Data Science & Machine Learning
73.1K subscribers
789 photos
2 videos
68 files
688 links
Join this channel to learn data science, artificial intelligence and machine learning with funny quizzes, interesting projects and amazing resources for free

For collaborations: @love_data
Download Telegram
โœ… GitHub Profile Tips for Data Scientists ๐Ÿง ๐Ÿ“Š

Your GitHub = your portfolio. Make it show skills, tools, and thinking.

1๏ธโƒฃ Profile README
โ€ข Who you are & what you work on
โ€ข Mention tools (Python, Pandas, SQL, Scikit-learn, Power BI)
โ€ข Add project links & contact info
โœ… Example:
โ€œAspiring Data Scientist skilled in Python, ML & visualization. Love solving business problems with data.โ€

2๏ธโƒฃ Highlight 3โ€“6 Strong Projects
Each repo must have:
โ€ข Clear README:
โ€“ What problem you solved
โ€“ Dataset used
โ€“ Key steps (EDA โ†’ Model โ†’ Results)
โ€“ Tools & libraries
โ€ข Jupyter notebooks (cleaned + explained)
โ€ข Charts & results with conclusions
โœ… Tip: Include PDF/report or dashboard screenshots

3๏ธโƒฃ Project Ideas to Include
โ€ข Sales insights dashboard (Power BI or Tableau)
โ€ข ML model (churn, fraud, sentiment)
โ€ข NLP app (text summarizer, topic model)
โ€ข EDA project on Kaggle dataset
โ€ข SQL project with queries & joins

4๏ธโƒฃ Show Real Workflows
โ€ข Use .py scripts + .ipynb notebooks
โ€ข Add data cleaning + preprocessing steps
โ€ข Track experiments (metrics, models tried)

5๏ธโƒฃ Regular Commits
โ€ข Update notebooks
โ€ข Push improvements
โ€ข Show learning progress over time

๐Ÿ“Œ Practice Task:
Pick 1 project โ†’ Write full README โ†’ Push to GitHub today

๐Ÿ’ฌ Tap โค๏ธ for more!
โค8๐Ÿ‘3
โœ… Data Science Mistakes Beginners Should Avoid โš ๏ธ๐Ÿ“‰

1๏ธโƒฃ Skipping the Basics
โ€ข Jumping into ML without Python, Stats, or Pandas
โœ… Build strong foundations in math, programming & EDA first

2๏ธโƒฃ Not Understanding the Problem
โ€ข Applying models blindly
โ€ข Irrelevant features and metrics
โœ… Always clarify business goals before coding

3๏ธโƒฃ Treating Data Cleaning as Optional
โ€ข Training on dirty/incomplete data
โœ… Spend time on preprocessing โ€” itโ€™s 70% of real work

4๏ธโƒฃ Using Complex Models Too Early
โ€ข Overfitting small datasets
โ€ข Ignoring simpler, interpretable models
โœ… Start with baseline models (Logistic Regression, Decision Trees)

5๏ธโƒฃ No Evaluation Strategy
โ€ข Relying only on accuracy
โœ… Use proper metrics (F1, AUC, MAE) based on problem type

6๏ธโƒฃ Not Visualizing Data
โ€ข Missed outliers and patterns
โœ… Use Seaborn, Matplotlib, Plotly for EDA

7๏ธโƒฃ Poor Feature Engineering
โ€ข Feeding raw data into models
โœ… Create meaningful features that boost performance

8๏ธโƒฃ Ignoring Domain Knowledge
โ€ข Features donโ€™t align with real-world logic
โœ… Talk to stakeholders or do research before modeling

9๏ธโƒฃ No Practice with Real Datasets
โ€ข Kaggle-only learning
โœ… Work with messy, real-world data (open data portals, APIs)

๐Ÿ”Ÿ Not Documenting or Sharing Work
โ€ข No GitHub, no portfolio
โœ… Document notebooks, write blogs, push projects online

๐Ÿ’ฌ Tap โค๏ธ for more!
โค10
๐Ÿ“Š ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐Ÿ˜

๐Ÿš€Upgrade your skills with industry-relevant Data Analytics training at ZERO cost 

โœ… Beginner-friendly
โœ… Certificate on completion
โœ… High-demand skill in 2026

๐‹๐ข๐ง๐ค ๐Ÿ‘‡:- 

https://pdlink.in/497MMLw

๐Ÿ“Œ 100% FREE โ€“ Limited seats available!
โค2๐Ÿฅฐ1
โœ… Python Libraries & Tools You Should Know ๐Ÿ๐Ÿ’ผ

Mastering the right Python libraries helps you work faster, smarter, and more effectively in any data role.

