๐๐ Be part of the global science community!
Follow the UNESCOโAl Fozan International Prize for inspiring stories, breakthroughs, and opportunities in STEM (Science, Technology, Engineering, and Mathematics).
๐ฒ Follow us here:
https://x.com/UNESCO_AlFozan/status/1955702609932902734
Follow the UNESCOโAl Fozan International Prize for inspiring stories, breakthroughs, and opportunities in STEM (Science, Technology, Engineering, and Mathematics).
๐ฒ Follow us here:
https://x.com/UNESCO_AlFozan/status/1955702609932902734
1โค4
๐ ๐ง๐ผ๐ฝ ๐ฏ ๐ฆ๐ธ๐ถ๐น๐น๐ ๐ง๐ผ ๐๐ผ๐บ๐ถ๐ป๐ฎ๐๐ฒ ๐ฎ๐ฌ๐ฎ๐ฑ ๐
Start learning the most in-demand tech skills with FREE certifications ๐
โ AI & ML โ https://pdlink.in/3U3eZuq
โ Data Analytics โ https://pdlink.in/4lp7hXQ
โ Data Science, Fullstack & More โ https://pdlink.in/3ImMFAB
๐ 100% FREE | Learn Anywhere, Anytime
๐ก Donโt just keep up with 2025, stay ahead of it!
Start learning the most in-demand tech skills with FREE certifications ๐
โ AI & ML โ https://pdlink.in/3U3eZuq
โ Data Analytics โ https://pdlink.in/4lp7hXQ
โ Data Science, Fullstack & More โ https://pdlink.in/3ImMFAB
๐ 100% FREE | Learn Anywhere, Anytime
๐ก Donโt just keep up with 2025, stay ahead of it!
๐Here are 5 fresh Project ideas for Data Analysts ๐
๐ฏ ๐๐ถ๐ฟ๐ฏ๐ป๐ฏ ๐ข๐ฝ๐ฒ๐ป ๐๐ฎ๐๐ฎ ๐
https://www.kaggle.com/datasets/arianazmoudeh/airbnbopendata
๐กThis dataset describes the listing activity of homestays in New York City
๐ฏ ๐ง๐ผ๐ฝ ๐ฆ๐ฝ๐ผ๐๐ถ๐ณ๐ ๐๐ผ๐ป๐ด๐ ๐ณ๐ฟ๐ผ๐บ ๐ฎ๐ฌ๐ญ๐ฌ-๐ฎ๐ฌ๐ญ๐ต ๐ต
https://www.kaggle.com/datasets/leonardopena/top-spotify-songs-from-20102019-by-year
๐ฏ๐ช๐ฎ๐น๐บ๐ฎ๐ฟ๐ ๐ฆ๐๐ผ๐ฟ๐ฒ ๐ฆ๐ฎ๐น๐ฒ๐ ๐๐ผ๐ฟ๐ฒ๐ฐ๐ฎ๐๐๐ถ๐ป๐ด ๐
https://www.kaggle.com/c/walmart-recruiting-store-sales-forecasting/data
๐กUse historical markdown data to predict store sales
๐ฏ ๐ก๐ฒ๐๐ณ๐น๐ถ๐ ๐ ๐ผ๐๐ถ๐ฒ๐ ๐ฎ๐ป๐ฑ ๐ง๐ฉ ๐ฆ๐ต๐ผ๐๐ ๐บ
https://www.kaggle.com/datasets/shivamb/netflix-shows
๐กListings of movies and tv shows on Netflix - Regularly Updated
๐ฏ๐๐ถ๐ป๐ธ๐ฒ๐ฑ๐๐ป ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ ๐ท๐ผ๐ฏ๐ ๐น๐ถ๐๐๐ถ๐ป๐ด๐ ๐ผ
https://www.kaggle.com/datasets/cedricaubin/linkedin-data-analyst-jobs-listings
๐กMore than 8400 rows of data analyst jobs from USA, Canada and Africa.
ENJOY LEARNING ๐๐
๐ฏ ๐๐ถ๐ฟ๐ฏ๐ป๐ฏ ๐ข๐ฝ๐ฒ๐ป ๐๐ฎ๐๐ฎ ๐
https://www.kaggle.com/datasets/arianazmoudeh/airbnbopendata
๐กThis dataset describes the listing activity of homestays in New York City
๐ฏ ๐ง๐ผ๐ฝ ๐ฆ๐ฝ๐ผ๐๐ถ๐ณ๐ ๐๐ผ๐ป๐ด๐ ๐ณ๐ฟ๐ผ๐บ ๐ฎ๐ฌ๐ญ๐ฌ-๐ฎ๐ฌ๐ญ๐ต ๐ต
https://www.kaggle.com/datasets/leonardopena/top-spotify-songs-from-20102019-by-year
๐ฏ๐ช๐ฎ๐น๐บ๐ฎ๐ฟ๐ ๐ฆ๐๐ผ๐ฟ๐ฒ ๐ฆ๐ฎ๐น๐ฒ๐ ๐๐ผ๐ฟ๐ฒ๐ฐ๐ฎ๐๐๐ถ๐ป๐ด ๐
https://www.kaggle.com/c/walmart-recruiting-store-sales-forecasting/data
๐กUse historical markdown data to predict store sales
๐ฏ ๐ก๐ฒ๐๐ณ๐น๐ถ๐ ๐ ๐ผ๐๐ถ๐ฒ๐ ๐ฎ๐ป๐ฑ ๐ง๐ฉ ๐ฆ๐ต๐ผ๐๐ ๐บ
https://www.kaggle.com/datasets/shivamb/netflix-shows
๐กListings of movies and tv shows on Netflix - Regularly Updated
๐ฏ๐๐ถ๐ป๐ธ๐ฒ๐ฑ๐๐ป ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ ๐ท๐ผ๐ฏ๐ ๐น๐ถ๐๐๐ถ๐ป๐ด๐ ๐ผ
https://www.kaggle.com/datasets/cedricaubin/linkedin-data-analyst-jobs-listings
๐กMore than 8400 rows of data analyst jobs from USA, Canada and Africa.
