Data Science & Machine Learning
68.2K subscribers
741 photos
77 files
654 links
Join this channel to learn data science, artificial intelligence and machine learning with funny quizzes, interesting projects and amazing resources for free

For collaborations: @love_data
Download Telegram
๐— ๐—ผ๐˜€๐˜ ๐—”๐˜€๐—ธ๐—ฒ๐—ฑ ๐—ฆ๐—ค๐—Ÿ ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐—ฒ๐˜„ ๐—ค๐˜‚๐—ฒ๐˜€๐˜๐—ถ๐—ผ๐—ป๐˜€ ๐—ฎ๐˜ ๐— ๐—”๐—”๐—ก๐—š ๐—–๐—ผ๐—บ๐—ฝ๐—ฎ๐—ป๐—ถ๐—ฒ๐˜€๐Ÿ”ฅ๐Ÿ”ฅ

1. How do you retrieve all columns from a table?

SELECT * FROM table_name;


2. What SQL statement is used to filter records?

SELECT * FROM table_name
WHERE condition;

The WHERE clause is used to filter records based on a specified condition.


3. How can you join multiple tables? Describe different types of JOINs.

SELECT columns
FROM table1
JOIN table2 ON table1.column = table2.column
JOIN table3 ON table2.column = table3.column;

Types of JOINs:

1. INNER JOIN: Returns records with matching values in both tables

SELECT * FROM table1
INNER JOIN table2 ON table1.column = table2.column;

2. LEFT JOIN (or LEFT OUTER JOIN): Returns all records from the left table and matched records from the right table. Unmatched records will have NULL values.

SELECT * FROM table1
LEFT JOIN table2 ON table1.column = table2.column;

3. RIGHT JOIN (or RIGHT OUTER JOIN): Returns all records from the right table and matched records from the left table. Unmatched records will have NULL values.

SELECT * FROM table1
RIGHT JOIN table2 ON table1.column = table2.column;

4. FULL JOIN (or FULL OUTER JOIN): Returns records when there is a match in either left or right table. Unmatched records will have NULL values.

SELECT * FROM table1
FULL JOIN table2 ON table1.column = table2.column;


4. What is the difference between WHERE and HAVING clauses?

WHERE: Filters records before any groupings are made.

SELECT * FROM table_name
WHERE condition;

HAVING: Filters records after groupings are made.

SELECT column, COUNT(*)
FROM table_name
GROUP BY column
HAVING COUNT(*) > value;


5. How do you count the number of records in a table?

SELECT COUNT(*) FROM table_name;

This query counts all the records in the specified table.

6. How do you calculate average, sum, minimum, and maximum values in a column?

Average: SELECT AVG(column_name) FROM table_name;

Sum: SELECT SUM(column_name) FROM table_name;

Minimum: SELECT MIN(column_name) FROM table_name;

Maximum: SELECT MAX(column_name) FROM table_name;


7. What is a subquery, and how do you use it?

Subquery: A query nested inside another query

SELECT * FROM table_name
WHERE column_name = (SELECT column_name FROM another_table WHERE condition);




Till then keep learning and keep exploring ๐Ÿ™Œ
โค7๐Ÿ‘2๐Ÿ‘1
๐ŸŽ“ ๐—จ๐—ฝ๐˜€๐—ธ๐—ถ๐—น๐—น ๐—ช๐—ถ๐˜๐—ต ๐—š๐—ผ๐˜ƒ๐—ฒ๐—ฟ๐—ป๐—บ๐—ฒ๐—ป๐˜-๐—”๐—ฝ๐—ฝ๐—ฟ๐—ผ๐˜ƒ๐—ฒ๐—ฑ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐—™๐—ผ๐—ฟ ๐—™๐—ฅ๐—˜๐—˜ ๐Ÿ˜

Industry-approved Certifications to enhance employability

โœ… AI & ML
โœ… Cloud Computing
โœ… Cybersecurity
โœ… Data Analytics & More!

Earn industry-recognized certificates and boost your career ๐Ÿš€

๐—˜๐—ป๐—ฟ๐—ผ๐—น๐—น ๐—™๐—ผ๐—ฟ ๐—™๐—ฅ๐—˜๐—˜๐Ÿ‘‡:- 
 
https://pdlink.in/3ImMFAB
 
Get the Govt. of India Incentives on course completion๐Ÿ†
โค2
โœ… Resume Tips for Data Science Roles ๐Ÿ“„๐Ÿ’ผ

Your resume is your first impression โ€” make it clear, concise, and confident with these tips:

1. Keep It One Page (for beginners)
โฆ Recruiters spend 6โ€“10 seconds glancing through.
โฆ Use crisp bullet points, no long paragraphs.
โฆ Focus on relevant data science experience.

