линии выборочной регрессии (остатки) достаточно сильно различаются.
3️⃣ Здесь нужно считать так:
- Первое умножение весов и прибавление смещений: 2*1 + 1 и 2*2 — 5 —> 3 и -1.
- Первое применение Relu: relu(3) = 3 и relu(-1) = 0.
- Второе умножение весов и прибавление смещений: 3*-2 + 0*4 = —6. —6 + 10 = 4.
- Второе применение Relu: relu(4) = 4.
4️⃣ Название Adam можно расшифровать как ADAptive Momentum. Этот метод объединяет две идеи: использование момента и адаптивных скоростей обучения. Вместо того чтобы адаптировать скорость обучения параметров на основе среднего первого момента, как в RMSProp, Adam также использует среднее значение вторых моментов градиентов.
5️⃣ Хорошее объяснение для этой задачи было дано в комментариях.
#разбор_задач
👍7
  Как рассчитываются веса self-attention для определённого токена в оригинальной модели Transformer?
  Anonymous Quiz
    10%
    Через feedforward нейросеть, применённую к эмбеддингам токена
      
    56%
    Через softmax скалярного произведения эмбеддингов токена и эмбеддингов всех других токенов
      
    21%
    Через вычисление позиции токена относительно других токенов
      
    12%
    Через свёрточную операцию, применённую к токену и ближайшим другим токенам
      
    👍3
  🧑💻 Статьи для IT: как объяснять и распространять значимые идеи
Напоминаем, что у нас есть бесплатный курс для всех, кто хочет научиться интересно писать — о программировании и в целом.
Что: семь модулей, посвященных написанию, редактированию, иллюстрированию и распространению публикаций.
Для кого: для авторов, копирайтеров и просто программистов, которые хотят научиться интересно рассказывать о своих проектах.
👉Материалы регулярно дополняются, обновляются и корректируются. А еще мы отвечаем на все учебные вопросы в комментариях курса.
  Напоминаем, что у нас есть бесплатный курс для всех, кто хочет научиться интересно писать — о программировании и в целом.
Что: семь модулей, посвященных написанию, редактированию, иллюстрированию и распространению публикаций.
Для кого: для авторов, копирайтеров и просто программистов, которые хотят научиться интересно рассказывать о своих проектах.
👉Материалы регулярно дополняются, обновляются и корректируются. А еще мы отвечаем на все учебные вопросы в комментариях курса.
Какое из утверждений про Log Loss верное?
  Anonymous Quiz
    12%
    Чем ниже Log Loss, тем хуже предсказательная способность модели
      
    24%
    Log Loss можно использовать только для бинарной классификации
      
    48%
    Log Loss сильнее штрафует за уверенные и ошибочные предсказания, чем за менее уверенные и ошибочные
      
    16%
    Log Loss не зависит от вероятностных оценок классификатора
      
    👍1