โ
GitHub Profile Tips for Data Scientists ๐ง ๐
Your GitHub = your portfolio. Make it show skills, tools, and thinking.
1๏ธโฃ Profile README
โข Who you are & what you work on
โข Mention tools (Python, Pandas, SQL, Scikit-learn, Power BI)
โข Add project links & contact info
โ Example:
โAspiring Data Scientist skilled in Python, ML & visualization. Love solving business problems with data.โ
2๏ธโฃ Highlight 3โ6 Strong Projects
Each repo must have:
โข Clear README:
โ What problem you solved
โ Dataset used
โ Key steps (EDA โ Model โ Results)
โ Tools & libraries
โข Jupyter notebooks (cleaned + explained)
โข Charts & results with conclusions
โ Tip: Include PDF/report or dashboard screenshots
3๏ธโฃ Project Ideas to Include
โข Sales insights dashboard (Power BI or Tableau)
โข ML model (churn, fraud, sentiment)
โข NLP app (text summarizer, topic model)
โข EDA project on Kaggle dataset
โข SQL project with queries & joins
4๏ธโฃ Show Real Workflows
โข Use
โข Add data cleaning + preprocessing steps
โข Track experiments (metrics, models tried)
5๏ธโฃ Regular Commits
โข Update notebooks
โข Push improvements
โข Show learning progress over time
๐ Practice Task:
Pick 1 project โ Write full README โ Push to GitHub today
๐ฌ Tap โค๏ธ for more!
Your GitHub = your portfolio. Make it show skills, tools, and thinking.
1๏ธโฃ Profile README
โข Who you are & what you work on
โข Mention tools (Python, Pandas, SQL, Scikit-learn, Power BI)
โข Add project links & contact info
โ Example:
โAspiring Data Scientist skilled in Python, ML & visualization. Love solving business problems with data.โ
2๏ธโฃ Highlight 3โ6 Strong Projects
Each repo must have:
โข Clear README:
โ What problem you solved
โ Dataset used
โ Key steps (EDA โ Model โ Results)
โ Tools & libraries
โข Jupyter notebooks (cleaned + explained)
โข Charts & results with conclusions
โ Tip: Include PDF/report or dashboard screenshots
3๏ธโฃ Project Ideas to Include
โข Sales insights dashboard (Power BI or Tableau)
โข ML model (churn, fraud, sentiment)
โข NLP app (text summarizer, topic model)
โข EDA project on Kaggle dataset
โข SQL project with queries & joins
4๏ธโฃ Show Real Workflows
โข Use
.py scripts + .ipynb notebooks โข Add data cleaning + preprocessing steps
โข Track experiments (metrics, models tried)
5๏ธโฃ Regular Commits
โข Update notebooks
โข Push improvements
โข Show learning progress over time
๐ Practice Task:
Pick 1 project โ Write full README โ Push to GitHub today
๐ฌ Tap โค๏ธ for more!
โค8๐3
โ
Data Science Mistakes Beginners Should Avoid โ ๏ธ๐
1๏ธโฃ Skipping the Basics
โข Jumping into ML without Python, Stats, or Pandas
โ Build strong foundations in math, programming & EDA first
2๏ธโฃ Not Understanding the Problem
โข Applying models blindly
โข Irrelevant features and metrics
โ Always clarify business goals before coding
3๏ธโฃ Treating Data Cleaning as Optional
โข Training on dirty/incomplete data
โ Spend time on preprocessing โ itโs 70% of real work
4๏ธโฃ Using Complex Models Too Early
โข Overfitting small datasets
โข Ignoring simpler, interpretable models
โ Start with baseline models (Logistic Regression, Decision Trees)
5๏ธโฃ No Evaluation Strategy
โข Relying only on accuracy
โ Use proper metrics (F1, AUC, MAE) based on problem type
6๏ธโฃ Not Visualizing Data
โข Missed outliers and patterns
โ Use Seaborn, Matplotlib, Plotly for EDA
7๏ธโฃ Poor Feature Engineering
โข Feeding raw data into models
โ Create meaningful features that boost performance
8๏ธโฃ Ignoring Domain Knowledge
โข Features donโt align with real-world logic
โ Talk to stakeholders or do research before modeling
9๏ธโฃ No Practice with Real Datasets
โข Kaggle-only learning
โ Work with messy, real-world data (open data portals, APIs)
๐ Not Documenting or Sharing Work
โข No GitHub, no portfolio
โ Document notebooks, write blogs, push projects online
๐ฌ Tap โค๏ธ for more!