2. Strong Summary at the Top 
Example: 
โ€œAspiring Data Scientist with hands-on experience in Python, Pandas, and Machine Learning. Built 5+ real-world projects including house price prediction and sentiment analysis.โ€

3. Highlight Technical Skills 
Separate Skills section:
โฆ Languages: Python, SQL
โฆ Libraries: Pandas, NumPy, Matplotlib, Scikit-learn
โฆ Tools: Jupyter, VS Code, Git, Tableau
โฆ Concepts: EDA, Regression, Classification, Data Cleaning

4. Showcase Projects (with results) 
Each project: 2โ€“3 bullet points
โฆ โ€œBuilt linear regression model predicting house prices with 85% accuracy using Scikit-learn.โ€
โฆ โ€œCleaned & visualized 10K+ rows of sales data with Pandas & Seaborn.โ€ 
  Include GitHub links.

5. Education & Certifications 
Include:
โฆ Degree (any field)
โฆ Online certifications (Coursera, Kaggle, etc.)
โฆ Mention course projects or capstones

6. Quantify Everything 
Instead of โ€œAnalyzed dataโ€, write: 
โ€œAnalyzed 20K+ customer rows to identify churn factors, improving model performance by 12%.โ€

7. Customize for Each Job
โฆ Match keywords from job descriptions.
โฆ Use role-specific terms like โ€œclassification model,โ€ โ€œdata pipeline.โ€

๐Ÿ’ฌ React โค๏ธ for more!

Data Science Learning Series: 
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D/998

Learn Python: 
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
โค10๐Ÿ‘1
๐๐š๐ฒ ๐€๐Ÿ๐ญ๐ž๐ซ ๐๐ฅ๐š๐œ๐ž๐ฆ๐ž๐ง๐ญ - ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป ๐—ณ๐—ฟ๐—ผ๐—บ ๐˜๐—ต๐—ฒ ๐—ง๐—ผ๐—ฝ ๐Ÿญ% ๐—ผ๐—ณ ๐˜๐—ต๐—ฒ ๐—ง๐—ฒ๐—ฐ๐—ต ๐—œ๐—ป๐—ฑ๐˜‚๐˜€๐˜๐—ฟ๐˜†๐Ÿ˜

Learn Coding & Get Placed In Top Tech Companies

 ๐Ÿ”ฅ Highlights:-
โœ… ๐Ÿฐ๐Ÿญ๐—Ÿ๐—ฃ๐—” - Highest Package
โœ… ๐Ÿณ.๐Ÿฐ๐—Ÿ๐—ฃ๐—” - Average Package
โœ… ๐Ÿฑ๐Ÿฌ๐Ÿฌ+ Hiring Partners
โœ… ๐Ÿฎ๐Ÿฌ๐Ÿฌ๐Ÿฌ+ Students Placed

๐Ÿ”— ๐‘๐ž๐ ๐ข๐ฌ๐ญ๐ž๐ซ ๐๐จ๐ฐ๐Ÿ‘‡:-

 https://pdlink.in/4hO7rWY

Hurry! Limited Seats Available๐Ÿƒโ€โ™‚๏ธ
โค3
List of Python Project Ideas๐Ÿ’ก๐Ÿ‘จ๐Ÿปโ€๐Ÿ’ป๐Ÿ -

Beginner Projects

๐Ÿ”น Calculator
๐Ÿ”น To-Do List
๐Ÿ”น Number Guessing Game
๐Ÿ”น Basic Web Scraper
๐Ÿ”น Password Generator
๐Ÿ”น Flashcard Quizzer
๐Ÿ”น Simple Chatbot
๐Ÿ”น Weather App
๐Ÿ”น Unit Converter
๐Ÿ”น Rock-Paper-Scissors Game

