Стандартные регуляризаторы (например, L1 или L2) не делают нейросетевую задачу выпуклой. Если в модели есть несколько слоёв и нелинейные активации, задача оптимизации остаётся неконвексной.
Однако регуляризация:
👉 То есть регуляризация не исправляет геометрию задачи, но делает обучение практичнее и надёжнее.
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3
Не обязательно. Пропуски могут сами по себе содержать полезную информацию. Например:
В медицине отсутствие результата теста может говорить о том, что тест не был назначен — это уже сигнал для модели.
Практический подход:
Удалять только если:
— пропуски случайны,
— нет смысла в дополнительной обработке,
— или качество модели не ухудшается без этого признака.
👉 Пропуски — это не всегда «мусор». Иногда они сами по себе становятся информативным признаком.
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2
💬 Существует ли доверительный интервал (confidence interval) для AUC
Да. AUC рассчитывается на основе конечной выборки, поэтому подвержен вариабельности.
Как оценить доверительный интервал:
🔹 Бутстрэп (Bootstrapping): многократная переоценка AUC на случайных подвыборках для построения распределения.
🔹 Другие статистические методы: используются для проверки значимости различий между моделями.
✅ В критических приложениях это помогает понять, насколько уверенно модель превосходит альтернативы.
🐸 Библиотека собеса по Data Science
Да. AUC рассчитывается на основе конечной выборки, поэтому подвержен вариабельности.
Как оценить доверительный интервал:
🔹 Бутстрэп (Bootstrapping): многократная переоценка AUC на случайных подвыборках для построения распределения.
🔹 Другие статистические методы: используются для проверки значимости различий между моделями.
✅ В критических приложениях это помогает понять, насколько уверенно модель превосходит альтернативы.
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3
📊 Как байесовский вывод масштабируется для высокоразмерных данных
Байесовский вывод становится сложным по мере увеличения размерности — апостериорное распределение может быть чрезвычайно сложным, и точные вычисления становятся невозможными.
Основные подходы👇
1️⃣ Вариационный вывод (Variational Inference, VI):
— Аппроксимирует апостериорное распределение более простой семьей распределений.
— Параметры оптимизируются для минимизации расхождения с истинным апостериорным распределением.
— Эффективно, но вводит ошибку аппроксимации.
2️⃣ Методы Монте-Карло по цепям Маркова (MCMC):
— Генерация выборок из апостериора (например, Hamiltonian Monte Carlo).
— Мощный метод, но медленный при высокой размерности.
3️⃣ Байесовские нейронные сети:
— Используют аппроксимации, например, Monte Carlo dropout, для оценки неопределенности.
— Вычислительно затратны, но возможны при аккуратной настройке.
🐸 Библиотека собеса по Data Science
Байесовский вывод становится сложным по мере увеличения размерности — апостериорное распределение может быть чрезвычайно сложным, и точные вычисления становятся невозможными.
Основные подходы
— Аппроксимирует апостериорное распределение более простой семьей распределений.
— Параметры оптимизируются для минимизации расхождения с истинным апостериорным распределением.
— Эффективно, но вводит ошибку аппроксимации.
— Генерация выборок из апостериора (например, Hamiltonian Monte Carlo).
— Мощный метод, но медленный при высокой размерности.
— Используют аппроксимации, например, Monte Carlo dropout, для оценки неопределенности.
— Вычислительно затратны, но возможны при аккуратной настройке.
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3
Временные ряды часто имеют сильные зависимости во времени.
Стандартная k-fold кросс-валидация использует случайные разбиения, игнорируя порядок времени. Это может привести к «утечке будущей информации» в тренировочный набор.
Например, если данные из будущего используются для обучения, а валидация проводится на данных из прошлого, оценка модели будет нереалистичной для реального прогнозирования.
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2
При дообучении обычно используют меньшую скорость обучения для предварительно обученных слоёв и более высокую — для вновь добавленных слоёв.
Это позволяет сохранять полезные представления, которые модель уже изучила, и аккуратно их корректировать.
Часто применяют постепенное уменьшение learning rate по слоям: глубокие слои получают очень маленький шаг, а новые слои — больший.
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1
Кросс-валидация разбивает данные на несколько фолдов, используя одни для валидации, а другие — для обучения, и поочередно меняет роли фолдов.
Кросс-валидация даёт более надёжную оценку обобщающей способности модели и помогает принимать решения по выбору модели, настройке гиперпараметров и архитектуры.
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1
🚀 Курс «ИИ-агенты для DS-специалистов» уже стартовал
Первый вебинар успешно прошёл, участники уже начали разбираться, как использовать ИИ-агентов в реальных проектах.
