Data Science & Machine Learning
73.1K subscribers
779 photos
2 videos
68 files
686 links
Join this channel to learn data science, artificial intelligence and machine learning with funny quizzes, interesting projects and amazing resources for free

For collaborations: @love_data
Download Telegram
๐ŸŽฏ ๐—ก๐—ฒ๐˜„ ๐˜†๐—ฒ๐—ฎ๐—ฟ, ๐—ป๐—ฒ๐˜„ ๐˜€๐—ธ๐—ถ๐—น๐—น๐˜€.

If you've been meaning to learn ๐—ฎ๐—ด๐—ฒ๐—ป๐˜๐—ถ๐—ฐ ๐—”๐—œ, this is your starting point.

Build a real RAG assistant from scratch.
Beginner-friendly. Completely self-paced.

๐Ÿฑ๐Ÿฌ,๐Ÿฌ๐Ÿฌ๐Ÿฌ+ ๐—น๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ฒ๐—ฟ๐˜€ from 130+ countries already enrolled.

https://www.readytensor.ai/agentic-ai-essentials-cert/
โค2
โœ… Python for Data Science: Part-4

Data Visualization with Matplotlib, Seaborn Plotly ๐Ÿ“Š๐Ÿ“ˆ

1๏ธโƒฃ Matplotlib โ€“ Basic Plotting
Great for simple line, bar, and scatter plots.

Import and Line Plot
import matplotlib.pyplot as plt

x = [1, 2, 3, 4]
y = [10, 20, 25, 30]
plt.plot(x, y)
plt.title("Line Plot")
plt.xlabel("X-axis")
plt.ylabel("Y-axis")
plt.show()

Bar Plot
names = ["A", "B", "C"]
scores = [80, 90, 70]
plt.bar(names, scores)
plt.title("Scores by Name")
plt.show()


2๏ธโƒฃ Seaborn โ€“ Statistical Visualization
Built on Matplotlib with better styling.

Import and Plot
import seaborn as sns
import pandas as pd

df = pd.DataFrame({
"Name": ["Riya", "Aman", "John", "Sara"],
"Score": [85, 92, 78, 88]
})

sns.barplot(x="Name", y="Score", data=df)

Other Seaborn Plots
sns.histplot(df["Score"])          # Histogram  
sns.boxplot(x=df["Score"]) # Box plot


3๏ธโƒฃ Plotly โ€“ Interactive Graphs
Great for dashboards and interactivity.

Basic Line Plot
import plotly.express as px

df = pd.DataFrame({
"x": [1, 2, 3],
"y": [10, 20, 15]
})

fig = px.line(df, x="x", y="y", title="Interactive Line Plot")
fig.show()


๐ŸŽฏ Why Visualization Matters
โ€ข Helps spot patterns in data
โ€ข Makes insights clear and shareable
โ€ข Supports better decision-making

Practice Task:
โ€ข Create a line plot using matplotlib
โ€ข Use seaborn to plot a boxplot for scores
โ€ข Try any interactive chart using plotly

๐Ÿ’ฌ Tap โค๏ธ for more
โค8
๐—™๐—ฅ๐—˜๐—˜ ๐—ข๐—ป๐—น๐—ถ๐—ป๐—ฒ ๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ๐—ฐ๐—น๐—ฎ๐˜€๐˜€ ๐—ข๐—ป ๐—Ÿ๐—ฎ๐˜๐—ฒ๐˜€๐˜ ๐—ง๐—ฒ๐—ฐ๐—ต๐—ป๐—ผ๐—น๐—ผ๐—ด๐—ถ๐—ฒ๐˜€๐Ÿ˜

- Data Science 
- AI/ML
- Data Analytics
- UI/UX
- Full-stack Development 

Get Job-Ready Guidance in Your Tech Journey

๐—ฅ๐—ฒ๐—ด๐—ถ๐˜€๐˜๐—ฒ๐—ฟ ๐—™๐—ผ๐—ฟ ๐—™๐—ฅ๐—˜๐—˜๐Ÿ‘‡:- 

https://pdlink.in/4sw5Ev8

Date :- 11th January 2026
โœ… Python for Data Science: Part-5

๐Ÿ“Š Descriptive Statistics, Probability Distributions

1๏ธโƒฃ Descriptive Statistics with Pandas
Quick way to summarize datasets.