1๏ธโฃ Skipping the Basics
โข Jumping into ML without Python, Stats, or Pandas
โ Build strong foundations in math, programming & EDA first
2๏ธโฃ Not Understanding the Problem
โข Applying models blindly
โข Irrelevant features and metrics
โ Always clarify business goals before coding
3๏ธโฃ Treating Data Cleaning as Optional
โข Training on dirty/incomplete data
โ Spend time on preprocessing โ itโs 70% of real work
4๏ธโฃ Using Complex Models Too Early
โข Overfitting small datasets
โข Ignoring simpler, interpretable models
โ Start with baseline models (Logistic Regression, Decision Trees)
5๏ธโฃ No Evaluation Strategy
โข Relying only on accuracy
โ Use proper metrics (F1, AUC, MAE) based on problem type
6๏ธโฃ Not Visualizing Data
โข Missed outliers and patterns
โ Use Seaborn, Matplotlib, Plotly for EDA
7๏ธโฃ Poor Feature Engineering
โข Feeding raw data into models
โ Create meaningful features that boost performance
8๏ธโฃ Ignoring Domain Knowledge
โข Features donโt align with real-world logic
โ Talk to stakeholders or do research before modeling
9๏ธโฃ No Practice with Real Datasets
โข Kaggle-only learning
โ Work with messy, real-world data (open data portals, APIs)
๐ Not Documenting or Sharing Work
โข No GitHub, no portfolio
โ Document notebooks, write blogs, push projects online
๐ฌ Tap โค๏ธ for more!
โค10
๐ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐๐ฅ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐
๐Upgrade your skills with industry-relevant Data Analytics training at ZERO cost
โ Beginner-friendly
โ Certificate on completion
โ High-demand skill in 2026
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/497MMLw
๐ 100% FREE โ Limited seats available!
๐Upgrade your skills with industry-relevant Data Analytics training at ZERO cost
โ Beginner-friendly
โ Certificate on completion
โ High-demand skill in 2026
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/497MMLw
๐ 100% FREE โ Limited seats available!
โค2๐ฅฐ1
โ
Python Libraries & Tools You Should Know ๐๐ผ
Mastering the right Python libraries helps you work faster, smarter, and more effectively in any data role.
๐ท 1๏ธโฃ For Data Analytics ๐
Useful for cleaning, analyzing, and visualizing data
โข pandas โ Handle and manipulate structured data (tables)
โข numpy โ Fast numerical operations, arrays, math
โข matplotlib โ Basic data visualizations (charts, plots)
โข seaborn โ Statistical plots, easier visuals with pandas
โข openpyxl โ Read/write Excel files
โข plotly โ Interactive visualizations and dashboards
๐ท 2๏ธโฃ For Data Science ๐ง
Used for statistics, experimentation, and storytelling
โข scipy โ Scientific computing, probability, optimization
โข statsmodels โ Statistical testing, linear models
โข sklearn โ Preprocessing + classic ML algorithms
โข sqlalchemy โ Work with databases using Python
โข Jupyter โ Interactive notebooks for code, text, charts
โข dash โ Create dashboard apps with Python
๐ท 3๏ธโฃ For Machine Learning ๐ค
Build and train predictive and deep learning models
โข scikit-learn โ Core ML: regression, classification, clustering
โข TensorFlow โ Deep learning by Google
โข PyTorch โ Deep learning by Meta, flexible and research-friendly
โข XGBoost โ Popular for gradient boosting models
โข LightGBM โ Fast boosting by Microsoft
โข Keras โ High-level neural network API (runs on TensorFlow)
๐ก Tip:
โข Learn pandas + matplotlib + sklearn first
โข Add ML/DL libraries based on your goals
๐ฌ Tap โค๏ธ for more!
Mastering the right Python libraries helps you work faster, smarter, and more effectively in any data role.