Intermediate Projects

๐Ÿ”ธ Personal Diary
๐Ÿ”ธ Web Scraping Tool
๐Ÿ”ธ Expense Tracker
๐Ÿ”ธ Flask Blog
๐Ÿ”ธ Image Gallery
๐Ÿ”ธ Chat Application
๐Ÿ”ธ API Wrapper
๐Ÿ”ธ Markdown to HTML Converter
๐Ÿ”ธ Command-Line Pomodoro Timer
๐Ÿ”ธ Basic Game with Pygame

Advanced Projects

๐Ÿ”บ Social Media Dashboard
๐Ÿ”บ Machine Learning Model
๐Ÿ”บ Data Visualization Tool
๐Ÿ”บ Portfolio Website
๐Ÿ”บ Blockchain Simulation
๐Ÿ”บ Chatbot with NLP
๐Ÿ”บ Multi-user Blog Platform
๐Ÿ”บ Automated Web Tester
๐Ÿ”บ File Organizer
โค18
Roadmap for AI Engineers
โค4๐Ÿ‘1๐Ÿฅฐ1
๐—š๐—ฒ๐—ป๐—ฒ๐—ฟ๐—ฎ๐˜๐—ถ๐˜ƒ๐—ฒ ๐—”๐—œ + ๐— ๐—ฎ๐—ฐ๐—ต๐—ถ๐—ป๐—ฒ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด โ€“ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐Ÿ˜

Unlock the Power of Generative AI & ML - 100% Free Certification Course

๐Ÿ“š Learn Future-Ready Skills
๐ŸŽ“ Earn a Recognized Certificate
๐Ÿ’ก Build Real-World Projects

๐Ÿ”— ๐—˜๐—ป๐—ฟ๐—ผ๐—น๐—น ๐—ก๐—ผ๐˜„ ๐Ÿ‘‡:-

https://pdlink.in/3U3eZuq

Enroll Today for Free & Get Certified ๐ŸŽ“
โค1๐Ÿ‘1
๐Ÿง  Learn AI in 15 Steps
๐Ÿ‘3โค1
๐Ÿ”— How to use Machine Learning to predict fraud

1. Identify project objectives

Determine the key business objectives upon which the machine learning model will be built.
For instance, your goal may be like:

- Reduce false alerts
- Minimize estimated chargeback ratio
- Keep operating costs at a controlled level

2. Data preparation

To create fraudster profiles, machines need to study about previous fraudulent events from historical data. The more the data provided, the better the results of analyzation. The raw data garnered by the company must be cleaned and provided in a machine-understandable format.

3. Constructing a machine learning model


The machine learning model is the final product of the entire ML process.
Once the model receives data related to a new transaction, the model will deliver an output, highlighting whether the transaction is a fraud attempt or not.

4. Data scoring

Deploy the ML model and integrate it with the companyโ€™s infrastructure.

For instance, whenever a customer purchases a product from an e-store, the respective data transaction will be sent to the machine learning model. The model will then analyze the data to generate a recommendation, depending on which the e-storeโ€™s transaction system will make its decision, i.e., approve or block or mark the transaction for a manual review. This process is known as data scoring.

5. Upgrading the model

Just like how humans learn from their mistakes and experience, machine learning models should be tweaked regularly with the updated information, so that the models become increasingly sophisticated and detect fraud activities more accurately.
Please open Telegram to view this post
VIEW IN TELEGRAM
โค4๐Ÿ‘2
You're an upcoming data scientist?
This is for you.

The key to success isn't hoarding every tutorial and course.
It's about taking that first, decisive step.
Start small. Start now.

I remember feeling paralyzed by options:
Coursera, Udacity, bootcamps, blogs...
Where to begin?

Then my mentor gave me one piece of advice:

"Stop planning. Start doing.
Pick the shortest video you can find.
Watch it. Now."

It was tough love, but it worked.

I chose a 3-minute intro to pandas.
Then a quick matplotlib demo.
Suddenly, I was building momentum.

Each bite-sized lesson built my confidence.
Every "I did it!" moment sparked joy.
I was no longer overwhelmedโ€”I was excited.

So here's my advice for you:

1. Find a 5-minute data science video. Any topic.
2. Watch it before you finish your coffee.
3. Do one thing you learned. Anything.

