One Membership, a Complete AI Study Toolkit
๐For anyone has no idea how to accelerate their study with AI, thereโs MuleRun.One account, all the studyโfocused AI power youโve heard about!
๐คฏIf you:
โข feel FOMO about AI but donโt know where to start
โข are tired of jumping between different AI tools and websites
โข just want something that actually helps you study
then MuleRun is built exactly for you.
๐คWith MuleRun, you can:
โข instantly find and summarize academic papers
โข turn a 1โhour YouTube lecture into a 1โminute keyโpoint summary
โข let AI help you do anything directly in your browser
โฆโฆ
๐ก Click here to give it a try: https://mulerun.pxf.io/jePYd6
๐For anyone has no idea how to accelerate their study with AI, thereโs MuleRun.One account, all the studyโfocused AI power youโve heard about!
๐คฏIf you:
โข feel FOMO about AI but donโt know where to start
โข are tired of jumping between different AI tools and websites
โข just want something that actually helps you study
then MuleRun is built exactly for you.
๐คWith MuleRun, you can:
โข instantly find and summarize academic papers
โข turn a 1โhour YouTube lecture into a 1โminute keyโpoint summary
โข let AI help you do anything directly in your browser
โฆโฆ
๐ก Click here to give it a try: https://mulerun.pxf.io/jePYd6
โค6๐2
โ
Data Science Interview Prep Guide ๐๐ง
Whether you're a fresher or career-switcher, hereโs how to prep step-by-step:
1๏ธโฃ Understand the Role
Data scientists solve problems using data. Core responsibilities:
โข Data cleaning analysis
โข Building predictive models
โข Communicating insights
โข Working with business/product teams
2๏ธโฃ Core Skills Needed
โ๏ธ Python (NumPy, Pandas, Matplotlib, Scikit-learn)
โ๏ธ SQL
โ๏ธ Statistics probability
โ๏ธ Machine Learning basics
โ๏ธ Data storytelling visualization (Power BI / Tableau / Seaborn)
3๏ธโฃ Key Interview Areas
A. Python Coding
โข Write code to clean and analyze data
โข Solve logic problems (e.g., reverse a list, group data by key)
โข List vs Dict vs DataFrame usage
B. Statistics Probability
โข Hypothesis testing
โข p-values, confidence intervals
โข Normal distribution, sampling
C. Machine Learning Concepts
โข Supervised vs unsupervised learning
โข Overfitting, regularization, cross-validation
โข Algorithms: Linear Regression, Decision Trees, KNN, SVM
D. SQL
โข Joins, GROUP BY, subqueries
โข Window functions
โข Data aggregation and filtering
E. Business Communication
โข Explain model results to non-tech stakeholders
โข What metrics would you track for [business case]?
โข Tell me about a time you used data to influence a decision
4๏ธโฃ Build Your Portfolio
โ Do projects like:
โข E-commerce sales analysis
โข Customer churn prediction
โข Movie recommendation system
โ Host on GitHub or Kaggle
โ Add visual dashboards and insights
5๏ธโฃ Practice Platforms
โข LeetCode (SQL, Python)
โข HackerRank
โข StrataScratch (SQL case studies)
โข Kaggle (competitions notebooks)
๐ฌ Tap โค๏ธ for more!
Whether you're a fresher or career-switcher, hereโs how to prep step-by-step:
1๏ธโฃ Understand the Role
Data scientists solve problems using data. Core responsibilities:
โข Data cleaning analysis
โข Building predictive models
โข Communicating insights
โข Working with business/product teams
2๏ธโฃ Core Skills Needed
โ๏ธ Python (NumPy, Pandas, Matplotlib, Scikit-learn)
โ๏ธ SQL
โ๏ธ Statistics probability
โ๏ธ Machine Learning basics
โ๏ธ Data storytelling visualization (Power BI / Tableau / Seaborn)
3๏ธโฃ Key Interview Areas
A. Python Coding
โข Write code to clean and analyze data
โข Solve logic problems (e.g., reverse a list, group data by key)
โข List vs Dict vs DataFrame usage
B. Statistics Probability
โข Hypothesis testing
โข p-values, confidence intervals
โข Normal distribution, sampling
C. Machine Learning Concepts
โข Supervised vs unsupervised learning
โข Overfitting, regularization, cross-validation
โข Algorithms: Linear Regression, Decision Trees, KNN, SVM
D. SQL
โข Joins, GROUP BY, subqueries
โข Window functions
โข Data aggregation and filtering
E. Business Communication
โข Explain model results to non-tech stakeholders
โข What metrics would you track for [business case]?
โข Tell me about a time you used data to influence a decision
4๏ธโฃ Build Your Portfolio
โ Do projects like:
โข E-commerce sales analysis
โข Customer churn prediction
โข Movie recommendation system
โ Host on GitHub or Kaggle
โ Add visual dashboards and insights
5๏ธโฃ Practice Platforms
โข LeetCode (SQL, Python)
โข HackerRank
โข StrataScratch (SQL case studies)
โข Kaggle (competitions notebooks)
๐ฌ Tap โค๏ธ for more!