Но всё самое интересное только начинается!
🔥 Впереди 4 мощных занятия — с практикой, инсайтами и разбором кейсов от экспертов.
💸 Сейчас действует специальная цена → 69.000 ₽ вместо79.000 ₽.
⏳ Осталось всего 4 места.
Не упустите шанс прокачаться в том, что будет определять будущее индустрии.
👉 Забронировать место на курсе
Первый вебинар успешно прошёл, участники уже начали разбираться, как использовать ИИ-агентов в реальных проектах.
Но всё самое интересное только начинается!
🔥 Впереди 4 мощных занятия — с практикой, инсайтами и разбором кейсов от экспертов.
💸 Сейчас действует специальная цена → 69.000 ₽ вместо
⏳ Осталось всего 4 места.
Не упустите шанс прокачаться в том, что будет определять будущее индустрии.
👉 Забронировать место на курсе
Многие техники аугментации (например, случайные обрезки, масштабирование, добавление паддинга) могут изменять фактический размер входного изображения.
Если использовать случайные или меньшие размеры, важно иметь достаточный паддинг или архитектуру, способную обрабатывать разные размеры.
Потенциальная ошибка: случайная обрезка может дать слишком маленький тензор для слоёв с большим страйдом или минимальным размером входа.
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1
Язык по своей природе дискретен и символичен, а нейронные сети работают с непрерывными и дифференцируемыми представлениями. Эмбеддинги решают эту проблему, переводя токены в плотные векторные представления.
Благодаря этому нейросети могут понимать контекст и смысл, что стало основой успеха современных NLP-моделей — от простых классификаторов текста до трансформеров вроде BERT и GPT.
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1
🙄 В каких случаях стоит обучать модель с нуля, а не использовать предобученную
Обучение с нуля может быть оправдано в нескольких ситуациях:
1️⃣ Очень большой собственный датасет. Если ваш набор данных сопоставим по объёму с тем, на котором обучались предобученные модели (или даже больше), имеет смысл обучить модель с нуля, чтобы она лучше уловила специфические закономерности вашей задачи.
2️⃣ Совершенно иное распределение данных. Когда ваши данные радикально отличаются от исходных (например, 3D медицинские изображения вместо обычных фото), предобученные признаки могут быть бесполезны или даже мешать.
3️⃣ Уникальная архитектура. Если задача требует специализированной архитектуры (например, для 3D данных или нового типа последовательностей), использовать стандартные предобученные веса может быть нецелесообразно.
4️⃣ Юридические или лицензионные ограничения. Иногда использование предобученных моделей ограничено условиями лицензии или политикой конфиденциальности данных, что делает обучение с нуля единственным вариантом.
🐸 Библиотека собеса по Data Science
Обучение с нуля может быть оправдано в нескольких ситуациях:
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1👍1
Да, кросс-валидация часто применяется для подбора гиперпараметров. Для каждой конфигурации гиперпараметров выполняется процедура кросс-валидации, измеряется качество модели, и результаты сравниваются между разными вариантами.
Такой подход лежит в основе grid search и random search с кросс-валидацией.
👉 Однако важно помнить, что модель может “переобучиться” на фолды кросс-валидации. Чтобы избежать этого, необходимо оставить отдельный тестовый набор, который используется только один раз — после окончательного выбора гиперпараметров.
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2
⏳ Время прокачать алгоритмы с 40-процентной скидкой до конца октября
На собеседовании не просят бездумно написать шаблонное решение. Важно понимать, как работают алгоритмы под капотом.
🔹 В курсе ты научишься:
— искать ошибки с помощью редакционного расстояния;
— работать с балансированными деревьями и графами;
— решать задачи с динамическим программированием;
— и многое другое, что пригодится на собеседованиях.
🤔 Решаешь задачи только в тг каналах? Пройди курс и отправляйся на реальные собеседования!
🔗 Подробнее о курсе
На собеседовании не просят бездумно написать шаблонное решение. Важно понимать, как работают алгоритмы под капотом.
🔹 В курсе ты научишься:
— искать ошибки с помощью редакционного расстояния;
— работать с балансированными деревьями и графами;
— решать задачи с динамическим программированием;
— и многое другое, что пригодится на собеседованиях.
🤔 Решаешь задачи только в тг каналах? Пройди курс и отправляйся на реальные собеседования!
🔗 Подробнее о курсе
В очень глубоких сетях градиенты могут быстро затухать или взрываться при обратном распространении.
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1