๐ท 1๏ธโฃ For Data Analytics ๐
Useful for cleaning, analyzing, and visualizing data
โข pandas โ Handle and manipulate structured data (tables)
โข numpy โ Fast numerical operations, arrays, math
โข matplotlib โ Basic data visualizations (charts, plots)
โข seaborn โ Statistical plots, easier visuals with pandas
โข openpyxl โ Read/write Excel files
โข plotly โ Interactive visualizations and dashboards
๐ท 2๏ธโฃ For Data Science ๐ง
Used for statistics, experimentation, and storytelling
โข scipy โ Scientific computing, probability, optimization
โข statsmodels โ Statistical testing, linear models
โข sklearn โ Preprocessing + classic ML algorithms
โข sqlalchemy โ Work with databases using Python
โข Jupyter โ Interactive notebooks for code, text, charts
โข dash โ Create dashboard apps with Python
๐ท 3๏ธโฃ For Machine Learning ๐ค
Build and train predictive and deep learning models
โข scikit-learn โ Core ML: regression, classification, clustering
โข TensorFlow โ Deep learning by Google
โข PyTorch โ Deep learning by Meta, flexible and research-friendly
โข XGBoost โ Popular for gradient boosting models
โข LightGBM โ Fast boosting by Microsoft
โข Keras โ High-level neural network API (runs on TensorFlow)
๐ก Tip:
โข Learn pandas + matplotlib + sklearn first
โข Add ML/DL libraries based on your goals
๐ฌ Tap โค๏ธ for more!
โค7
๐ฃ๐น๐ฎ๐ฐ๐ฒ๐บ๐ฒ๐ป๐ ๐๐๐๐ถ๐๐๐ฎ๐ป๐ฐ๐ฒ ๐ฃ๐ฟ๐ผ๐ด๐ฟ๐ฎ๐บ ๐ถ๐ป ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐ฎ๐ป๐ฑ ๐๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ถ๐ฎ๐น ๐๐ป๐๐ฒ๐น๐น๐ถ๐ด๐ฒ๐ป๐ฐ๐ฒ ๐ฏ๐ ๐๐๐ง ๐ฅ๐ผ๐ผ๐ฟ๐ธ๐ฒ๐ฒ๐
Deadline: 18th January 2026
Eligibility: Open to everyone
Duration: 6 Months
Program Mode: Online
Taught By: IIT Roorkee Professors
Companies majorly hire candidates having Data Science and Artificial Intelligence knowledge these days.
๐ฅ๐ฒ๐ด๐ถ๐๐๐ฟ๐ฎ๐๐ถ๐ผ๐ป ๐๐ถ๐ป๐ธ๐:
https://pdlink.in/4qHVFkI
Only Limited Seats Available!
Deadline: 18th January 2026
Eligibility: Open to everyone
Duration: 6 Months
Program Mode: Online
Taught By: IIT Roorkee Professors
Companies majorly hire candidates having Data Science and Artificial Intelligence knowledge these days.
๐ฅ๐ฒ๐ด๐ถ๐๐๐ฟ๐ฎ๐๐ถ๐ผ๐ป ๐๐ถ๐ป๐ธ๐:
https://pdlink.in/4qHVFkI
Only Limited Seats Available!
โค1
โ
Natural Language Processing (NLP) Basics โ Tokenization, Embeddings, Transformers ๐ง ๐ฃ๏ธ
NLP is the branch of AI that deals with how machines understand human language. Let's break down 3 core concepts:
1๏ธโฃ Tokenization โ Breaking Text Into Pieces
Tokenization means splitting a sentence or paragraph into smaller units like words or subwords.
Why it's needed: Models canโt understand full sentences โ they process numbers, not raw text.
Types:
โข Word Tokenization โ โI love NLPโ โ [โIโ, โloveโ, โNLPโ]
โข Subword Tokenization โ โunbelievableโ โ [โunโ, โbelievโ, โableโ]
โข Sentence Tokenization โ Splits a paragraph into sentences
Tools: NLTK, SpaCy, Hugging Face Tokenizers
2๏ธโฃ Embeddings โ Turning Text Into Numbers
Words need to be converted into vectors (numbers) so models can work with them.
What it does: Captures semantic meaning โ similar words have similar embeddings.