โค19
โ
Top Data Science Projects That Impress Recruiters ๐ง ๐
1. End-to-End ML Pipeline
โ Choose a real dataset (e.g. housing, Titanic)
โ Include data cleaning, feature engineering, model training evaluation
โ Tools: Python (Pandas, Scikit-learn), Jupyter
2. Customer Segmentation (Clustering)
โ Use K-Means or DBSCAN to group customers
โ Visualize clusters and describe patterns
โ Tools: Python, Seaborn, Plotly
3. Sentiment Analysis on Tweets or Reviews
โ Classify sentiments (positive/negative/neutral)
โ Preprocessing: tokenization, stop words removal
โ Tools: Python (NLTK/TextBlob), word clouds
4. Time Series Forecasting
โ Predict sales, temperature, stock prices
โ Use ARIMA, Prophet, or LSTM
โ Tools: Python (statsmodels, Facebook Prophet)
5. Resume Parser or Job Match System
โ NLP project that reads resumes and matches with job descriptions
โ Use Named Entity Recognition cosine similarity
โ Tools: Python (Spacy, sklearn)
6. Image Classification
โ Classify animals, signs, or objects using CNNs
โ Train with TensorFlow or PyTorch
โ Tools: Python, Keras
7. Credit Risk Prediction
โ Predict loan default using classification models
โ Use imbalanced datasets, ROC-AUC, SMOTE
โ Tools: Python, Scikit-learn
8. Fake News Detection
โ Binary classifier using TF-IDF or BERT
โ Clean and label news data
โ Tools: Python (NLP), Transformers
Tips:
โ Add storytelling with business context
โ Highlight model performance (accuracy, F1-score, AUC)
โ Share notebooks + dashboards + GitHub link
โ Use real-world data (Kaggle, UCI, APIs)
๐ฌ Tap โค๏ธ for more!
1. End-to-End ML Pipeline
โ Choose a real dataset (e.g. housing, Titanic)
โ Include data cleaning, feature engineering, model training evaluation
โ Tools: Python (Pandas, Scikit-learn), Jupyter
2. Customer Segmentation (Clustering)
โ Use K-Means or DBSCAN to group customers
โ Visualize clusters and describe patterns
โ Tools: Python, Seaborn, Plotly
3. Sentiment Analysis on Tweets or Reviews
โ Classify sentiments (positive/negative/neutral)
โ Preprocessing: tokenization, stop words removal
โ Tools: Python (NLTK/TextBlob), word clouds
4. Time Series Forecasting
โ Predict sales, temperature, stock prices
โ Use ARIMA, Prophet, or LSTM
โ Tools: Python (statsmodels, Facebook Prophet)
5. Resume Parser or Job Match System
โ NLP project that reads resumes and matches with job descriptions
โ Use Named Entity Recognition cosine similarity
โ Tools: Python (Spacy, sklearn)
6. Image Classification
โ Classify animals, signs, or objects using CNNs
โ Train with TensorFlow or PyTorch
โ Tools: Python, Keras
7. Credit Risk Prediction
โ Predict loan default using classification models
โ Use imbalanced datasets, ROC-AUC, SMOTE
โ Tools: Python, Scikit-learn
8. Fake News Detection
โ Binary classifier using TF-IDF or BERT
โ Clean and label news data
โ Tools: Python (NLP), Transformers
Tips:
โ Add storytelling with business context
โ Highlight model performance (accuracy, F1-score, AUC)
โ Share notebooks + dashboards + GitHub link
โ Use real-world data (Kaggle, UCI, APIs)
๐ฌ Tap โค๏ธ for more!
โค10๐2
๐ Roadmap to Master Data Science in 60 Days! ๐๐ง
๐ Week 1โ2: Foundations
๐น Day 1โ5: Python basics (variables, loops, functions)
๐น Day 6โ10: NumPy Pandas for data handling
๐ Week 3โ4: Data Visualization Statistics
๐น Day 11โ15: Matplotlib, Seaborn, Plotly
๐น Day 16โ20: Descriptive stats, probability, distributions
๐ Week 5โ6: Data Cleaning EDA
๐น Day 21โ25: Missing data, outliers, data types
๐น Day 26โ30: Exploratory Data Analysis (EDA) projects
๐ Week 7โ8: Machine Learning
๐น Day 31โ35: Regression, Classification (Scikit-learn)
๐น Day 36โ40: Model tuning, metrics, cross-validation
๐ Week 9โ10: Advanced Concepts
๐น Day 41โ45: Clustering, PCA, Time Series basics
๐น Day 46โ50: NLP or Deep Learning (basics with TensorFlow/Keras)
๐ Week 11โ12: Projects Deployment
๐น Day 51โ55: Build 2 projects (e.g., Loan Prediction, Sentiment Analysis)
๐น Day 56โ60: Deploy using Streamlit, Flask + GitHub
๐งฐ Tools to Learn:
โข Jupyter, Google Colab
โข Git GitHub
โข Excel, SQL basics
โข Power BI/Tableau (optional)
๐ฌ Tap โค๏ธ for more!