ENJOY LEARNING ๐๐
โค2๐ฅฐ1
๐ฅ $10.000 WITH LISA!
Lisa earned $200,000 in a month, and now itโs YOUR TURN!
Sheโs made trading SO SIMPLE that anyone can do it.
โ๏ธJust copy her signals every day
โ๏ธFollow her trades step by step
โ๏ธEarn $1,000+ in your first week โ GUARANTEED!
๐จ BONUS: Lisa is giving away $10,000 to her subscribers!
Donโt miss this once-in-a-lifetime opportunity. Free access for the first 500 people only!
๐ CLICK HERE TO JOIN NOW ๐
Lisa earned $200,000 in a month, and now itโs YOUR TURN!
Sheโs made trading SO SIMPLE that anyone can do it.
โ๏ธJust copy her signals every day
โ๏ธFollow her trades step by step
โ๏ธEarn $1,000+ in your first week โ GUARANTEED!
๐จ BONUS: Lisa is giving away $10,000 to her subscribers!
Donโt miss this once-in-a-lifetime opportunity. Free access for the first 500 people only!
๐ CLICK HERE TO JOIN NOW ๐
๐ Data Science Project Ideas to Practice & Master Your Skills โ
๐ข Beginner Level
โข Titanic Survival Prediction (Logistic Regression)
โข House Price Prediction (Linear Regression)
โข Exploratory Data Analysis on IPL or Netflix Dataset
โข Customer Segmentation (K-Means Clustering)
โข Weather Data Visualization
๐ก Intermediate Level
โข Sentiment Analysis on Tweets
โข Credit Card Fraud Detection
โข Time Series Forecasting (Stock or Sales Data)
โข Image Classification using CNN (Fashion MNIST)
โข Recommendation System for Movies/Products
๐ด Advanced Level
โข End-to-End Machine Learning Pipeline with Deployment
โข NLP Chatbot using Transformers
โข Real-Time Dashboard with Streamlit + ML
โข Anomaly Detection in Network Traffic
โข A/B Testing & Business Decision Modeling
๐ฌ Double Tap โค๏ธ for more! ๐ค๐
๐ข Beginner Level
โข Titanic Survival Prediction (Logistic Regression)
โข House Price Prediction (Linear Regression)
โข Exploratory Data Analysis on IPL or Netflix Dataset
โข Customer Segmentation (K-Means Clustering)
โข Weather Data Visualization
๐ก Intermediate Level
โข Sentiment Analysis on Tweets
โข Credit Card Fraud Detection
โข Time Series Forecasting (Stock or Sales Data)
โข Image Classification using CNN (Fashion MNIST)
โข Recommendation System for Movies/Products
๐ด Advanced Level
โข End-to-End Machine Learning Pipeline with Deployment
โข NLP Chatbot using Transformers
โข Real-Time Dashboard with Streamlit + ML
โข Anomaly Detection in Network Traffic
โข A/B Testing & Business Decision Modeling
๐ฌ Double Tap โค๏ธ for more! ๐ค๐
โค5
Guys, Big Announcement!
Weโve officially hit 2.5 Million followers โ and itโs time to level up together! โค๏ธ
Iโm launching a Python Projects Series โ designed for beginners to those preparing for technical interviews or building real-world projects.
This will be a step-by-step, hands-on journey โ where youโll build useful Python projects with clear code, explanations, and mini-quizzes!