๐Ÿ”ท 1๏ธโƒฃ For Data Analytics ๐Ÿ“Š
Useful for cleaning, analyzing, and visualizing data
โ€ข pandas โ€“ Handle and manipulate structured data (tables)
โ€ข numpy โ€“ Fast numerical operations, arrays, math
โ€ข matplotlib โ€“ Basic data visualizations (charts, plots)
โ€ข seaborn โ€“ Statistical plots, easier visuals with pandas
โ€ข openpyxl โ€“ Read/write Excel files
โ€ข plotly โ€“ Interactive visualizations and dashboards

๐Ÿ”ท 2๏ธโƒฃ For Data Science ๐Ÿง 
Used for statistics, experimentation, and storytelling
โ€ข scipy โ€“ Scientific computing, probability, optimization
โ€ข statsmodels โ€“ Statistical testing, linear models
โ€ข sklearn โ€“ Preprocessing + classic ML algorithms
โ€ข sqlalchemy โ€“ Work with databases using Python
โ€ข Jupyter โ€“ Interactive notebooks for code, text, charts
โ€ข dash โ€“ Create dashboard apps with Python

๐Ÿ”ท 3๏ธโƒฃ For Machine Learning ๐Ÿค–
Build and train predictive and deep learning models
โ€ข scikit-learn โ€“ Core ML: regression, classification, clustering
โ€ข TensorFlow โ€“ Deep learning by Google
โ€ข PyTorch โ€“ Deep learning by Meta, flexible and research-friendly
โ€ข XGBoost โ€“ Popular for gradient boosting models
โ€ข LightGBM โ€“ Fast boosting by Microsoft
โ€ข Keras โ€“ High-level neural network API (runs on TensorFlow)

๐Ÿ’ก Tip:
โ€ข Learn pandas + matplotlib + sklearn first
โ€ข Add ML/DL libraries based on your goals

๐Ÿ’ฌ Tap โค๏ธ for more!
โค7
๐—ฃ๐—น๐—ฎ๐—ฐ๐—ฒ๐—บ๐—ฒ๐—ป๐˜ ๐—”๐˜€๐˜€๐—ถ๐˜€๐˜๐—ฎ๐—ป๐—ฐ๐—ฒ ๐—ฃ๐—ฟ๐—ผ๐—ด๐—ฟ๐—ฎ๐—บ ๐—ถ๐—ป ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฎ๐—ป๐—ฑ ๐—”๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ถ๐—ฎ๐—น ๐—œ๐—ป๐˜๐—ฒ๐—น๐—น๐—ถ๐—ด๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฏ๐˜† ๐—œ๐—œ๐—ง ๐—ฅ๐—ผ๐—ผ๐—ฟ๐—ธ๐—ฒ๐—ฒ๐Ÿ˜

Deadline: 18th January 2026

Eligibility: Open to everyone
Duration: 6 Months
Program Mode: Online
Taught By: IIT Roorkee Professors

Companies majorly hire candidates having Data Science and Artificial Intelligence knowledge these days.

๐—ฅ๐—ฒ๐—ด๐—ถ๐˜€๐˜๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—Ÿ๐—ถ๐—ป๐—ธ๐Ÿ‘‡

https://pdlink.in/4qHVFkI

Only Limited Seats Available!
โค1
โœ… Natural Language Processing (NLP) Basics โ€“ Tokenization, Embeddings, Transformers ๐Ÿง ๐Ÿ—ฃ๏ธ

NLP is the branch of AI that deals with how machines understand human language. Let's break down 3 core concepts:

1๏ธโƒฃ Tokenization โ€“ Breaking Text Into Pieces
Tokenization means splitting a sentence or paragraph into smaller units like words or subwords.
Why it's needed: Models canโ€™t understand full sentences โ€” they process numbers, not raw text.
Types:
โ€ข Word Tokenization โ€“ โ€œI love NLPโ€ โ†’ [โ€œIโ€, โ€œloveโ€, โ€œNLPโ€]
โ€ข Subword Tokenization โ€“ โ€œunbelievableโ€ โ†’ [โ€œunโ€, โ€œbelievโ€, โ€œableโ€]
โ€ข Sentence Tokenization โ€“ Splits a paragraph into sentences
Tools: NLTK, SpaCy, Hugging Face Tokenizers

2๏ธโƒฃ Embeddings โ€“ Turning Text Into Numbers
Words need to be converted into vectors (numbers) so models can work with them.
What it does: Captures semantic meaning โ€” similar words have similar embeddings.
Common Methods:
โ€ข One-Hot Encoding โ€“ Basic, high-dimensional
โ€ข Word2Vec / GloVe โ€“ Pre-trained word embeddings
โ€ข BERT Embeddings โ€“ Context-aware, word meaning changes by context
Example: โ€œAppleโ€ in โ€œfruitโ€ vs โ€œAppleโ€ in โ€œtechโ€ โ†’ different embeddings in BERT

3๏ธโƒฃ Transformers โ€“ Modern NLP Backbone
Transformers are deep learning models that read all words at once and use attention to find relationships between them.
Core Idea: Instead of reading left-to-right (like RNNs), Transformers look at the entire sequence and decide which words matter most.
Key Terms:
โ€ข Self-Attention โ€“ Focus on relevant words in context
โ€ข Encoder & Decoder โ€“ For understanding and generating text
โ€ข Pretrained Models โ€“ BERT, RoBERTa, etc.
Use Cases:
โ€ข Text classification
โ€ข Question answering
โ€ข Translation
โ€ข Summarization
โ€ข Chatbots

๐Ÿ› ๏ธ Tools to Try Out:
โ€ข Hugging Face Transformers
โ€ข TensorFlow / PyTorch
โ€ข Google Colab
โ€ข spaCy, NLTK

๐ŸŽฏ Practice Task:
โ€ข Take a sentence
โ€ข Tokenize it
โ€ข Convert tokens to embeddings
โ€ข Pass through a transformer model (like BERT)
โ€ข See how it understands or predicts output

๐Ÿ’ฌ Tap โค๏ธ for more!
โค2๐Ÿฅฐ1
โœ… Data Science: Tools You Should Know as a Beginner ๐Ÿงฐ๐Ÿ“Š

Mastering these tools helps you build real-world data projects faster and smarter:

1๏ธโƒฃ Python
โœ” Most popular language in data science
โœ” Libraries: NumPy, Pandas, Scikit-learn, Matplotlib, Seaborn
๐Ÿ“Œ Use: Data cleaning, EDA, modeling, automation

2๏ธโƒฃ Jupyter Notebook
โœ” Interactive coding environment
โœ” Great for documentation + visualization
๐Ÿ“Œ Use: Prototyping & explaining models

3๏ธโƒฃ SQL
โœ” Essential for querying databases
๐Ÿ“Œ Use: Data extraction, filtering, joins, aggregations

4๏ธโƒฃ Excel / Google Sheets
โœ” Quick analysis & reports
๐Ÿ“Œ Use: Data exploration, pivot tables, charts

5๏ธโƒฃ Power BI / Tableau
โœ” Drag-and-drop dashboards
๐Ÿ“Œ Use: Visual storytelling & business insights

6๏ธโƒฃ Git & GitHub
โœ” Track code changes + collaborate
๐Ÿ“Œ Use: Version control, building your portfolio

7๏ธโƒฃ Scikit-learn
โœ” Ready-to-use ML models
๐Ÿ“Œ Use: Classification, regression, model evaluation

8๏ธโƒฃ Google Colab / Kaggle Notebooks
โœ” Free, cloud-based Python environment
๐Ÿ“Œ Use: Practice & run notebooks without setup

๐Ÿง  Bonus:
โ€ข VS Code โ€“ for scalable Python projects
โ€ข APIs โ€“ for real-world data access
โ€ข Streamlit โ€“ build data apps without frontend knowledge