๐ Week 1โ2: Foundations
๐น Day 1โ5: Python basics (variables, loops, functions)
๐น Day 6โ10: NumPy Pandas for data handling
๐ Week 3โ4: Data Visualization Statistics
๐น Day 11โ15: Matplotlib, Seaborn, Plotly
๐น Day 16โ20: Descriptive stats, probability, distributions
๐ Week 5โ6: Data Cleaning EDA
๐น Day 21โ25: Missing data, outliers, data types
๐น Day 26โ30: Exploratory Data Analysis (EDA) projects
๐ Week 7โ8: Machine Learning
๐น Day 31โ35: Regression, Classification (Scikit-learn)
๐น Day 36โ40: Model tuning, metrics, cross-validation
๐ Week 9โ10: Advanced Concepts
๐น Day 41โ45: Clustering, PCA, Time Series basics
๐น Day 46โ50: NLP or Deep Learning (basics with TensorFlow/Keras)
๐ Week 11โ12: Projects Deployment
๐น Day 51โ55: Build 2 projects (e.g., Loan Prediction, Sentiment Analysis)
๐น Day 56โ60: Deploy using Streamlit, Flask + GitHub
๐งฐ Tools to Learn:
โข Jupyter, Google Colab
โข Git GitHub
โข Excel, SQL basics
โข Power BI/Tableau (optional)
๐ฌ Tap โค๏ธ for more!
โค22๐2
In every family tree, there is 1 person who breaks out the middle-class chain and works hard to become a millionaire and changes the lives of everyone forever.
May that be you in 2026.
Happy New Year! โค๏ธ
May that be you in 2026.
Happy New Year! โค๏ธ
โค75๐ฅ14๐2
โ
Python Basics for Data Science: Part-1
Variables Data Types
In Python, variables are used to store data, and data types define what kind of data is stored. This is the first and most essential building block of your data science journey.
1๏ธโฃ What is a Variable?
A variable is like a label for data stored in memory. You can assign any value to a variable and reuse it throughout your code.
Syntax:
2๏ธโฃ Common Data Types in Python
โข int โ Integers (whole numbers)
โข float โ Decimal numbers
โข str โ Text/String
โข bool โ Boolean (True or False)
โข list โ A collection of items
โข tuple โ Ordered, immutable collection
โข dict โ Key-value pairs
3๏ธโฃ Type Checking
You can check the type of any variable using
4๏ธโฃ Type Conversion
Change data from one type to another:
5๏ธโฃ Why This Matters in Data Science
Data comes in various types. Understanding and managing types is critical for:
โข Cleaning data
โข Performing calculations
โข Avoiding errors in analysis
โ Practice Task for You:
โข Create 5 variables with different data types
โข Use
โข Convert a string to an integer and do basic math
๐ฌ Tap โค๏ธ for more!
Variables Data Types
In Python, variables are used to store data, and data types define what kind of data is stored. This is the first and most essential building block of your data science journey.
1๏ธโฃ What is a Variable?
A variable is like a label for data stored in memory. You can assign any value to a variable and reuse it throughout your code.
Syntax:
x = 10
name = "Riya"
is_active = True
2๏ธโฃ Common Data Types in Python
โข int โ Integers (whole numbers)
age = 25
โข float โ Decimal numbers
height = 5.8
โข str โ Text/String
city = "Mumbai"
โข bool โ Boolean (True or False)
is_student = False
โข list โ A collection of items
fruits = ["apple", "banana", "mango"]
โข tuple โ Ordered, immutable collection
coordinates = (10.5, 20.3)
โข dict โ Key-value pairs
student = {"name": "Riya", "score": 90}3๏ธโฃ Type Checking
You can check the type of any variable using
type() print(type(age)) # <class 'int'>
print(type(city)) # <class 'str'>
4๏ธโฃ Type Conversion
Change data from one type to another:
num = "100"
converted = int(num)
print(type(converted)) # <class 'int'>
5๏ธโฃ Why This Matters in Data Science
Data comes in various types. Understanding and managing types is critical for:
โข Cleaning data
โข Performing calculations
โข Avoiding errors in analysis
โ Practice Task for You:
โข Create 5 variables with different data types
โข Use
type() to print each one โข Convert a string to an integer and do basic math
๐ฌ Tap โค๏ธ for more!
โค13๐4
๐๐ฅ๐๐ ๐ข๐ป๐น๐ถ๐ป๐ฒ ๐ ๐ฎ๐๐๐ฒ๐ฟ๐ฐ๐น๐ฎ๐๐ ๐๐ ๐๐ป๐ฑ๐๐๐๐ฟ๐ ๐๐
๐ฝ๐ฒ๐ฟ๐๐ ๐
Roadmap to land your dream job in top product-based companies
๐๐ถ๐ด๐ต๐น๐ถ๐ด๐ต๐๐ฒ๐:-
- 90-Day Placement Plan
- Tech & Non-Tech Career Path
- Interview Preparation Tips
- Live Q&A
๐ฅ๐ฒ๐ด๐ถ๐๐๐ฒ๐ฟ ๐๐ผ๐ฟ ๐๐ฅ๐๐๐:-
https://pdlink.in/3Ltb3CE
Date & Time:- 06th January 2026 , 7PM
Roadmap to land your dream job in top product-based companies
๐๐ถ๐ด๐ต๐น๐ถ๐ด๐ต๐๐ฒ๐:-
- 90-Day Placement Plan
- Tech & Non-Tech Career Path
- Interview Preparation Tips
- Live Q&A
๐ฅ๐ฒ๐ด๐ถ๐๐๐ฒ๐ฟ ๐๐ผ๐ฟ ๐๐ฅ๐๐๐:-
https://pdlink.in/3Ltb3CE
Date & Time:- 06th January 2026 , 7PM
โค1
โ
Python Basics for Data Science: Part-2
Loops Functions ๐๐ง
These two concepts are key to writing clean, efficient, and reusable code โ especially when working with data.