import pandas as pd

data = {"Marks": [85, 92, 78, 88, 90]}
df = pd.DataFrame(data)

print(df.describe()) # count, mean, std, min, max, etc.
print(df["Marks"].mean()) # Average
print(df["Marks"].median()) # Middle value
print(df["Marks"].mode()) # Most frequent value


2๏ธโƒฃ Probability Basics
Chances of an event occurring (0 to 1)

Tossing a coin
prob_heads = 1 / 2
print(prob_heads) # 0.5

Multiple outcomes example:

from itertools import product

outcomes = list(product(["H", "T"], repeat=2))
print(outcomes) # [('H', 'H'), ('H', 'T'), ('T', 'H'), ('T', 'T')]


3๏ธโƒฃ Normal Distribution using NumPy Seaborn

import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

data = np.random.normal(loc=0, scale=1, size=1000)

sns.histplot(data, kde=True)
plt.title("Normal Distribution")
plt.show()


4๏ธโƒฃ Other Distributions
โ€ข Binomial โ†’ pass/fail outcomes
โ€ข Poisson โ†’ rare event frequency
โ€ข Uniform โ†’ all outcomes equally likely

Binomial Example:

from scipy.stats import binom

# 10 trials, p = 0.5
print(binom.pmf(k=5, n=10, p=0.5)) # Probability of 5 successes


๐ŸŽฏ Why This Matters
โ€ข Descriptive stats help understand data quickly
โ€ข Distributions help model real-world situations
โ€ข Probability supports prediction and risk analysis

Practice Task:
โ€ข Generate a normal distribution
โ€ข Calculate mean, median, std
โ€ข Plot binomial probability of success

๐Ÿ’ฌ Tap โค๏ธ for more
โค5
โœ… Data Science Resume Tips ๐Ÿ“Š๐Ÿ’ผ

To land data science roles, your resume should highlight problem-solving, tools, and real insights.

1๏ธโƒฃ Contact Info (Top)
โ€ข Name, email, GitHub, LinkedIn, portfolio/Kaggle
โ€ข Optional: location, phone

2๏ธโƒฃ Summary (2โ€“3 lines)
Brief overview showing your skills + value
โžก โ€œData scientist with strong Python, ML & SQL skills. Built projects in healthcare & finance. Proven ability to turn data into insights.โ€

3๏ธโƒฃ Skills Section
Group by type:
โ€ข Languages: Python, R, SQL
โ€ข Libraries: Pandas, NumPy, Scikit-learn, Matplotlib, Seaborn
โ€ข Tools: Jupyter, Git, Tableau, Power BI
โ€ข ML/Stats: Regression, Classification, Clustering, A/B testing

4๏ธโƒฃ Projects (Most Important)
List 3โ€“4 impactful projects:
โ€ข Clear title
โ€ข Dataset used
โ€ข What you did (EDA, model, visualizations)
โ€ข Tools used
โ€ข GitHub + live dashboard (if any)

Example:
Loan Default Prediction โ€“ Used logistic regression + feature engineering on Kaggle dataset to predict defaults. 82% accuracy.
GitHub: [link]

5๏ธโƒฃ Work Experience / Internships
Show how you used data to create value:
โ€ข โ€œBuilt churn prediction model โ†’ reduced churn by 15%โ€
โ€ข โ€œAutomated Excel reports using Python, saving 6 hrs/weekโ€

6๏ธโƒฃ Education
โ€ข Degree or certifications
โ€ข Mention bootcamps, if relevant

7๏ธโƒฃ Certifications (Optional)
โ€ข Google Data Analytics
โ€ข IBM Data Science
โ€ข Coursera/edX Machine Learning

๐Ÿ’ก Tips:
โ€ข Show impact: โ€œIncreased accuracy by 10%โ€
โ€ข Use real datasets
โ€ข Keep layout clean and focused

๐Ÿ’ฌ Tap โค๏ธ for more!
โค5
๐—›๐—ถ๐—ด๐—ต ๐——๐—ฒ๐—บ๐—ฎ๐—ป๐—ฑ๐—ถ๐—ป๐—ด ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐—ช๐—ถ๐˜๐—ต ๐—ฃ๐—น๐—ฎ๐—ฐ๐—ฒ๐—บ๐—ฒ๐—ป๐˜ ๐—”๐˜€๐˜€๐—ถ๐˜€๐˜๐—ฎ๐—ป๐—ฐ๐—ฒ๐Ÿ˜

Learn from IIT faculty and industry experts.