Common Methods:
โข One-Hot Encoding โ Basic, high-dimensional
โข Word2Vec / GloVe โ Pre-trained word embeddings
โข BERT Embeddings โ Context-aware, word meaning changes by context
Example: โAppleโ in โfruitโ vs โAppleโ in โtechโ โ different embeddings in BERT
3๏ธโฃ Transformers โ Modern NLP Backbone
Transformers are deep learning models that read all words at once and use attention to find relationships between them.
Core Idea: Instead of reading left-to-right (like RNNs), Transformers look at the entire sequence and decide which words matter most.
Key Terms:
โข Self-Attention โ Focus on relevant words in context
โข Encoder & Decoder โ For understanding and generating text
โข Pretrained Models โ BERT, RoBERTa, etc.
Use Cases:
โข Text classification
โข Question answering
โข Translation
โข Summarization
โข Chatbots
๐ ๏ธ Tools to Try Out:
โข Hugging Face Transformers
โข TensorFlow / PyTorch
โข Google Colab
โข spaCy, NLTK
๐ฏ Practice Task:
โข Take a sentence
โข Tokenize it
โข Convert tokens to embeddings
โข Pass through a transformer model (like BERT)
โข See how it understands or predicts output
๐ฌ Tap โค๏ธ for more!
NLP is the branch of AI that deals with how machines understand human language. Let's break down 3 core concepts:
1๏ธโฃ Tokenization โ Breaking Text Into Pieces
Tokenization means splitting a sentence or paragraph into smaller units like words or subwords.
Why it's needed: Models canโt understand full sentences โ they process numbers, not raw text.
Types:
โข Word Tokenization โ โI love NLPโ โ [โIโ, โloveโ, โNLPโ]
โข Subword Tokenization โ โunbelievableโ โ [โunโ, โbelievโ, โableโ]
โข Sentence Tokenization โ Splits a paragraph into sentences
Tools: NLTK, SpaCy, Hugging Face Tokenizers
2๏ธโฃ Embeddings โ Turning Text Into Numbers
Words need to be converted into vectors (numbers) so models can work with them.
What it does: Captures semantic meaning โ similar words have similar embeddings.
Common Methods:
โข One-Hot Encoding โ Basic, high-dimensional
โข Word2Vec / GloVe โ Pre-trained word embeddings
โข BERT Embeddings โ Context-aware, word meaning changes by context
Example: โAppleโ in โfruitโ vs โAppleโ in โtechโ โ different embeddings in BERT
3๏ธโฃ Transformers โ Modern NLP Backbone
Transformers are deep learning models that read all words at once and use attention to find relationships between them.
Core Idea: Instead of reading left-to-right (like RNNs), Transformers look at the entire sequence and decide which words matter most.
Key Terms:
โข Self-Attention โ Focus on relevant words in context
โข Encoder & Decoder โ For understanding and generating text
โข Pretrained Models โ BERT, RoBERTa, etc.
Use Cases:
โข Text classification
โข Question answering
โข Translation
โข Summarization
โข Chatbots
๐ ๏ธ Tools to Try Out:
โข Hugging Face Transformers
โข TensorFlow / PyTorch
โข Google Colab
โข spaCy, NLTK
๐ฏ Practice Task:
โข Take a sentence
โข Tokenize it
โข Convert tokens to embeddings
โข Pass through a transformer model (like BERT)
โข See how it understands or predicts output
๐ฌ Tap โค๏ธ for more!