1๏ธโฃ Loops in Python
Loops help you repeat tasks like reading data, checking values, or processing items in a list.
For Loop
While Loop
Loop with Condition
2๏ธโฃ Functions in Python
Functions let you group code into blocks you can reuse.
Basic Function
Function with Logic
Function for Calculation
โ Why This Matters in Data Science
โข Loops help in iterating over datasets
โข Functions make your data cleaning reusable
โข Helps organize long analysis code into simple blocks
๐ฏ Practice Task for You:
โข Write a for loop to print numbers from 1 to 10
โข Create a function that takes two numbers and returns their average
โข Make a function that returns "Even" or "Odd" based on input
๐ฌ Tap โค๏ธ for more!
Loops Functions ๐๐ง
These two concepts are key to writing clean, efficient, and reusable code โ especially when working with data.
1๏ธโฃ Loops in Python
Loops help you repeat tasks like reading data, checking values, or processing items in a list.
For Loop
fruits = ["apple", "banana", "mango"]
for fruit in fruits:
print(fruit)
While Loop
count = 1
while count <= 3:
print("Loading...", count)
count += 1
Loop with Condition
numbers = [10, 5, 20, 3]
for num in numbers:
if num > 10:
print(num, "is greater than 10")
2๏ธโฃ Functions in Python
Functions let you group code into blocks you can reuse.
Basic Function
def greet(name):
return f"Hello, {name}!"
print(greet("Riya"))
Function with Logic
def is_even(num):
if num % 2 == 0:
return True
return False
print(is_even(4)) # Output: True
Function for Calculation
def square(x):
return x * x
print(square(6)) # Output: 36
โ Why This Matters in Data Science
โข Loops help in iterating over datasets
โข Functions make your data cleaning reusable
โข Helps organize long analysis code into simple blocks
๐ฏ Practice Task for You:
โข Write a for loop to print numbers from 1 to 10
โข Create a function that takes two numbers and returns their average
โข Make a function that returns "Even" or "Odd" based on input
๐ฌ Tap โค๏ธ for more!
โค13
๐ง๐ผ๐ฝ ๐ฑ ๐๐ป-๐๐ฒ๐บ๐ฎ๐ป๐ฑ ๐ฆ๐ธ๐ถ๐น๐น๐ ๐๐ผ ๐๐ผ๐ฐ๐๐ ๐ผ๐ป ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฒ๐
Start learning industry-relevant data skills today at zero cost!
๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐:- https://pdlink.in/497MMLw
๐๐ & ๐ ๐ :- https://pdlink.in/4bhetTu
๐๐น๐ผ๐๐ฑ ๐๐ผ๐บ๐ฝ๐๐๐ถ๐ป๐ด:- https://pdlink.in/3LoutZd
๐๐๐ฏ๐ฒ๐ฟ ๐ฆ๐ฒ๐ฐ๐๐ฟ๐ถ๐๐:- https://pdlink.in/3N9VOyW
๐ข๐๐ต๐ฒ๐ฟ ๐ง๐ฒ๐ฐ๐ต ๐๐ผ๐๐ฟ๐๐ฒ๐:- https://pdlink.in/4qgtrxU
๐ Enroll Now & Get Certified
Start learning industry-relevant data skills today at zero cost!
๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐:- https://pdlink.in/497MMLw
๐๐ & ๐ ๐ :- https://pdlink.in/4bhetTu
๐๐น๐ผ๐๐ฑ ๐๐ผ๐บ๐ฝ๐๐๐ถ๐ป๐ด:- https://pdlink.in/3LoutZd
๐๐๐ฏ๐ฒ๐ฟ ๐ฆ๐ฒ๐ฐ๐๐ฟ๐ถ๐๐:- https://pdlink.in/3N9VOyW
๐ข๐๐ต๐ฒ๐ฟ ๐ง๐ฒ๐ฐ๐ต ๐๐ผ๐๐ฟ๐๐ฒ๐:- https://pdlink.in/4qgtrxU
๐ Enroll Now & Get Certified
โค1
โ
Python for Data Science: Part-3
NumPy Pandas Basics ๐๐
These two libraries form the foundation for handling and analyzing data in Python.
1๏ธโฃ NumPy โ Numerical Python
NumPy helps with fast numerical operations and array handling.
Importing NumPy
Create Arrays
Array Operations
Useful NumPy Functions
2๏ธโฃ Pandas โ Data Analysis Library
Pandas is used to work with data in table format (DataFrames).
Importing Pandas
Create a DataFrame
Read CSV File
Basic DataFrame Operations
Filter Rows
๐ฏ Why This Matters
โข NumPy makes math faster and easier
โข Pandas helps clean, explore, and transform data
โข Essential for real-world data analysis
Practice Task:
โข Create a NumPy array of 10 numbers
โข Make a Pandas DataFrame with 2 columns (Name, Score)
โข Filter all scores above 80
๐ฌ Tap โค๏ธ for more
NumPy Pandas Basics ๐๐
These two libraries form the foundation for handling and analyzing data in Python.
1๏ธโฃ NumPy โ Numerical Python
NumPy helps with fast numerical operations and array handling.
