This media is not supported in your browser
VIEW IN TELEGRAM
☝️ Один мудрый тимлид дал двум своим разработчикам по «таланту» — мощной, но своенравной LLM.
Первый разработчик испугался её «галлюцинаций». Он запер модель в песочнице, не давая ей доступа к свежим данным. На вопросы модель отвечала красиво, но часто придумывала факты, то есть врала. Он просто «закопал» свой талант, боясь им пользоваться.
Второй же разработчик не побоялся. Он построил для своей LLM систему RAG — дал ей «лопату и карту», чтобы находить сокровища в базе знаний компании. Его AI-агент отвечал точно по делу, ссылаясь на реальные документы. Он заставил свой «талант» работать и приносить пользу.
Именно такие системы мы и будем строить на втором потоке нашего курса «AI-агенты для DS-специалистов». Мы не просто поговорим о RAG, а соберём полный пайплайн с оценкой качества, чтобы ваш агент не врал.
Представьте, что вы сможете начать изучать эту сложную и востребованную тему уже 15 сентября, а не ждать официального старта в октябре. У вас будет фора в 3 недели, чтобы спокойно разобраться в векторных базах и подходе «LLM as a Judge».
💸 Цена 49.000 ₽ действует последние 4 дня — до 24 августа.
👉 Начать строить RAG раньше других
Первый разработчик испугался её «галлюцинаций». Он запер модель в песочнице, не давая ей доступа к свежим данным. На вопросы модель отвечала красиво, но часто придумывала факты, то есть врала. Он просто «закопал» свой талант, боясь им пользоваться.
Второй же разработчик не побоялся. Он построил для своей LLM систему RAG — дал ей «лопату и карту», чтобы находить сокровища в базе знаний компании. Его AI-агент отвечал точно по делу, ссылаясь на реальные документы. Он заставил свой «талант» работать и приносить пользу.
Мощь LLM раскрывается не в ней самой, а в системах, которые вы строите вокруг неё.
Именно такие системы мы и будем строить на втором потоке нашего курса «AI-агенты для DS-специалистов». Мы не просто поговорим о RAG, а соберём полный пайплайн с оценкой качества, чтобы ваш агент не врал.
Представьте, что вы сможете начать изучать эту сложную и востребованную тему уже 15 сентября, а не ждать официального старта в октябре. У вас будет фора в 3 недели, чтобы спокойно разобраться в векторных базах и подходе «LLM as a Judge».
💸 Цена 49.000 ₽ действует последние 4 дня — до 24 августа.
👉 Начать строить RAG раньше других
Да, но с оговорками. При высокой вариативности миноритарного класса наивный SMOTE может создавать нереалистичные объекты, смешивая разные подгруппы класса. Это искажает распределение и снижает качество модели.
Использовать кластеризованный oversampling: сначала разбить миноритарные объекты на кластеры (например, k-means), а затем проводить генерацию внутри каждого кластера. Так вы сохраните локальные структуры.
Рассмотреть более продвинутые методы синтетической генерации данных, чтобы адекватно отразить разнообразие миноритарного класса.
😂 P.S. SMOTE, конечно, молодец, но если хочется чуть более осмысленного «синтетического интеллекта»:
— AI-агенты для DS-специалистов (тут данные генерить не придётся — агенты сами помогут)
— ML для старта в Data Science (для тех, кто ещё путает oversampling с оверсайзом)
Please open Telegram to view this post
VIEW IN TELEGRAM
❤5👍1
This media is not supported in your browser
VIEW IN TELEGRAM
📅 Сегодня в 19:00 МСК — бесплатный вебинар с Марией Жаровой.
Тема: «Введение в ML: как спрогнозировать стоимость недвижимости».
🔹 Разберём задачу прогноза стоимости недвижимости.
🔹 Покажем пошагово, как собрать первую модель.
🔹 Получите готовые скрипты для старта.
Не зайдёшь — будешь ещё год делать вид, что понимаешь графики в чужих презентациях.
👉 Регистрируйтесь
Тема: «Введение в ML: как спрогнозировать стоимость недвижимости».
🔹 Разберём задачу прогноза стоимости недвижимости.
🔹 Покажем пошагово, как собрать первую модель.
🔹 Получите готовые скрипты для старта.
Не зайдёшь — будешь ещё год делать вид, что понимаешь графики в чужих презентациях.
👉 Регистрируйтесь
В unsupervised задачах (кластеризация, оценка плотности) мы не можем ориентироваться на метрики предсказания, поэтому обработка пропусков опирается на структуру данных.
Подходы:
Подводные камни:
Если хотите не просто читать про EM и PCA, а реально попрактиковаться на данных и задачах кластеризации, есть классные курсы для Data Science-специалистов:
— AI-агенты для DS-специалистов
— ML для старта в Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5❤1
👉 Как влияют dilated (atrous) свёртки на receptive field
Dilated свёртки используют пробелы >1 между элементами ядра. В обычной свёртке с ядром 3×3 фильтр смотрит на соседние позиции.
В dilated свёртке с dilation rate = d фильтр «пропускает» некоторые позиции, охватывая большую область входа, не увеличивая число параметров.
Пример: ядро 3×3 с dilation=2 фактически покрывает область 5×5, но остаётся с 9 параметрами.
⚡️ Применение: особенно полезно в semantic segmentation и других задачах, где важно учитывать глобальный контекст, сохраняя при этом высокое разрешение feature maps.
Если хотите не просто читать про receptive field, а практически применять свёртки и строить свои модели, есть классные курсы для Data Science и ML:
— AI-агенты для DS-специалистов
— ML для старта в Data Science
🐸 Библиотека собеса по Data Science
Dilated свёртки используют пробелы >1 между элементами ядра. В обычной свёртке с ядром 3×3 фильтр смотрит на соседние позиции.
В dilated свёртке с dilation rate = d фильтр «пропускает» некоторые позиции, охватывая большую область входа, не увеличивая число параметров.
Пример: ядро 3×3 с dilation=2 фактически покрывает область 5×5, но остаётся с 9 параметрами.
⚡️ Применение: особенно полезно в semantic segmentation и других задачах, где важно учитывать глобальный контекст, сохраняя при этом высокое разрешение feature maps.
Если хотите не просто читать про receptive field, а практически применять свёртки и строить свои модели, есть классные курсы для Data Science и ML:
— AI-агенты для DS-специалистов
— ML для старта в Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4❤2
Размер batch напрямую связан с настройкой базового learning rate (LR) и расписания.
Большой batch:
— Позволяет использовать больший стабильный LR.
— Часто требует warmup-фазы: постепенного увеличения LR от малого значения до целевого.
— Конвергенция может быть чувствительна: даже небольшой перекос в LR ведёт к дивергенции или плохому локальному минимуму.
Малый batch:
— Даёт шумные оценки градиентов, поэтому нужен меньший базовый LR.
— Лучше работают более консервативные decay-расписания или адаптивные/циклические методы, которые сглаживают шум.
⚠️ Подводный камень:
Если сильно увеличить batch, но оставить старое расписание LR, обучение может «взорваться» (слишком большой эффективный шаг) или наоборот — застопориться, если расписание оказалось слишком осторожным.
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2