Please open Telegram to view this post
VIEW IN TELEGRAM
❤1👍1
🔥 Не пропустите событие осени для AI-комьюнити
24 сентября, 19:00 Мск — бесплатный вебинар с Максимом Шаланкиным «ИИ-агенты: новая фаза развития искусственного интеллекта»
😤 Пока все спорят, «боты это или нет», мы покажем, как работают настоящие агенты: с планированием, инструментами и памятью. За час Максим разберёт:
— почему ИИ-агенты сейчас на пике инвестиций
— чем они отличаются от ChatGPT и обычных моделей
— цикл агента: восприятие → планирование → действие → обучение
— живое демо простого агента
— как бизнес уже получает ROI до 80%
⚡️ Хотите спросить у Максима всё, что обычно остаётся «за кадром»? Ловите шанс — только в прямом эфире.
⏰ Мест мало, регистрация закроется, как только забьём комнату
24 сентября, 19:00 Мск — бесплатный вебинар с Максимом Шаланкиным «ИИ-агенты: новая фаза развития искусственного интеллекта»
😤 Пока все спорят, «боты это или нет», мы покажем, как работают настоящие агенты: с планированием, инструментами и памятью. За час Максим разберёт:
— почему ИИ-агенты сейчас на пике инвестиций
— чем они отличаются от ChatGPT и обычных моделей
— цикл агента: восприятие → планирование → действие → обучение
— живое демо простого агента
— как бизнес уже получает ROI до 80%
⚡️ Хотите спросить у Максима всё, что обычно остаётся «за кадром»? Ловите шанс — только в прямом эфире.
⏰ Мест мало, регистрация закроется, как только забьём комнату
Negative sampling — популярная техника из Word2Vec для обучения эмбеддингов без разметки:
📌 Модель учится отличать правильные соседства слов от случайного шума, что позволяет эмбеддингам захватывать семантические связи между словами.
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3
❗ Сегодня премьера
В 19:00 МСК стартует бесплатный вебинар с Максимом Шаланкиным — «ИИ-агенты: новая фаза развития искусственного интеллекта».
В программе:
— почему агенты ≠ чат-боты;
— живое демо простого агента;
— и как эта тема встроена в курс, который разработан под руководством Никиты Зелинского.
⏰ Это прямой эфир: подключиться можно через лендинг курса.
В 19:00 МСК стартует бесплатный вебинар с Максимом Шаланкиным — «ИИ-агенты: новая фаза развития искусственного интеллекта».
В программе:
— почему агенты ≠ чат-боты;
— живое демо простого агента;
— и как эта тема встроена в курс, который разработан под руководством Никиты Зелинского.
⏰ Это прямой эфир: подключиться можно через лендинг курса.
На какие слои лучше накладывать L1/L2-регуляризацию в глубокой сети
Не все слои одинаково выигрывают от регуляризации. Основные моменты:
➡️ Входной слой: L1 может помочь в отборе признаков, зануляя веса для нерелевантных фич.
➡️ Скрытые слои: полезно для широких dense-слоёв, чтобы снизить сложность и переобучение.
➡️ Выходной слой: регуляризация на финальных весах может немного улучшить обобщающую способность, но не решает проблему, если ранние слои сильно переобучены.
➡️ CNN: регуляризация фильтров может «обрезать» целые каналы, ускоряя сеть. Для dense-слоёв чаще возникает разреженность весов.
Подводный камень: одинаковый коэффициент λ для всех слоёв может быть неэффективным. Ранние слои (низкоуровневые признаки) часто менее склонны к переобучению, чем глубокие.
🐸 Библиотека собеса по Data Science
Не все слои одинаково выигрывают от регуляризации. Основные моменты:
Подводный камень: одинаковый коэффициент λ для всех слоёв может быть неэффективным. Ранние слои (низкоуровневые признаки) часто менее склонны к переобучению, чем глубокие.
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2
💬 Как инициализировать параметры в логистической регрессии, и важно ли это
Частый вариант: веса
𝑤
w инициализируют нулями или малыми случайными значениями.
🔎 Почему работает: отрицательный логарифм правдоподобия в логистической регрессии — выпуклая функция, поэтому оптимизация сходится к глобальному минимуму независимо от стартовой точки.
🔎 Когда стоит подумать о случайной инициализации: при огромном числе признаков или сильно скоррелированных признаках случайная инициализация может помочь избежать вырожденных конфигураций.
🙂 Для стандартных задач нулевая инициализация чаще всего достаточно хороша; проблем с глобальным минимумом не возникает.
🐸 Библиотека собеса по Data Science
Частый вариант: веса
𝑤
w инициализируют нулями или малыми случайными значениями.
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2❤1
🤫 Курс «ИИ-агенты для DS-специалистов»
Каждый технологический скачок оставляет позади тех, кто «подождал ещё чуть-чуть». ИИ-агенты — это новый рывок.
Уже через пару лет именно они будут драйвить аналитику и автоматизацию. Хотите остаться на гребне?
🖥️ На курсе «ИИ-агенты для DS-специалистов» мы разберём:
— создание AI-агентов с нуля
— сборку собственной RAG-системы
— интеграцию LLM под задачи бизнеса
📌 Курс подходит:
→ ML/AI инженерам (middle+ / senior)
→ Data Scientists
→ Backend и platform-инженерам
→ Advanced CS/DS студентам
⚡️ Старт уже скоро — 3 октября.