Importing NumPy
import numpy as np
Create Arrays
arr = np.array([1, 2, 3])
print(arr)
Array Operations
a = np.array([1, 2, 3])
b = np.array([4, 5, 6])
print(a + b) # [5 7 9]
print(a * 2) # [2 4 6]
Useful NumPy Functions
np.mean(a) # Average
np.max(b) # Max value
np.arange(0, 10, 2) # [0 2 4 6 8]
2๏ธโฃ Pandas โ Data Analysis Library
Pandas is used to work with data in table format (DataFrames).
Importing Pandas
import pandas as pd
Create a DataFrame
data = {
"Name": ["Riya", "Aman"],
"Age": [24, 30]
}
df = pd.DataFrame(data)
print(df)Read CSV File
df = pd.read_csv("data.csv")Basic DataFrame Operations
df.head() # First 5 rows
df.info() # Column types
df.describe() # Stats summary
df["Age"].mean() # Average age
Filter Rows
df[df["Age"] > 25]
๐ฏ Why This Matters
โข NumPy makes math faster and easier
โข Pandas helps clean, explore, and transform data
โข Essential for real-world data analysis
Practice Task:
โข Create a NumPy array of 10 numbers
โข Make a Pandas DataFrame with 2 columns (Name, Score)
โข Filter all scores above 80
๐ฌ Tap โค๏ธ for more
โค6๐1
๐ฏ ๐ก๐ฒ๐ ๐๐ฒ๐ฎ๐ฟ, ๐ป๐ฒ๐ ๐๐ธ๐ถ๐น๐น๐.
If you've been meaning to learn ๐ฎ๐ด๐ฒ๐ป๐๐ถ๐ฐ ๐๐, this is your starting point.
Build a real RAG assistant from scratch.
Beginner-friendly. Completely self-paced.
๐ฑ๐ฌ,๐ฌ๐ฌ๐ฌ+ ๐น๐ฒ๐ฎ๐ฟ๐ป๐ฒ๐ฟ๐ from 130+ countries already enrolled.
https://www.readytensor.ai/agentic-ai-essentials-cert/
If you've been meaning to learn ๐ฎ๐ด๐ฒ๐ป๐๐ถ๐ฐ ๐๐, this is your starting point.
Build a real RAG assistant from scratch.
Beginner-friendly. Completely self-paced.
๐ฑ๐ฌ,๐ฌ๐ฌ๐ฌ+ ๐น๐ฒ๐ฎ๐ฟ๐ป๐ฒ๐ฟ๐ from 130+ countries already enrolled.
https://www.readytensor.ai/agentic-ai-essentials-cert/
โค2
๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐ฎ๐ป๐ฑ ๐๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ถ๐ฎ๐น ๐๐ป๐๐ฒ๐น๐น๐ถ๐ด๐ฒ๐ป๐ฐ๐ฒ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐ฃ๐ฟ๐ผ๐ด๐ฟ๐ฎ๐บ ๐ฏ๐ ๐๐๐ง ๐ฅ๐ผ๐ผ๐ฟ๐ธ๐ฒ๐ฒ๐
Deadline: 11th January 2026
Eligibility: Open to everyone
Duration: 6 Months
Program Mode: Online
Taught By: IIT Roorkee Professors
Companies majorly hire candidates having Data Science and Artificial Intelligence knowledge these days.
๐ฅ๐ฒ๐ด๐ถ๐๐๐ฟ๐ฎ๐๐ถ๐ผ๐ป ๐๐ถ๐ป๐ธ๐:
https://pdlink.in/4qNGMO6
Only Limited Seats Available!
Deadline: 11th January 2026
Eligibility: Open to everyone
Duration: 6 Months
Program Mode: Online
Taught By: IIT Roorkee Professors
Companies majorly hire candidates having Data Science and Artificial Intelligence knowledge these days.
๐ฅ๐ฒ๐ด๐ถ๐๐๐ฟ๐ฎ๐๐ถ๐ผ๐ป ๐๐ถ๐ป๐ธ๐:
https://pdlink.in/4qNGMO6
Only Limited Seats Available!
โ
Python for Data Science: Part-4
Data Visualization with Matplotlib, Seaborn Plotly ๐๐
1๏ธโฃ Matplotlib โ Basic Plotting
Great for simple line, bar, and scatter plots.
Import and Line Plot
Bar Plot
2๏ธโฃ Seaborn โ Statistical Visualization
Built on Matplotlib with better styling.
Import and Plot
Other Seaborn Plots
3๏ธโฃ Plotly โ Interactive Graphs
Great for dashboards and interactivity.
Basic Line Plot
๐ฏ Why Visualization Matters
โข Helps spot patterns in data
โข Makes insights clear and shareable
โข Supports better decision-making
Practice Task:
โข Create a line plot using matplotlib
โข Use seaborn to plot a boxplot for scores
โข Try any interactive chart using plotly
๐ฌ Tap โค๏ธ for more
Data Visualization with Matplotlib, Seaborn Plotly ๐๐
1๏ธโฃ Matplotlib โ Basic Plotting
Great for simple line, bar, and scatter plots.
Import and Line Plot
import matplotlib.pyplot as plt
x = [1, 2, 3, 4]
y = [10, 20, 25, 30]
plt.plot(x, y)
plt.title("Line Plot")
plt.xlabel("X-axis")
plt.ylabel("Y-axis")
plt.show()
Bar Plot
names = ["A", "B", "C"]
scores = [80, 90, 70]
plt.bar(names, scores)
plt.title("Scores by Name")
plt.show()
2๏ธโฃ Seaborn โ Statistical Visualization
Built on Matplotlib with better styling.