Hereโs what weโll cover:
๐น Week 1: Python Mini Projects (Daily Practice)
โฆ Calculator
โฆ To-Do List (CLI)
โฆ Number Guessing Game
โฆ Unit Converter
โฆ Digital Clock
๐น Week 2: Data Handling & APIs
โฆ Read/Write CSV & Excel files
โฆ JSON parsing
โฆ API Calls using Requests
โฆ Weather App using OpenWeather API
โฆ Currency Converter using Real-time API
๐น Week 3: Automation with Python
โฆ File Organizer Script
โฆ Email Sender
โฆ WhatsApp Automation
โฆ PDF Merger
โฆ Excel Report Generator
๐น Week 4: Data Analysis with Pandas & Matplotlib
โฆ Load & Clean CSV
โฆ Data Aggregation
โฆ Data Visualization
โฆ Trend Analysis
โฆ Dashboard Basics
๐น Week 5: AI & ML Projects (Beginner Friendly)
โฆ Predict House Prices
โฆ Email Spam Classifier
โฆ Sentiment Analysis
โฆ Image Classification (Intro)
โฆ Basic Chatbot
๐ Each project includes:
โ Problem Statement
โ Code with explanation
โ Sample input/output
โ Learning outcome
โ Mini quiz
๐ฌ React โค๏ธ if you're ready to build some projects together!
You can access it for free here
๐๐
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
Letโs Build. Letโs Grow. ๐ป๐
Weโve officially hit 2.5 Million followers โ and itโs time to level up together! โค๏ธ
Iโm launching a Python Projects Series โ designed for beginners to those preparing for technical interviews or building real-world projects.
This will be a step-by-step, hands-on journey โ where youโll build useful Python projects with clear code, explanations, and mini-quizzes!
Hereโs what weโll cover:
๐น Week 1: Python Mini Projects (Daily Practice)
โฆ Calculator
โฆ To-Do List (CLI)
โฆ Number Guessing Game
โฆ Unit Converter
โฆ Digital Clock
๐น Week 2: Data Handling & APIs
โฆ Read/Write CSV & Excel files
โฆ JSON parsing
โฆ API Calls using Requests
โฆ Weather App using OpenWeather API
โฆ Currency Converter using Real-time API
๐น Week 3: Automation with Python
โฆ File Organizer Script
โฆ Email Sender
โฆ WhatsApp Automation
โฆ PDF Merger
โฆ Excel Report Generator
๐น Week 4: Data Analysis with Pandas & Matplotlib
โฆ Load & Clean CSV
โฆ Data Aggregation
โฆ Data Visualization
โฆ Trend Analysis
โฆ Dashboard Basics
๐น Week 5: AI & ML Projects (Beginner Friendly)
โฆ Predict House Prices
โฆ Email Spam Classifier
โฆ Sentiment Analysis
โฆ Image Classification (Intro)
โฆ Basic Chatbot
๐ Each project includes:
โ Problem Statement
โ Code with explanation
โ Sample input/output
โ Learning outcome
โ Mini quiz
๐ฌ React โค๏ธ if you're ready to build some projects together!
You can access it for free here
๐๐
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
Letโs Build. Letโs Grow. ๐ป๐
โค10๐1
๐ ๐
๐ซ๐๐ ๐๐๐ ๐๐๐ฌ๐จ๐ฎ๐ซ๐๐๐ฌ ๐ญ๐จ ๐๐ซ๐๐๐ค ๐๐จ๐๐ข๐ง๐ ๐๐ง๐ญ๐๐ซ๐ฏ๐ข๐๐ฐ๐ฌ๐
Cracking coding interviews isnโt about luckโitโs about mastering Data Structures and Algorithms (DSA) with the right resources๐ฅ๐
Whether youโre aiming for FAANG, top MNCs, or fast-growing startups, having a strong foundation in DSA will set you apart๐งโ๐๐ฅ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/41MsPpe
Start today and turn your DSA fear into DSA mastery!โ ๏ธ
Cracking coding interviews isnโt about luckโitโs about mastering Data Structures and Algorithms (DSA) with the right resources๐ฅ๐
Whether youโre aiming for FAANG, top MNCs, or fast-growing startups, having a strong foundation in DSA will set you apart๐งโ๐๐ฅ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/41MsPpe
Start today and turn your DSA fear into DSA mastery!โ ๏ธ
โค1
Which of the following is essential for any well-documented data science project?
Anonymous Quiz
5%
a) Fancy UI design
4%
b) Only code files
84%
c) README file explaining problem, steps & results
7%
d) Just a model accuracy score
โค2
Your model performs well on training data but poorly on test data. Whatโs likely missing?
Anonymous Quiz
25%
a) Hyperparameter tuning
74%
b) Overfitting handling
1%
c) More print statements
0%
d) Fancy visualizations
โค1
Which file should you upload along with your Jupyter Notebook to make your project reproducible?
Anonymous Quiz
6%
a) Screenshot of results
11%
b) Excel output file
79%
c) requirements.txt or environment.yml
4%
d) A video walkthrough
โค1
Which step is often skipped but highly recommended when presenting a project?
Anonymous Quiz
25%
a) Exploratory Data Analysis
39%
b) Writing comments in code
27%
c) Explaining business impact or value
9%
d) Printing all columns of the dataset
โค1
Which of the following is NOT a recommended practice when uploading a data science project to GitHub?*
Anonymous Quiz
22%
A) Including a well-written README.md with setup and usage instructions
64%
B) Uploading large raw datasets directly into the repository
6%
C) Organizing code into modular scripts under a src/ folder
8%
D) Providing a requirements.txt or environment.yml for dependencies
โค1