💰 До 28 сентября действует скидка — 57.000 ₽ вместо 69.000 ₽ (по промокоду datarascals).
🔗 Узнать больше о курсе и записаться
З.ы. если вы не успели на вебинар «ИИ-агенты: новая фаза развития искусственного интеллекта» — запись уже доступна
Каждый технологический скачок оставляет позади тех, кто «подождал ещё чуть-чуть». ИИ-агенты — это новый рывок.
Уже через пару лет именно они будут драйвить аналитику и автоматизацию. Хотите остаться на гребне?
🖥️ На курсе «ИИ-агенты для DS-специалистов» мы разберём:
— создание AI-агентов с нуля
— сборку собственной RAG-системы
— интеграцию LLM под задачи бизнеса
📌 Курс подходит:
→ ML/AI инженерам (middle+ / senior)
→ Data Scientists
→ Backend и platform-инженерам
→ Advanced CS/DS студентам
⚡️ Старт уже скоро — 3 октября.
💰 До 28 сентября действует скидка — 57.000 ₽ вместо 69.000 ₽ (по промокоду datarascals).
🔗 Узнать больше о курсе и записаться
З.ы. если вы не успели на вебинар «ИИ-агенты: новая фаза развития искусственного интеллекта» — запись уже доступна
Не всегда.
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1
🚀 Всё о курсе «ИИ-агенты для DS-специалистов»
❓ Зачем нужны ИИ-агенты?
Это системы, которые берут на себя задачи аналитики и автоматизации. Именно они становятся основой для работы с корпоративными данными и для поддержки принятия решений.
❓ Зачем мне курс?
Курс отвечает на три ключевых вопроса:
— Как построить собственную систему агентов с нуля?
— Каким образом использовать RAG-подход для работы с корпоративными данными?
— Как адаптировать LLM под реальные задачи бизнеса?
❓ Подходит ли это мне?
Курс рассчитан на специалистов уровня middle+ и senior: ML/AI инженеров, Data Scientists, backend и platform-разработчиков. Подойдёт и студентам CS/DS, если вы готовы к продвинутым практикам.
Запись вводной встречи «ИИ-агенты: новая фаза развития искусственного интеллекта» доступна по ссылке.
❓ Когда старт?
Обучение начинается 3 октября.
❓ Сколько стоит?
До 28 сентября действует скидка → 57 000 ₽ вместо 69 000 ₽ (промокод datarascals).
🔗 Описание программы и регистрация
❓ Зачем нужны ИИ-агенты?
Это системы, которые берут на себя задачи аналитики и автоматизации. Именно они становятся основой для работы с корпоративными данными и для поддержки принятия решений.
❓ Зачем мне курс?
Курс отвечает на три ключевых вопроса:
— Как построить собственную систему агентов с нуля?
— Каким образом использовать RAG-подход для работы с корпоративными данными?
— Как адаптировать LLM под реальные задачи бизнеса?
❓ Подходит ли это мне?
Курс рассчитан на специалистов уровня middle+ и senior: ML/AI инженеров, Data Scientists, backend и platform-разработчиков. Подойдёт и студентам CS/DS, если вы готовы к продвинутым практикам.
Запись вводной встречи «ИИ-агенты: новая фаза развития искусственного интеллекта» доступна по ссылке.
❓ Когда старт?
Обучение начинается 3 октября.
❓ Сколько стоит?
До 28 сентября действует скидка → 57 000 ₽ вместо
🔗 Описание программы и регистрация
📌 Зачем нужна регуляризация в логистической регрессии
Регуляризация добавляет штраф к функции потерь, контролируя величину весов θ. Это:
🟠 предотвращает переобучение на данных с большим числом признаков,
🟠 делает модель устойчивее к шумовым или редко встречающимся признакам,
🟠 улучшает обобщающую способность.
Популярные варианты:
📌 L2 (ridge) — сглаживает веса, делая их небольшими,
📌 L1 (lasso) — зануляет часть весов, отбрасывая неважные признаки.
🐸 Библиотека собеса по Data Science
Регуляризация добавляет штраф к функции потерь, контролируя величину весов θ. Это:
Популярные варианты:
📌 L2 (ridge) — сглаживает веса, делая их небольшими,
📌 L1 (lasso) — зануляет часть весов, отбрасывая неважные признаки.
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1
Стандартные регуляризаторы (например, L1 или L2) не делают нейросетевую задачу выпуклой. Если в модели есть несколько слоёв и нелинейные активации, задача оптимизации остаётся неконвексной.
Однако регуляризация:
👉 То есть регуляризация не исправляет геометрию задачи, но делает обучение практичнее и надёжнее.
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3
Не обязательно. Пропуски могут сами по себе содержать полезную информацию. Например:
В медицине отсутствие результата теста может говорить о том, что тест не был назначен — это уже сигнал для модели.
Практический подход:
Удалять только если:
— пропуски случайны,
— нет смысла в дополнительной обработке,
— или качество модели не ухудшается без этого признака.
👉 Пропуски — это не всегда «мусор». Иногда они сами по себе становятся информативным признаком.
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1