Import and Plot
import seaborn as sns
import pandas as pd
df = pd.DataFrame({
"Name": ["Riya", "Aman", "John", "Sara"],
"Score": [85, 92, 78, 88]
})
sns.barplot(x="Name", y="Score", data=df)
Other Seaborn Plots
sns.histplot(df["Score"]) # Histogram
sns.boxplot(x=df["Score"]) # Box plot
3๏ธโฃ Plotly โ Interactive Graphs
Great for dashboards and interactivity.
Basic Line Plot
import plotly.express as px
df = pd.DataFrame({
"x": [1, 2, 3],
"y": [10, 20, 15]
})
fig = px.line(df, x="x", y="y", title="Interactive Line Plot")
fig.show()
๐ฏ Why Visualization Matters
โข Helps spot patterns in data
โข Makes insights clear and shareable
โข Supports better decision-making
Practice Task:
โข Create a line plot using matplotlib
โข Use seaborn to plot a boxplot for scores
โข Try any interactive chart using plotly
๐ฌ Tap โค๏ธ for more
โค7
๐๐ฅ๐๐ ๐ข๐ป๐น๐ถ๐ป๐ฒ ๐ ๐ฎ๐๐๐ฒ๐ฟ๐ฐ๐น๐ฎ๐๐ ๐ข๐ป ๐๐ฎ๐๐ฒ๐๐ ๐ง๐ฒ๐ฐ๐ต๐ป๐ผ๐น๐ผ๐ด๐ถ๐ฒ๐๐
- Data Science
- AI/ML
- Data Analytics
- UI/UX
- Full-stack Development
Get Job-Ready Guidance in Your Tech Journey
๐ฅ๐ฒ๐ด๐ถ๐๐๐ฒ๐ฟ ๐๐ผ๐ฟ ๐๐ฅ๐๐๐:-
https://pdlink.in/4sw5Ev8
Date :- 11th January 2026
- Data Science
- AI/ML
- Data Analytics
- UI/UX
- Full-stack Development
Get Job-Ready Guidance in Your Tech Journey
๐ฅ๐ฒ๐ด๐ถ๐๐๐ฒ๐ฟ ๐๐ผ๐ฟ ๐๐ฅ๐๐๐:-
https://pdlink.in/4sw5Ev8
Date :- 11th January 2026
โ
Python for Data Science: Part-5
๐ Descriptive Statistics, Probability Distributions
1๏ธโฃ Descriptive Statistics with Pandas
Quick way to summarize datasets.
2๏ธโฃ Probability Basics
Chances of an event occurring (0 to 1)
Tossing a coin
Multiple outcomes example:
3๏ธโฃ Normal Distribution using NumPy Seaborn
4๏ธโฃ Other Distributions
โข Binomial โ pass/fail outcomes
โข Poisson โ rare event frequency
โข Uniform โ all outcomes equally likely
Binomial Example:
๐ฏ Why This Matters
โข Descriptive stats help understand data quickly
โข Distributions help model real-world situations
โข Probability supports prediction and risk analysis
Practice Task:
โข Generate a normal distribution
โข Calculate mean, median, std
โข Plot binomial probability of success
๐ฌ Tap โค๏ธ for more
๐ Descriptive Statistics, Probability Distributions
1๏ธโฃ Descriptive Statistics with Pandas
Quick way to summarize datasets.
import pandas as pd
data = {"Marks": [85, 92, 78, 88, 90]}
df = pd.DataFrame(data)
print(df.describe()) # count, mean, std, min, max, etc.
print(df["Marks"].mean()) # Average
print(df["Marks"].median()) # Middle value
print(df["Marks"].mode()) # Most frequent value
2๏ธโฃ Probability Basics
Chances of an event occurring (0 to 1)
Tossing a coin
prob_heads = 1 / 2
print(prob_heads) # 0.5
Multiple outcomes example:
from itertools import product
outcomes = list(product(["H", "T"], repeat=2))
print(outcomes) # [('H', 'H'), ('H', 'T'), ('T', 'H'), ('T', 'T')]
3๏ธโฃ Normal Distribution using NumPy Seaborn
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
data = np.random.normal(loc=0, scale=1, size=1000)
sns.histplot(data, kde=True)
plt.title("Normal Distribution")
plt.show()
4๏ธโฃ Other Distributions
โข Binomial โ pass/fail outcomes
โข Poisson โ rare event frequency
โข Uniform โ all outcomes equally likely
Binomial Example:
from scipy.stats import binom
# 10 trials, p = 0.5
print(binom.pmf(k=5, n=10, p=0.5)) # Probability of 5 successes
๐ฏ Why This Matters
โข Descriptive stats help understand data quickly
โข Distributions help model real-world situations
โข Probability supports prediction and risk analysis
Practice Task:
โข Generate a normal distribution
โข Calculate mean, median, std
โข Plot binomial probability of success
๐ฌ Tap โค๏ธ for more
โค4
โ
Data Science Resume Tips ๐๐ผ
To land data science roles, your resume should highlight problem-solving, tools, and real insights.
