Data Science & Machine Learning
68.4K subscribers
745 photos
77 files
654 links
Join this channel to learn data science, artificial intelligence and machine learning with funny quizzes, interesting projects and amazing resources for free

For collaborations: @love_data
Download Telegram
Hey guys,

Today, let’s talk about SQL conceptual questions that are often asked in data analyst interviews. These questions test not only your technical skills but also your conceptual understanding of SQL and its real-world applications.

1. What is the difference between SQL and NoSQL?

- SQL (Structured Query Language) is a relational database management system, meaning it uses tables (rows and columns) to store data.
- NoSQL databases, on the other hand, handle unstructured data and don’t rely on a schema, making them more flexible in terms of data storage and retrieval.
- Interview Tip: Don't just memorize definitions. Be prepared to explain scenarios where you’d use SQL over NoSQL, and vice versa.

2. What is the difference between INNER JOIN and OUTER JOIN?

- An INNER JOIN returns records that have matching values in both tables.
- An OUTER JOIN returns all records from one table and the matched records from the second table. If there's no match, NULL values are returned.

3. How do you optimize a SQL query for better performance?

- Indexing: Create indexes on columns used frequently in WHERE, JOIN, or GROUP BY clauses.
- Query optimization: Use appropriate WHERE clauses to reduce the data set and avoid unnecessary calculations.
- Avoid SELECT *: Always specify the columns you need to reduce the amount of data retrieved.
- Limit results: If you only need a subset of the data, use the LIMIT clause.

4. What are the different types of SQL constraints?

Constraints are used to enforce rules on data in a table. They ensure the accuracy and reliability of the data. The most common types are:

- PRIMARY KEY: Ensures each record is unique and not null.
- FOREIGN KEY: Enforces a relationship between two tables.
- UNIQUE: Ensures all values in a column are unique.
- NOT NULL: Prevents NULL values from being entered into a column.
- CHECK: Ensures a column's values meet a specific condition.

5. What is normalization? What are the different normal forms?

Normalization is the process of organizing data to reduce redundancy and improve data integrity. Here’s a quick overview of normal forms:

- 1NF (First Normal Form): Ensures that all values in a table are atomic (indivisible).
- 2NF (Second Normal Form): Ensures that the table is in 1NF and that all non-key columns are fully dependent on the primary key.
- 3NF (Third Normal Form): Ensures that the table is in 2NF and all columns are independent of each other except for the primary key.

6. What is a subquery?

A subquery is a query within another query. It's used to perform operations that need intermediate results before generating the final query.

Example:
SELECT employee_id, name
FROM employees
WHERE salary > (SELECT AVG(salary) FROM employees);

In this case, the subquery calculates the average salary, and the outer query selects employees whose salary is greater than the average.

7. What is the difference between a UNION and a UNION ALL?

- UNION combines the result sets of two SELECT statements and removes duplicates.
- UNION ALL combines the result sets and includes duplicates.

8. What is the difference between WHERE and HAVING clause?

- WHERE filters rows before any groupings are made. It’s used with SELECT, INSERT, UPDATE, or DELETE statements.
- HAVING filters groups after the GROUP BY clause.

9. How would you handle NULL values in SQL?

NULL values can represent missing or unknown data. Here’s how to manage them:

- Use IS NULL or IS NOT NULL in WHERE clauses to filter null values.
- Use COALESCE() or IFNULL() to replace NULL values with default ones.

Example:
SELECT name, COALESCE(age, 0) AS age
FROM employees;


10. What is the purpose of the GROUP BY clause?

The GROUP BY clause groups rows with the same values into summary rows. It’s often used with aggregate functions like COUNT, SUM, AVG, etc.

Example:
SELECT department, COUNT(*)
FROM employees
GROUP BY department;


Here you can find SQL Interview Resources👇
https://t.iss.one/DataSimplifier

Share with credits: https://t.iss.one/sqlspecialist

Hope it helps :)
11
Since many of you were asking me to send Data Science Session

📌So we have come with a session for you!! 👨🏻‍💻 👩🏻‍💻

This will help you to speed up your job hunting process 💪

Register here
👇👇
https://go.acciojob.com/RYFvdU

Only limited free slots are available so Register Now
2👍1
🚀 𝟰 𝗙𝗥𝗘𝗘 𝗧𝗲𝗰𝗵 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝗧𝗼 𝗘𝗻𝗿𝗼𝗹𝗹 𝗜𝗻 𝟮𝟬𝟮𝟱 😍

📈 Upgrade your career with in-demand tech skills & FREE certifications!