Remember:
A messy start beats a perfect plan
Every. Single. Time.
โค6๐Ÿ‘2๐Ÿ‘1
๐Ÿš€๐Ÿ”ฅ ๐—•๐—ฒ๐—ฐ๐—ผ๐—บ๐—ฒ ๐—ฎ๐—ป ๐—”๐—ด๐—ฒ๐—ป๐˜๐—ถ๐—ฐ ๐—”๐—œ ๐—•๐˜‚๐—ถ๐—น๐—ฑ๐—ฒ๐—ฟ โ€” ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—ฃ๐—ฟ๐—ผ๐—ด๐—ฟ๐—ฎ๐—บ
Master the most in-demand AI skill in todayโ€™s job market: building autonomous AI systems.

In Ready Tensorโ€™s free, project-first program, youโ€™ll create three portfolio-ready projects using ๐—Ÿ๐—ฎ๐—ป๐—ด๐—–๐—ต๐—ฎ๐—ถ๐—ป, ๐—Ÿ๐—ฎ๐—ป๐—ด๐—š๐—ฟ๐—ฎ๐—ฝ๐—ต, and vector databases โ€” and deploy production-ready agents that employers will notice.

Includes guided lectures, videos, and code.
๐—™๐—ฟ๐—ฒ๐—ฒ. ๐—ฆ๐—ฒ๐—น๐—ณ-๐—ฝ๐—ฎ๐—ฐ๐—ฒ๐—ฑ. ๐—–๐—ฎ๐—ฟ๐—ฒ๐—ฒ๐—ฟ-๐—ฐ๐—ต๐—ฎ๐—ป๐—ด๐—ถ๐—ป๐—ด.

๐Ÿ‘‰ Apply now: https://go.readytensor.ai/cert-549-agentic-ai-certification
โค2
Advanced Data Science Concepts ๐Ÿš€

1๏ธโƒฃ Feature Engineering & Selection

Handling Missing Values โ€“ Imputation techniques (mean, median, KNN).

Encoding Categorical Variables โ€“ One-Hot Encoding, Label Encoding, Target Encoding.

Scaling & Normalization โ€“ StandardScaler, MinMaxScaler, RobustScaler.

Dimensionality Reduction โ€“ PCA, t-SNE, UMAP, LDA.


2๏ธโƒฃ Machine Learning Optimization

Hyperparameter Tuning โ€“ Grid Search, Random Search, Bayesian Optimization.

Model Validation โ€“ Cross-validation, Bootstrapping.

Class Imbalance Handling โ€“ SMOTE, Oversampling, Undersampling.

Ensemble Learning โ€“ Bagging, Boosting (XGBoost, LightGBM, CatBoost), Stacking.


3๏ธโƒฃ Deep Learning & Neural Networks

Neural Network Architectures โ€“ CNNs, RNNs, Transformers.

Activation Functions โ€“ ReLU, Sigmoid, Tanh, Softmax.

Optimization Algorithms โ€“ SGD, Adam, RMSprop.

Transfer Learning โ€“ Pre-trained models like BERT, GPT, ResNet.


4๏ธโƒฃ Time Series Analysis

Forecasting Models โ€“ ARIMA, SARIMA, Prophet.

Feature Engineering for Time Series โ€“ Lag features, Rolling statistics.

Anomaly Detection โ€“ Isolation Forest, Autoencoders.


5๏ธโƒฃ NLP (Natural Language Processing)

Text Preprocessing โ€“ Tokenization, Stemming, Lemmatization.

Word Embeddings โ€“ Word2Vec, GloVe, FastText.

Sequence Models โ€“ LSTMs, Transformers, BERT.

Text Classification & Sentiment Analysis โ€“ TF-IDF, Attention Mechanism.


6๏ธโƒฃ Computer Vision

Image Processing โ€“ OpenCV, PIL.

Object Detection โ€“ YOLO, Faster R-CNN, SSD.

Image Segmentation โ€“ U-Net, Mask R-CNN.


7๏ธโƒฃ Reinforcement Learning

Markov Decision Process (MDP) โ€“ Reward-based learning.

Q-Learning & Deep Q-Networks (DQN) โ€“ Policy improvement techniques.

Multi-Agent RL โ€“ Competitive and cooperative learning.


8๏ธโƒฃ MLOps & Model Deployment

Model Monitoring & Versioning โ€“ MLflow, DVC.

Cloud ML Services โ€“ AWS SageMaker, GCP AI Platform.

API Deployment โ€“ Flask, FastAPI, TensorFlow Serving.