1๏ธโฃ Contact Info (Top)
โข Name, email, GitHub, LinkedIn, portfolio/Kaggle
โข Optional: location, phone
2๏ธโฃ Summary (2โ3 lines)
Brief overview showing your skills + value
โก โData scientist with strong Python, ML & SQL skills. Built projects in healthcare & finance. Proven ability to turn data into insights.โ
3๏ธโฃ Skills Section
Group by type:
โข Languages: Python, R, SQL
โข Libraries: Pandas, NumPy, Scikit-learn, Matplotlib, Seaborn
โข Tools: Jupyter, Git, Tableau, Power BI
โข ML/Stats: Regression, Classification, Clustering, A/B testing
4๏ธโฃ Projects (Most Important)
List 3โ4 impactful projects:
โข Clear title
โข Dataset used
โข What you did (EDA, model, visualizations)
โข Tools used
โข GitHub + live dashboard (if any)
Example:
Loan Default Prediction โ Used logistic regression + feature engineering on Kaggle dataset to predict defaults. 82% accuracy.
GitHub: [link]
5๏ธโฃ Work Experience / Internships
Show how you used data to create value:
โข โBuilt churn prediction model โ reduced churn by 15%โ
โข โAutomated Excel reports using Python, saving 6 hrs/weekโ
6๏ธโฃ Education
โข Degree or certifications
โข Mention bootcamps, if relevant
7๏ธโฃ Certifications (Optional)
โข Google Data Analytics
โข IBM Data Science
โข Coursera/edX Machine Learning
๐ก Tips:
โข Show impact: โIncreased accuracy by 10%โ
โข Use real datasets
โข Keep layout clean and focused
๐ฌ Tap โค๏ธ for more!
To land data science roles, your resume should highlight problem-solving, tools, and real insights.
1๏ธโฃ Contact Info (Top)
โข Name, email, GitHub, LinkedIn, portfolio/Kaggle
โข Optional: location, phone
2๏ธโฃ Summary (2โ3 lines)
Brief overview showing your skills + value
โก โData scientist with strong Python, ML & SQL skills. Built projects in healthcare & finance. Proven ability to turn data into insights.โ
3๏ธโฃ Skills Section
Group by type:
โข Languages: Python, R, SQL
โข Libraries: Pandas, NumPy, Scikit-learn, Matplotlib, Seaborn
โข Tools: Jupyter, Git, Tableau, Power BI
โข ML/Stats: Regression, Classification, Clustering, A/B testing
4๏ธโฃ Projects (Most Important)
List 3โ4 impactful projects:
โข Clear title
โข Dataset used
โข What you did (EDA, model, visualizations)
โข Tools used
โข GitHub + live dashboard (if any)
Example:
Loan Default Prediction โ Used logistic regression + feature engineering on Kaggle dataset to predict defaults. 82% accuracy.
GitHub: [link]
5๏ธโฃ Work Experience / Internships
Show how you used data to create value:
โข โBuilt churn prediction model โ reduced churn by 15%โ
โข โAutomated Excel reports using Python, saving 6 hrs/weekโ
6๏ธโฃ Education
โข Degree or certifications
โข Mention bootcamps, if relevant
7๏ธโฃ Certifications (Optional)
โข Google Data Analytics
โข IBM Data Science
โข Coursera/edX Machine Learning
๐ก Tips:
โข Show impact: โIncreased accuracy by 10%โ
โข Use real datasets
โข Keep layout clean and focused
๐ฌ Tap โค๏ธ for more!
โค4
๐๐ถ๐ด๐ต ๐๐ฒ๐บ๐ฎ๐ป๐ฑ๐ถ๐ป๐ด ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐ช๐ถ๐๐ต ๐ฃ๐น๐ฎ๐ฐ๐ฒ๐บ๐ฒ๐ป๐ ๐๐๐๐ถ๐๐๐ฎ๐ป๐ฐ๐ฒ๐
Learn from IIT faculty and industry experts.
IIT Roorkee DS & AI Program :- https://pdlink.in/4qHVFkI
IIT Patna AI & ML :- https://pdlink.in/4pBNxkV
IIM Mumbai DM & Analytics :- https://pdlink.in/4jvuHdE
IIM Rohtak Product Management:- https://pdlink.in/4aMtk8i
IIT Roorkee Agentic Systems:- https://pdlink.in/4aTKgdc
Upskill in todayโs most in-demand tech domains and boost your career ๐
Learn from IIT faculty and industry experts.
IIT Roorkee DS & AI Program :- https://pdlink.in/4qHVFkI
IIT Patna AI & ML :- https://pdlink.in/4pBNxkV
IIM Mumbai DM & Analytics :- https://pdlink.in/4jvuHdE
IIM Rohtak Product Management:- https://pdlink.in/4aMtk8i
IIT Roorkee Agentic Systems:- https://pdlink.in/4aTKgdc
Upskill in todayโs most in-demand tech domains and boost your career ๐
โค2
โ
GitHub Profile Tips for Data Scientists ๐ง ๐
Your GitHub = your portfolio. Make it show skills, tools, and thinking.