1️⃣ AI & ML – https://pdlink.in/3U3eZuq

2️⃣ Data Analytics – https://pdlink.in/4lp7hXQ

3️⃣ Cloud Computing – https://pdlink.in/3GtNJlO

4️⃣ Cyber Security – https://pdlink.in/4nHBuTh

More Courses – https://pdlink.in/3ImMFAB

🎓 100% FREE | Certificates Provided | Learn Anytime, Anywhere
2🥰1
Skills Needed To Become a Data Scientist
👍54
Difference between linear regression and logistic regression 👇👇

Linear regression and logistic regression are both types of statistical models used for prediction and modeling, but they have different purposes and applications.

Linear regression is used to model the relationship between a dependent variable and one or more independent variables. It is used when the dependent variable is continuous and can take any value within a range. The goal of linear regression is to find the best-fitting line that describes the relationship between the independent and dependent variables.

Logistic regression, on the other hand, is used when the dependent variable is binary or categorical. It is used to model the probability of a certain event occurring based on one or more independent variables. The output of logistic regression is a probability value between 0 and 1, which can be interpreted as the likelihood of the event happening.

Data Science Interview Resources
👇👇
https://topmate.io/coding/914624

Like for more 😄
6
TOP ML Interview Problems
7
📊 𝟭𝟬𝟬% 𝗙𝗥𝗘𝗘 𝗕𝗶𝗴 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗖𝗼𝘂𝗿𝘀𝗲😍

Free Online Course
💡 Industry-Relevant Skills
🎓 Certification Included

Upskill now and Get Certified 🎓

𝐋𝐢𝐧𝐤 👇:- 
 
https://pdlink.in/4lp7hXQ
 
Get the Govt. of India Incentives on course completion🏆
2
🚀 Complete Roadmap to Become a Data Scientist in 5 Months

📅 Week 1-2: Fundamentals
Day 1-3: Introduction to Data Science, its applications, and roles.
Day 4-7: Brush up on Python programming 🐍.
Day 8-10: Learn basic statistics 📊 and probability 🎲.

🔍 Week 3-4: Data Manipulation & Visualization
📝 Day 11-15: Master Pandas for data manipulation.
📈 Day 16-20: Learn Matplotlib & Seaborn for data visualization.

🤖 Week 5-6: Machine Learning Foundations
🔬 Day 21-25: Introduction to scikit-learn.
📊 Day 26-30: Learn Linear & Logistic Regression.

🏗 Week 7-8: Advanced Machine Learning
🌳 Day 31-35: Explore Decision Trees & Random Forests.
📌 Day 36-40: Learn Clustering (K-Means, DBSCAN) & Dimensionality Reduction.

🧠 Week 9-10: Deep Learning
🤖 Day 41-45: Basics of Neural Networks with TensorFlow/Keras.
📸 Day 46-50: Learn CNNs & RNNs for image & text data.

🏛 Week 11-12: Data Engineering
🗄 Day 51-55: Learn SQL & Databases.
🧹 Day 56-60: Data Preprocessing & Cleaning.

📊 Week 13-14: Model Evaluation & Optimization
📏 Day 61-65: Learn Cross-validation & Hyperparameter Tuning.
📉 Day 66-70: Understand Evaluation Metrics (Accuracy, Precision, Recall, F1-score).

🏗 Week 15-16: Big Data & Tools
🐘 Day 71-75: Introduction to Big Data Technologies (Hadoop, Spark).
☁️ Day 76-80: Learn Cloud Computing (AWS, GCP, Azure).

🚀 Week 17-18: Deployment & Production
🛠 Day 81-85: Deploy models using Flask or FastAPI.
📦 Day 86-90: Learn Docker & Cloud Deployment (AWS, Heroku).

🎯 Week 19-20: Specialization
📝 Day 91-95: Choose NLP or Computer Vision, based on your interest.

🏆 Week 21-22: Projects & Portfolio
📂 Day 96-100: Work on Personal Data Science Projects.

💬 Week 23-24: Soft Skills & Networking
🎤 Day 101-105: Improve Communication & Presentation Skills.
🌐 Day 106-110: Attend Online Meetups & Forums.

🎯 Week 25-26: Interview Preparation
💻 Day 111-115: Practice Coding Interviews (LeetCode, HackerRank).
📂 Day 116-120: Review your projects & prepare for discussions.

👨‍💻 Week 27-28: Apply for Jobs
📩 Day 121-125: Start applying for Entry-Level Data Scientist positions.

🎤 Week 29-30: Interviews
📝 Day 126-130: Attend Interviews & Practice Whiteboard Problems.

🔄 Week 31-32: Continuous Learning
📰 Day 131-135: Stay updated with the Latest Data Science Trends.

🏆 Week 33-34: Accepting Offers
📝 Day 136-140: Evaluate job offers & Negotiate Your Salary.

🏢 Week 35-36: Settling In
🎯 Day 141-150: Start your New Data Science Job, adapt & keep learning!

🎉 Enjoy Learning & Build Your Dream Career in Data Science! 🚀🔥
4