Double Tap โ™ฅ๏ธ For More
โค11
๐๐š๐ฒ ๐€๐Ÿ๐ญ๐ž๐ซ ๐๐ฅ๐š๐œ๐ž๐ฆ๐ž๐ง๐ญ - ๐†๐ž๐ญ ๐๐ฅ๐š๐œ๐ž๐ ๐ˆ๐ง ๐“๐จ๐ฉ ๐Œ๐๐‚'๐ฌ ๐Ÿ˜

Learn Coding From Scratch - Lectures Taught By IIT Alumni

60+ Hiring Drives Every Month

๐‡๐ข๐ ๐ก๐ฅ๐ข๐ ๐ก๐ญ๐ฌ:- 

๐ŸŒŸ Trusted by 7500+ Students
๐Ÿค 500+ Hiring Partners
๐Ÿ’ผ Avg. Rs. 7.4 LPA
๐Ÿš€ 41 LPA Highest Package

Eligibility: BTech / BCA / BSc / MCA / MSc

๐‘๐ž๐ ๐ข๐ฌ๐ญ๐ž๐ซ ๐๐จ๐ฐ๐Ÿ‘‡ :- 

https://pdlink.in/4hO7rWY

Hurry, limited seats available!
โค1
SQL vs Python Programming: Quick Comparison โœ

๐Ÿ“Œ SQL Programming

โ€ข Query data from databases
โ€ข Filter, join, aggregate rows

Best fields
โ€ข Data Analytics
โ€ข Business Intelligence
โ€ข Reporting and MIS
โ€ข Entry-level Data Engineering

Job titles
โ€ข Data Analyst
โ€ข Business Analyst
โ€ข BI Analyst
โ€ข SQL Developer

Hiring reality
โ€ข Asked in most analyst interviews
โ€ข Used daily in analyst roles

India salary range
โ€ข Fresher: 4โ€“8 LPA
โ€ข Mid-level: 8โ€“15 LPA

Real tasks
โ€ข Monthly sales report
โ€ข Top customers by revenue
โ€ข Duplicate removal

๐Ÿ“Œ Python Programming

โ€ข Clean and analyze data
โ€ข Automate workflows
โ€ข Build models

Where you work
โ€ข Notebooks
โ€ข Scripts
โ€ข ML pipelines

Best fields
โ€ข Data Science
โ€ข Machine Learning
โ€ข Automation
โ€ข Advanced Analytics

Job titles
โ€ข Data Scientist
โ€ข ML Engineer
โ€ข Analytics Engineer
โ€ข Python Developer

Hiring reality
โ€ข Common in mid to senior roles
โ€ข Strong demand in AI teams

India salary range
โ€ข Fresher: 6โ€“10 LPA
โ€ข Mid-level: 12โ€“25 LPA

Real tasks
โ€ข Churn prediction
โ€ข Report automation
โ€ข File handling CSV, Excel, JSON

โš”๏ธ Quick comparison

โ€ข Data source
SQL stays inside databases
Python pulls data from anywhere

โ€ข Speed
SQL runs fast on large tables
Python slows with raw big data

โ€ข Learning
SQL is beginner-friendly
Python needs coding basics

๐ŸŽฏ Role-based choice

โ€ข Data Analyst
SQL required
Python adds value

โ€ข Data Scientist
Python required
SQL used to fetch data

โ€ข Business Analyst
SQL works for most roles
Python helps automate work

โ€ข Data Engineer
SQL for pipelines
Python for processing

โœ… Best career move
โ€ข Learn SQL first for entry
โ€ข Add Python for growth
โ€ข Use both in real projects

Which one do you prefer?

SQL ๐Ÿ‘
Python โค๏ธ
Both ๐Ÿ™
None ๐Ÿ˜ฎ
โค9๐Ÿ™3๐Ÿ‘1
Ad ๐Ÿ‘‡๐Ÿ‘‡
๐ŸŽโ—๏ธTODAY FREEโ—๏ธ๐ŸŽ

Entry to our VIP channel is completely free today. Tomorrow it will cost $500! ๐Ÿ”ฅ

JOIN ๐Ÿ‘‡

https://t.iss.one/+49f4gRT_WB9mMDli
https://t.iss.one/+49f4gRT_WB9mMDli
https://t.iss.one/+49f4gRT_WB9mMDli
โค1
Machine Learning Roadmap 2026
โค3๐Ÿ”ฅ3๐Ÿฅฐ1