IIT Roorkee DS & AI Program :- https://pdlink.in/4qHVFkI

IIT Patna AI & ML :- https://pdlink.in/4pBNxkV

IIM Mumbai DM & Analytics :- https://pdlink.in/4jvuHdE

IIM Rohtak Product Management:- https://pdlink.in/4aMtk8i

IIT Roorkee Agentic Systems:- https://pdlink.in/4aTKgdc

Upskill in todayโ€™s most in-demand tech domains and boost your career ๐Ÿš€
โค2
โœ… GitHub Profile Tips for Data Scientists ๐Ÿง ๐Ÿ“Š

Your GitHub = your portfolio. Make it show skills, tools, and thinking.

1๏ธโƒฃ Profile README
โ€ข Who you are & what you work on
โ€ข Mention tools (Python, Pandas, SQL, Scikit-learn, Power BI)
โ€ข Add project links & contact info
โœ… Example:
โ€œAspiring Data Scientist skilled in Python, ML & visualization. Love solving business problems with data.โ€

2๏ธโƒฃ Highlight 3โ€“6 Strong Projects
Each repo must have:
โ€ข Clear README:
โ€“ What problem you solved
โ€“ Dataset used
โ€“ Key steps (EDA โ†’ Model โ†’ Results)
โ€“ Tools & libraries
โ€ข Jupyter notebooks (cleaned + explained)
โ€ข Charts & results with conclusions
โœ… Tip: Include PDF/report or dashboard screenshots

3๏ธโƒฃ Project Ideas to Include
โ€ข Sales insights dashboard (Power BI or Tableau)
โ€ข ML model (churn, fraud, sentiment)
โ€ข NLP app (text summarizer, topic model)
โ€ข EDA project on Kaggle dataset
โ€ข SQL project with queries & joins

4๏ธโƒฃ Show Real Workflows
โ€ข Use .py scripts + .ipynb notebooks
โ€ข Add data cleaning + preprocessing steps
โ€ข Track experiments (metrics, models tried)

5๏ธโƒฃ Regular Commits
โ€ข Update notebooks
โ€ข Push improvements
โ€ข Show learning progress over time

๐Ÿ“Œ Practice Task:
Pick 1 project โ†’ Write full README โ†’ Push to GitHub today

๐Ÿ’ฌ Tap โค๏ธ for more!
โค7๐Ÿ‘3
โœ… Data Science Mistakes Beginners Should Avoid โš ๏ธ๐Ÿ“‰

1๏ธโƒฃ Skipping the Basics
โ€ข Jumping into ML without Python, Stats, or Pandas
โœ… Build strong foundations in math, programming & EDA first

2๏ธโƒฃ Not Understanding the Problem
โ€ข Applying models blindly
โ€ข Irrelevant features and metrics
โœ… Always clarify business goals before coding

3๏ธโƒฃ Treating Data Cleaning as Optional
โ€ข Training on dirty/incomplete data
โœ… Spend time on preprocessing โ€” itโ€™s 70% of real work

4๏ธโƒฃ Using Complex Models Too Early
โ€ข Overfitting small datasets
โ€ข Ignoring simpler, interpretable models
โœ… Start with baseline models (Logistic Regression, Decision Trees)

5๏ธโƒฃ No Evaluation Strategy
โ€ข Relying only on accuracy
โœ… Use proper metrics (F1, AUC, MAE) based on problem type

6๏ธโƒฃ Not Visualizing Data
โ€ข Missed outliers and patterns
โœ… Use Seaborn, Matplotlib, Plotly for EDA

7๏ธโƒฃ Poor Feature Engineering
โ€ข Feeding raw data into models
โœ… Create meaningful features that boost performance

8๏ธโƒฃ Ignoring Domain Knowledge
โ€ข Features donโ€™t align with real-world logic
โœ… Talk to stakeholders or do research before modeling

9๏ธโƒฃ No Practice with Real Datasets
โ€ข Kaggle-only learning
โœ… Work with messy, real-world data (open data portals, APIs)

๐Ÿ”Ÿ Not Documenting or Sharing Work
โ€ข No GitHub, no portfolio
โœ… Document notebooks, write blogs, push projects online

