This media is not supported in your browser
VIEW IN TELEGRAM
❗ Так, владелец макбука. Хватит позировать в кофейне.
Настоящее портфолио — это не стикеры на крышке, а проект с чистым кодом, README и рабочей демкой.
Не знаешь, как такой собрать? Научим. Наш курс «ML для старта в Data Science» — это пошаговый гайд к проекту, за который не стыдно.
ОСТАЛАСЬ НЕДЕЛЯ, чтобы забрать его по старой цене в 44.000 ₽. С 1 сентября — всё.
🎁 И да, при покупке курса ML до 1 сентября — курс по Python получаешь бесплатно.
👉 Апгрейд от «вайба» до «оффера» тут
Настоящее портфолио — это не стикеры на крышке, а проект с чистым кодом, README и рабочей демкой.
Не знаешь, как такой собрать? Научим. Наш курс «ML для старта в Data Science» — это пошаговый гайд к проекту, за который не стыдно.
ОСТАЛАСЬ НЕДЕЛЯ, чтобы забрать его по старой цене в 44.000 ₽. С 1 сентября — всё.
🎁 И да, при покупке курса ML до 1 сентября — курс по Python получаешь бесплатно.
👉 Апгрейд от «вайба» до «оффера» тут
Обе группы моделей требуют внимательного подхода к гиперпараметрам, но непараметрические методы часто более чувствительны к их выбору и могут потребовать продвинутых стратегий поиска.
🧮 Параметрические модели:
— Настраиваются регуляризация (например, λ в Ridge/Lasso), архитектура нейросетей, степень полинома и т.д.
— Важно учитывать взаимодействие гиперпараметров: глубина сети, learning rate, регуляризация.
— Обычно меньше гиперпараметров, чем у сложных непараметрических методов, но у глубоких сетей их может быть много.
🌲 Непараметрические модели:
— Настройка может включать: размер соседства в kNN, ширину ядра в KDE, глубину дерева в Random Forest и др.
— Каждый гиперпараметр сильно влияет на комплексность модели и баланс bias/variance.
— Иногда требуется grid search или Bayesian optimization, особенно при большом гиперпараметрическом пространстве.
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2👍2
Если положительные объекты иногда промаркированы как отрицательные (и наоборот), это снижает видимую производительность модели:
Если интересно глубже разобраться, как метрики ведут себя при шумных данных и как строить более надёжные модели:
— AI-агенты для DS-специалистов
— ML для старта в Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1
📢 Какой сетап идеально подойдёт для разработки AI-агента?
Голосуйте за свой вариант и пишите в комментариях, в каком режиме вы реально кодите.
❤️ — 1
👍 — 2
⚡️ — 3
👏 — 4
🔥 — 5
🎉 — 6
😁 — 7
😍 — 8
🤩 — 9
Какой бы сетап ни был, без AI-агентов в 2025 всё равно далеко не уедешь.
👉 Научим, как строить агентов, которые кодят с тобой
Голосуйте за свой вариант и пишите в комментариях, в каком режиме вы реально кодите.
❤️ — 1
👍 — 2
⚡️ — 3
👏 — 4
🔥 — 5
🎉 — 6
😁 — 7
😍 — 8
🤩 — 9
Какой бы сетап ни был, без AI-агентов в 2025 всё равно далеко не уедешь.
👉 Научим, как строить агентов, которые кодят с тобой
🤩3👍1😁1
Частая ошибка — оптимизировать модель по ML-метрикам (AUC, accuracy) на этапе разработки, а в продакшене обнаружить, что реальный успех измеряется бизнес-KPI (конверсия, доход, удержание пользователей). В итоге модель может показывать отличные офлайн-результаты, но не влиять на бизнес.
Как решать:
Если хочется научиться строить ML-модели так, чтобы они работали не только «в тетрадке», но и в бизнесе:
— AI-агенты для DS-специалистов
— ML для старта в Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1
Нет, так делать не рекомендуется. Если отбор признаков выполняется на всём датасете, информация из теста «просачивается» в обучение → возникает data leakage, а итоговые метрики оказываются слишком оптимистичными.
Правильный подход:
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1
⏰ Осталось 48 часов!
Обратный отсчёт пошёл: только до воскресенья 23:59 можно купить курс «AI-агенты для DS-специалистов» и начать учиться уже с 15 сентября.
⚡️ Это ваши +3 недели форы, чтобы спокойно разобраться в самых сложных темах и прийти к первому занятию 7 октября уже подготовленным.
👉 Забрать место
Обратный отсчёт пошёл: только до воскресенья 23:59 можно купить курс «AI-агенты для DS-специалистов» и начать учиться уже с 15 сентября.
⚡️ Это ваши +3 недели форы, чтобы спокойно разобраться в самых сложных темах и прийти к первому занятию 7 октября уже подготовленным.
👉 Забрать место