1๏ธโฃ Profile README
โข Who you are & what you work on
โข Mention tools (Python, Pandas, SQL, Scikit-learn, Power BI)
โข Add project links & contact info
โ Example:
โAspiring Data Scientist skilled in Python, ML & visualization. Love solving business problems with data.โ
2๏ธโฃ Highlight 3โ6 Strong Projects
Each repo must have:
โข Clear README:
โ What problem you solved
โ Dataset used
โ Key steps (EDA โ Model โ Results)
โ Tools & libraries
โข Jupyter notebooks (cleaned + explained)
โข Charts & results with conclusions
โ Tip: Include PDF/report or dashboard screenshots
3๏ธโฃ Project Ideas to Include
โข Sales insights dashboard (Power BI or Tableau)
โข ML model (churn, fraud, sentiment)
โข NLP app (text summarizer, topic model)
โข EDA project on Kaggle dataset
โข SQL project with queries & joins
4๏ธโฃ Show Real Workflows
โข Use
โข Add data cleaning + preprocessing steps
โข Track experiments (metrics, models tried)
5๏ธโฃ Regular Commits
โข Update notebooks
โข Push improvements
โข Show learning progress over time
๐ Practice Task:
Pick 1 project โ Write full README โ Push to GitHub today
๐ฌ Tap โค๏ธ for more!
Your GitHub = your portfolio. Make it show skills, tools, and thinking.
1๏ธโฃ Profile README
โข Who you are & what you work on
โข Mention tools (Python, Pandas, SQL, Scikit-learn, Power BI)
โข Add project links & contact info
โ Example:
โAspiring Data Scientist skilled in Python, ML & visualization. Love solving business problems with data.โ
2๏ธโฃ Highlight 3โ6 Strong Projects
Each repo must have:
โข Clear README:
โ What problem you solved
โ Dataset used
โ Key steps (EDA โ Model โ Results)
โ Tools & libraries
โข Jupyter notebooks (cleaned + explained)
โข Charts & results with conclusions
โ Tip: Include PDF/report or dashboard screenshots
3๏ธโฃ Project Ideas to Include
โข Sales insights dashboard (Power BI or Tableau)
โข ML model (churn, fraud, sentiment)
โข NLP app (text summarizer, topic model)
โข EDA project on Kaggle dataset
โข SQL project with queries & joins
4๏ธโฃ Show Real Workflows
โข Use
.py scripts + .ipynb notebooks โข Add data cleaning + preprocessing steps
โข Track experiments (metrics, models tried)
5๏ธโฃ Regular Commits
โข Update notebooks
โข Push improvements
โข Show learning progress over time
๐ Practice Task:
Pick 1 project โ Write full README โ Push to GitHub today
๐ฌ Tap โค๏ธ for more!
โค7๐3
โ
Data Science Mistakes Beginners Should Avoid โ ๏ธ๐
1๏ธโฃ Skipping the Basics
โข Jumping into ML without Python, Stats, or Pandas
โ Build strong foundations in math, programming & EDA first
2๏ธโฃ Not Understanding the Problem
โข Applying models blindly
โข Irrelevant features and metrics
โ Always clarify business goals before coding
3๏ธโฃ Treating Data Cleaning as Optional
โข Training on dirty/incomplete data
โ Spend time on preprocessing โ itโs 70% of real work
4๏ธโฃ Using Complex Models Too Early
โข Overfitting small datasets
โข Ignoring simpler, interpretable models
โ Start with baseline models (Logistic Regression, Decision Trees)
5๏ธโฃ No Evaluation Strategy
โข Relying only on accuracy
โ Use proper metrics (F1, AUC, MAE) based on problem type
6๏ธโฃ Not Visualizing Data
โข Missed outliers and patterns
โ Use Seaborn, Matplotlib, Plotly for EDA
7๏ธโฃ Poor Feature Engineering
โข Feeding raw data into models
โ Create meaningful features that boost performance
8๏ธโฃ Ignoring Domain Knowledge
โข Features donโt align with real-world logic
โ Talk to stakeholders or do research before modeling
9๏ธโฃ No Practice with Real Datasets
โข Kaggle-only learning
โ Work with messy, real-world data (open data portals, APIs)
๐ Not Documenting or Sharing Work
โข No GitHub, no portfolio
โ Document notebooks, write blogs, push projects online
๐ฌ Tap โค๏ธ for more!
1๏ธโฃ Skipping the Basics
โข Jumping into ML without Python, Stats, or Pandas
โ Build strong foundations in math, programming & EDA first
2๏ธโฃ Not Understanding the Problem
โข Applying models blindly
โข Irrelevant features and metrics
โ Always clarify business goals before coding
3๏ธโฃ Treating Data Cleaning as Optional
โข Training on dirty/incomplete data
โ Spend time on preprocessing โ itโs 70% of real work
4๏ธโฃ Using Complex Models Too Early
โข Overfitting small datasets
โข Ignoring simpler, interpretable models
โ Start with baseline models (Logistic Regression, Decision Trees)
5๏ธโฃ No Evaluation Strategy
โข Relying only on accuracy
โ Use proper metrics (F1, AUC, MAE) based on problem type
6๏ธโฃ Not Visualizing Data
โข Missed outliers and patterns
โ Use Seaborn, Matplotlib, Plotly for EDA
7๏ธโฃ Poor Feature Engineering
โข Feeding raw data into models
โ Create meaningful features that boost performance
8๏ธโฃ Ignoring Domain Knowledge
โข Features donโt align with real-world logic
โ Talk to stakeholders or do research before modeling
9๏ธโฃ No Practice with Real Datasets
โข Kaggle-only learning
โ Work with messy, real-world data (open data portals, APIs)
๐ Not Documenting or Sharing Work
โข No GitHub, no portfolio
โ Document notebooks, write blogs, push projects online
๐ฌ Tap โค๏ธ for more!
โค9