Like if you want detailed explanation on each topic โค๏ธ

Data Science & Machine Learning Resources: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D

Hope this helps you ๐Ÿ˜Š
โค6๐Ÿ‘1
๐Ÿ“Š ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—™๐—ฅ๐—˜๐—˜ ๐——๐—ฒ๐—บ๐—ผ ๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ๐—ฐ๐—น๐—ฎ๐˜€๐˜€ ๐—ถ๐—ป ๐—›๐˜†๐—ฑ๐—ฒ๐—ฟ๐—ฎ๐—ฏ๐—ฎ๐—ฑ/๐—ฃ๐˜‚๐—ป๐—ฒ ๐Ÿ˜

๐Ÿ”ฅ Learn Data Analytics with Real-time Projects ,Hands-on Tools

โœจ Highlights:
โœ… 100% Placement Support
โœ… 500+ Hiring Partners
โœ… Weekly Hiring Drives

๐—ฅ๐—ฒ๐—ด๐—ถ๐˜€๐˜๐—ฒ๐—ฟ ๐—ก๐—ผ๐˜„:- ๐Ÿ‘‡

๐Ÿ”น Hyderabad :- https://pdlink.in/4kFhjn3

๐Ÿ”น Pune:- https://pdlink.in/45p4GrC

Hurry Up ๐Ÿƒโ€โ™‚๏ธ! Limited seats are available.
โค1
๐Ÿ“š Top 10 Python Interview Questions for Data Science (2025)

1. What makes Python popular for Data Science? 
   Python offers a rich ecosystem of libraries like NumPy, pandas, scikit-learn, and matplotlib, making data manipulation, analysis, and machine learning efficient and accessible.

2. How do you handle missing values in a dataset with Python? 
   Using pandas, you can use .fillna() to replace missing values with a fixed value or statistic (mean, median), or .dropna() to remove rows/columns containing NaNs.

3. What is a lambda function in Python, and how is it used in data science? 
   A lambda is a small anonymous function defined with lambda keyword, commonly used for quick transformations or within higher-order functions like .apply() in pandas.

4. Explain the difference between a list and a tuple in Python. 
   Lists are mutable (can be changed), whereas tuples are immutable (cannot be changed); tuples are often used for fixed data, offering slight performance benefits.

5. How can you merge two pandas DataFrames? 
   Use pd.merge() with keys specifying columns to join on; supports different types of joins like inner, outer, left, and right.

6. What is vectorization, and why is it important? 
   Vectorization uses array operations (e.g., NumPy) instead of loops, accelerating computations significantly by leveraging optimized C code under the hood.

7. How do you calculate summary statistics in pandas? 
   Functions like .mean(), .median(), .std(), .describe() provide quick statistical insights over DataFrame columns.

8. What is the difference between .loc[] and .iloc[] in pandas? 
   .loc[] selects data based on labels/index names, while .iloc[] selects using integer position-based indexing.

9. Explain how you would build a simple linear regression model in Python. 
   You can use scikit-learnโ€™s LinearRegression class to fit a model with .fit(), then predict with .predict() on new data.

10. How do you handle categorical data in Python? 
    Use pandas for encoding categorical variables via .astype('category'), .get_dummies() for one-hot encoding, or LabelEncoder from scikit-learn for label encoding.

๐Ÿ”ฅ React โค๏ธ for more!
โค4๐Ÿ‘4
Myths About Data Science:

โœ… Data Science is Just Coding

Coding is a part of data science. It also involves statistics, domain expertise, communication skills, and business acumen. Soft skills are as important or even more important than technical ones

โœ… Data Science is a Solo Job

I wish. I wanted to be a data scientist so I could sit quietly in a corner and code. Data scientists often work in teams, collaborating with engineers, product managers, and business analysts

โœ… Data Science is All About Big Data

Big data is a big buzzword (that was more popular 10 years ago), but not all data science projects involve massive datasets. Itโ€™s about the quality of the data and the questions youโ€™re asking, not just the quantity.

โœ… You Need to Be a Math Genius

Many data science problems can be solved with basic statistical methods and simple logistic regression. Itโ€™s more about applying the right techniques rather than knowing advanced math theories.

โœ… Data Science is All About Algorithms

Algorithms are a big part of data science, but understanding the data and the business problem is equally important. Choosing the right algorithm is crucial, but itโ€™s not just about complex models. Sometimes simple models can provide the best results. Logistic regression!
โค11