โค2๐ฅฐ1
โ
Data Science: Tools You Should Know as a Beginner ๐งฐ๐
Mastering these tools helps you build real-world data projects faster and smarter:
1๏ธโฃ Python
โ Most popular language in data science
โ Libraries: NumPy, Pandas, Scikit-learn, Matplotlib, Seaborn
๐ Use: Data cleaning, EDA, modeling, automation
2๏ธโฃ Jupyter Notebook
โ Interactive coding environment
โ Great for documentation + visualization
๐ Use: Prototyping & explaining models
3๏ธโฃ SQL
โ Essential for querying databases
๐ Use: Data extraction, filtering, joins, aggregations
4๏ธโฃ Excel / Google Sheets
โ Quick analysis & reports
๐ Use: Data exploration, pivot tables, charts
5๏ธโฃ Power BI / Tableau
โ Drag-and-drop dashboards
๐ Use: Visual storytelling & business insights
6๏ธโฃ Git & GitHub
โ Track code changes + collaborate
๐ Use: Version control, building your portfolio
7๏ธโฃ Scikit-learn
โ Ready-to-use ML models
๐ Use: Classification, regression, model evaluation
8๏ธโฃ Google Colab / Kaggle Notebooks
โ Free, cloud-based Python environment
๐ Use: Practice & run notebooks without setup
๐ง Bonus:
โข VS Code โ for scalable Python projects
โข APIs โ for real-world data access
โข Streamlit โ build data apps without frontend knowledge
Double Tap โฅ๏ธ For More
Mastering these tools helps you build real-world data projects faster and smarter:
1๏ธโฃ Python
โ Most popular language in data science
โ Libraries: NumPy, Pandas, Scikit-learn, Matplotlib, Seaborn
๐ Use: Data cleaning, EDA, modeling, automation
2๏ธโฃ Jupyter Notebook
โ Interactive coding environment
โ Great for documentation + visualization
๐ Use: Prototyping & explaining models
3๏ธโฃ SQL
โ Essential for querying databases
๐ Use: Data extraction, filtering, joins, aggregations
4๏ธโฃ Excel / Google Sheets
โ Quick analysis & reports
๐ Use: Data exploration, pivot tables, charts
5๏ธโฃ Power BI / Tableau
โ Drag-and-drop dashboards
๐ Use: Visual storytelling & business insights
6๏ธโฃ Git & GitHub
โ Track code changes + collaborate
๐ Use: Version control, building your portfolio
7๏ธโฃ Scikit-learn
โ Ready-to-use ML models
๐ Use: Classification, regression, model evaluation
8๏ธโฃ Google Colab / Kaggle Notebooks
โ Free, cloud-based Python environment
๐ Use: Practice & run notebooks without setup
๐ง Bonus:
โข VS Code โ for scalable Python projects
โข APIs โ for real-world data access
โข Streamlit โ build data apps without frontend knowledge
Double Tap โฅ๏ธ For More
โค11
๐๐๐ฒ ๐๐๐ญ๐๐ซ ๐๐ฅ๐๐๐๐ฆ๐๐ง๐ญ - ๐๐๐ญ ๐๐ฅ๐๐๐๐ ๐๐ง ๐๐จ๐ฉ ๐๐๐'๐ฌ ๐
Learn Coding From Scratch - Lectures Taught By IIT Alumni
60+ Hiring Drives Every Month
๐๐ข๐ ๐ก๐ฅ๐ข๐ ๐ก๐ญ๐ฌ:-
๐ Trusted by 7500+ Students
๐ค 500+ Hiring Partners
๐ผ Avg. Rs. 7.4 LPA
๐ 41 LPA Highest Package
Eligibility: BTech / BCA / BSc / MCA / MSc
๐๐๐ ๐ข๐ฌ๐ญ๐๐ซ ๐๐จ๐ฐ๐ :-
https://pdlink.in/4hO7rWY
Hurry, limited seats available!
Learn Coding From Scratch - Lectures Taught By IIT Alumni
60+ Hiring Drives Every Month
๐๐ข๐ ๐ก๐ฅ๐ข๐ ๐ก๐ญ๐ฌ:-
๐ Trusted by 7500+ Students
๐ค 500+ Hiring Partners
๐ผ Avg. Rs. 7.4 LPA
๐ 41 LPA Highest Package
Eligibility: BTech / BCA / BSc / MCA / MSc
๐๐๐ ๐ข๐ฌ๐ญ๐๐ซ ๐๐จ๐ฐ๐ :-
https://pdlink.in/4hO7rWY
Hurry, limited seats available!
