📌 Зачем нужна регуляризация в логистической регрессии
Регуляризация добавляет штраф к функции потерь, контролируя величину весов θ. Это:
🟠 предотвращает переобучение на данных с большим числом признаков,
🟠 делает модель устойчивее к шумовым или редко встречающимся признакам,
🟠 улучшает обобщающую способность.
Популярные варианты:
📌 L2 (ridge) — сглаживает веса, делая их небольшими,
📌 L1 (lasso) — зануляет часть весов, отбрасывая неважные признаки.
🐸 Библиотека собеса по Data Science
Регуляризация добавляет штраф к функции потерь, контролируя величину весов θ. Это:
Популярные варианты:
📌 L2 (ridge) — сглаживает веса, делая их небольшими,
📌 L1 (lasso) — зануляет часть весов, отбрасывая неважные признаки.
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1
Стандартные регуляризаторы (например, L1 или L2) не делают нейросетевую задачу выпуклой. Если в модели есть несколько слоёв и нелинейные активации, задача оптимизации остаётся неконвексной.
Однако регуляризация:
👉 То есть регуляризация не исправляет геометрию задачи, но делает обучение практичнее и надёжнее.
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3
Не обязательно. Пропуски могут сами по себе содержать полезную информацию. Например:
В медицине отсутствие результата теста может говорить о том, что тест не был назначен — это уже сигнал для модели.
Практический подход:
Удалять только если:
— пропуски случайны,
— нет смысла в дополнительной обработке,
— или качество модели не ухудшается без этого признака.
👉 Пропуски — это не всегда «мусор». Иногда они сами по себе становятся информативным признаком.
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1