๐Ÿ’ฌ Tap โค๏ธ for more!
โค10
๐Ÿ“Š ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐Ÿ˜

๐Ÿš€Upgrade your skills with industry-relevant Data Analytics training at ZERO cost 

โœ… Beginner-friendly
โœ… Certificate on completion
โœ… High-demand skill in 2026

๐‹๐ข๐ง๐ค ๐Ÿ‘‡:- 

https://pdlink.in/497MMLw

๐Ÿ“Œ 100% FREE โ€“ Limited seats available!
โค1๐Ÿฅฐ1
โœ… Python Libraries & Tools You Should Know ๐Ÿ๐Ÿ’ผ

Mastering the right Python libraries helps you work faster, smarter, and more effectively in any data role.

๐Ÿ”ท 1๏ธโƒฃ For Data Analytics ๐Ÿ“Š
Useful for cleaning, analyzing, and visualizing data
โ€ข pandas โ€“ Handle and manipulate structured data (tables)
โ€ข numpy โ€“ Fast numerical operations, arrays, math
โ€ข matplotlib โ€“ Basic data visualizations (charts, plots)
โ€ข seaborn โ€“ Statistical plots, easier visuals with pandas
โ€ข openpyxl โ€“ Read/write Excel files
โ€ข plotly โ€“ Interactive visualizations and dashboards

๐Ÿ”ท 2๏ธโƒฃ For Data Science ๐Ÿง 
Used for statistics, experimentation, and storytelling
โ€ข scipy โ€“ Scientific computing, probability, optimization
โ€ข statsmodels โ€“ Statistical testing, linear models
โ€ข sklearn โ€“ Preprocessing + classic ML algorithms
โ€ข sqlalchemy โ€“ Work with databases using Python
โ€ข Jupyter โ€“ Interactive notebooks for code, text, charts
โ€ข dash โ€“ Create dashboard apps with Python

๐Ÿ”ท 3๏ธโƒฃ For Machine Learning ๐Ÿค–
Build and train predictive and deep learning models
โ€ข scikit-learn โ€“ Core ML: regression, classification, clustering
โ€ข TensorFlow โ€“ Deep learning by Google
โ€ข PyTorch โ€“ Deep learning by Meta, flexible and research-friendly
โ€ข XGBoost โ€“ Popular for gradient boosting models
โ€ข LightGBM โ€“ Fast boosting by Microsoft
โ€ข Keras โ€“ High-level neural network API (runs on TensorFlow)

๐Ÿ’ก Tip:
โ€ข Learn pandas + matplotlib + sklearn first
โ€ข Add ML/DL libraries based on your goals

๐Ÿ’ฌ Tap โค๏ธ for more!
โค6
๐—ฃ๐—น๐—ฎ๐—ฐ๐—ฒ๐—บ๐—ฒ๐—ป๐˜ ๐—”๐˜€๐˜€๐—ถ๐˜€๐˜๐—ฎ๐—ป๐—ฐ๐—ฒ ๐—ฃ๐—ฟ๐—ผ๐—ด๐—ฟ๐—ฎ๐—บ ๐—ถ๐—ป ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฎ๐—ป๐—ฑ ๐—”๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ถ๐—ฎ๐—น ๐—œ๐—ป๐˜๐—ฒ๐—น๐—น๐—ถ๐—ด๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฏ๐˜† ๐—œ๐—œ๐—ง ๐—ฅ๐—ผ๐—ผ๐—ฟ๐—ธ๐—ฒ๐—ฒ๐Ÿ˜

Deadline: 18th January 2026

Eligibility: Open to everyone
Duration: 6 Months
Program Mode: Online
Taught By: IIT Roorkee Professors

Companies majorly hire candidates having Data Science and Artificial Intelligence knowledge these days.