โค1
SQL vs Python Programming: Quick Comparison โ
๐ SQL Programming
โข Query data from databases
โข Filter, join, aggregate rows
Best fields
โข Data Analytics
โข Business Intelligence
โข Reporting and MIS
โข Entry-level Data Engineering
Job titles
โข Data Analyst
โข Business Analyst
โข BI Analyst
โข SQL Developer
Hiring reality
โข Asked in most analyst interviews
โข Used daily in analyst roles
India salary range
โข Fresher: 4โ8 LPA
โข Mid-level: 8โ15 LPA
Real tasks
โข Monthly sales report
โข Top customers by revenue
โข Duplicate removal
๐ Python Programming
โข Clean and analyze data
โข Automate workflows
โข Build models
Where you work
โข Notebooks
โข Scripts
โข ML pipelines
Best fields
โข Data Science
โข Machine Learning
โข Automation
โข Advanced Analytics
Job titles
โข Data Scientist
โข ML Engineer
โข Analytics Engineer
โข Python Developer
Hiring reality
โข Common in mid to senior roles
โข Strong demand in AI teams
India salary range
โข Fresher: 6โ10 LPA
โข Mid-level: 12โ25 LPA
Real tasks
โข Churn prediction
โข Report automation
โข File handling CSV, Excel, JSON
โ๏ธ Quick comparison
โข Data source
SQL stays inside databases
Python pulls data from anywhere
โข Speed
SQL runs fast on large tables
Python slows with raw big data
โข Learning
SQL is beginner-friendly
Python needs coding basics
๐ฏ Role-based choice
โข Data Analyst
SQL required
Python adds value
โข Data Scientist
Python required
SQL used to fetch data
โข Business Analyst
SQL works for most roles
Python helps automate work
โข Data Engineer
SQL for pipelines
Python for processing
โ Best career move
โข Learn SQL first for entry
โข Add Python for growth
โข Use both in real projects
Which one do you prefer?
SQL ๐
Python โค๏ธ
Both ๐
None ๐ฎ
๐ SQL Programming
โข Query data from databases
โข Filter, join, aggregate rows
Best fields
โข Data Analytics
โข Business Intelligence
โข Reporting and MIS
โข Entry-level Data Engineering
Job titles
โข Data Analyst
โข Business Analyst
โข BI Analyst
โข SQL Developer
Hiring reality
โข Asked in most analyst interviews
โข Used daily in analyst roles
India salary range
โข Fresher: 4โ8 LPA
โข Mid-level: 8โ15 LPA
Real tasks
โข Monthly sales report
โข Top customers by revenue
โข Duplicate removal
๐ Python Programming
โข Clean and analyze data
โข Automate workflows
โข Build models
Where you work
โข Notebooks
โข Scripts
โข ML pipelines
Best fields
โข Data Science
โข Machine Learning
โข Automation
โข Advanced Analytics
Job titles
โข Data Scientist
โข ML Engineer
โข Analytics Engineer
โข Python Developer
Hiring reality
โข Common in mid to senior roles
โข Strong demand in AI teams
India salary range
โข Fresher: 6โ10 LPA
โข Mid-level: 12โ25 LPA
Real tasks
โข Churn prediction
โข Report automation
โข File handling CSV, Excel, JSON
โ๏ธ Quick comparison
โข Data source
SQL stays inside databases
Python pulls data from anywhere
โข Speed
SQL runs fast on large tables
Python slows with raw big data
โข Learning
SQL is beginner-friendly
Python needs coding basics
๐ฏ Role-based choice
โข Data Analyst
SQL required
Python adds value
โข Data Scientist
Python required
SQL used to fetch data
โข Business Analyst
SQL works for most roles
Python helps automate work
โข Data Engineer
SQL for pipelines
Python for processing
โ Best career move
โข Learn SQL first for entry
โข Add Python for growth
โข Use both in real projects
Which one do you prefer?
SQL ๐
Python โค๏ธ
Both ๐
None ๐ฎ
โค9๐3๐1
๐โ๏ธTODAY FREEโ๏ธ๐
Entry to our VIP channel is completely free today. Tomorrow it will cost $500! ๐ฅ
JOIN ๐
https://t.iss.one/+49f4gRT_WB9mMDli
https://t.iss.one/+49f4gRT_WB9mMDli
https://t.iss.one/+49f4gRT_WB9mMDli
Entry to our VIP channel is completely free today. Tomorrow it will cost $500! ๐ฅ
JOIN ๐
https://t.iss.one/+49f4gRT_WB9mMDli
https://t.iss.one/+49f4gRT_WB9mMDli
https://t.iss.one/+49f4gRT_WB9mMDli
โค1