๐—ฅ๐—ฒ๐—ด๐—ถ๐˜€๐˜๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—Ÿ๐—ถ๐—ป๐—ธ๐Ÿ‘‡

https://pdlink.in/4qHVFkI

Only Limited Seats Available!
โœ… Natural Language Processing (NLP) Basics โ€“ Tokenization, Embeddings, Transformers ๐Ÿง ๐Ÿ—ฃ๏ธ

NLP is the branch of AI that deals with how machines understand human language. Let's break down 3 core concepts:

1๏ธโƒฃ Tokenization โ€“ Breaking Text Into Pieces
Tokenization means splitting a sentence or paragraph into smaller units like words or subwords.
Why it's needed: Models canโ€™t understand full sentences โ€” they process numbers, not raw text.
Types:
โ€ข Word Tokenization โ€“ โ€œI love NLPโ€ โ†’ [โ€œIโ€, โ€œloveโ€, โ€œNLPโ€]
โ€ข Subword Tokenization โ€“ โ€œunbelievableโ€ โ†’ [โ€œunโ€, โ€œbelievโ€, โ€œableโ€]
โ€ข Sentence Tokenization โ€“ Splits a paragraph into sentences
Tools: NLTK, SpaCy, Hugging Face Tokenizers

2๏ธโƒฃ Embeddings โ€“ Turning Text Into Numbers
Words need to be converted into vectors (numbers) so models can work with them.
What it does: Captures semantic meaning โ€” similar words have similar embeddings.
Common Methods:
โ€ข One-Hot Encoding โ€“ Basic, high-dimensional
โ€ข Word2Vec / GloVe โ€“ Pre-trained word embeddings
โ€ข BERT Embeddings โ€“ Context-aware, word meaning changes by context
Example: โ€œAppleโ€ in โ€œfruitโ€ vs โ€œAppleโ€ in โ€œtechโ€ โ†’ different embeddings in BERT

3๏ธโƒฃ Transformers โ€“ Modern NLP Backbone
Transformers are deep learning models that read all words at once and use attention to find relationships between them.
Core Idea: Instead of reading left-to-right (like RNNs), Transformers look at the entire sequence and decide which words matter most.
Key Terms:
โ€ข Self-Attention โ€“ Focus on relevant words in context
โ€ข Encoder & Decoder โ€“ For understanding and generating text
โ€ข Pretrained Models โ€“ BERT, RoBERTa, etc.
Use Cases:
โ€ข Text classification
โ€ข Question answering
โ€ข Translation
โ€ข Summarization
โ€ข Chatbots

๐Ÿ› ๏ธ Tools to Try Out:
โ€ข Hugging Face Transformers
โ€ข TensorFlow / PyTorch
โ€ข Google Colab
โ€ข spaCy, NLTK

๐ŸŽฏ Practice Task:
โ€ข Take a sentence
โ€ข Tokenize it
โ€ข Convert tokens to embeddings
โ€ข Pass through a transformer model (like BERT)
โ€ข See how it understands or predicts output

๐Ÿ’ฌ Tap โค๏ธ for more!
โค1
โœ… Data Science: Tools You Should Know as a Beginner ๐Ÿงฐ๐Ÿ“Š

Mastering these tools helps you build real-world data projects faster and smarter:

1๏ธโƒฃ Python
โœ” Most popular language in data science
โœ” Libraries: NumPy, Pandas, Scikit-learn, Matplotlib, Seaborn
๐Ÿ“Œ Use: Data cleaning, EDA, modeling, automation

2๏ธโƒฃ Jupyter Notebook
โœ” Interactive coding environment
โœ” Great for documentation + visualization
๐Ÿ“Œ Use: Prototyping & explaining models

3๏ธโƒฃ SQL
โœ” Essential for querying databases
๐Ÿ“Œ Use: Data extraction, filtering, joins, aggregations

4๏ธโƒฃ Excel / Google Sheets
โœ” Quick analysis & reports
๐Ÿ“Œ Use: Data exploration, pivot tables, charts

5๏ธโƒฃ Power BI / Tableau
โœ” Drag-and-drop dashboards
๐Ÿ“Œ Use: Visual storytelling & business insights

6๏ธโƒฃ Git & GitHub
โœ” Track code changes + collaborate
๐Ÿ“Œ Use: Version control, building your portfolio

7๏ธโƒฃ Scikit-learn
โœ” Ready-to-use ML models
๐Ÿ“Œ Use: Classification, regression, model evaluation

8๏ธโƒฃ Google Colab / Kaggle Notebooks
โœ” Free, cloud-based Python environment
๐Ÿ“Œ Use: Practice & run notebooks without setup

๐Ÿง  Bonus:
โ€ข VS Code โ€“ for scalable Python projects
โ€ข APIs โ€“ for real-world data access
โ€ข Streamlit โ€“ build data apps without frontend knowledge

Double Tap โ™ฅ๏ธ For More
โค7