Data Science & Machine Learning
73.1K subscribers
778 photos
2 videos
68 files
685 links
Join this channel to learn data science, artificial intelligence and machine learning with funny quizzes, interesting projects and amazing resources for free

For collaborations: @love_data
Download Telegram
One Membership, a Complete AI Study Toolkit
๐Ÿš€For anyone has no idea how to accelerate their study with AI, thereโ€™s MuleRun.One account, all the studyโ€‘focused AI power youโ€™ve heard about!

๐ŸคฏIf you:
โ€ข feel FOMO about AI but donโ€™t know where to start
โ€ข are tired of jumping between different AI tools and websites
โ€ข just want something that actually helps you study


then MuleRun is built exactly for you.

๐Ÿค“With MuleRun, you can:
โ€ข instantly find and summarize academic papers
โ€ข turn a 1โ€‘hour YouTube lecture into a 1โ€‘minute keyโ€‘point summary
โ€ข let AI help you do anything directly in your browser


โ€ฆโ€ฆ

๐Ÿ’ก Click here to give it a try: https://mulerun.pxf.io/jePYd6
โค6๐Ÿ‘2
โœ… Data Science Interview Prep Guide ๐Ÿ“Š๐Ÿง 

Whether you're a fresher or career-switcher, hereโ€™s how to prep step-by-step:

1๏ธโƒฃ Understand the Role
Data scientists solve problems using data. Core responsibilities:
โ€ข Data cleaning analysis
โ€ข Building predictive models
โ€ข Communicating insights
โ€ข Working with business/product teams

2๏ธโƒฃ Core Skills Needed
โœ”๏ธ Python (NumPy, Pandas, Matplotlib, Scikit-learn)
โœ”๏ธ SQL
โœ”๏ธ Statistics probability
โœ”๏ธ Machine Learning basics
โœ”๏ธ Data storytelling visualization (Power BI / Tableau / Seaborn)

3๏ธโƒฃ Key Interview Areas

A. Python Coding
โ€ข Write code to clean and analyze data
โ€ข Solve logic problems (e.g., reverse a list, group data by key)
โ€ข List vs Dict vs DataFrame usage

B. Statistics Probability
โ€ข Hypothesis testing
โ€ข p-values, confidence intervals
โ€ข Normal distribution, sampling

C. Machine Learning Concepts
โ€ข Supervised vs unsupervised learning
โ€ข Overfitting, regularization, cross-validation
โ€ข Algorithms: Linear Regression, Decision Trees, KNN, SVM

D. SQL
โ€ข Joins, GROUP BY, subqueries
โ€ข Window functions
โ€ข Data aggregation and filtering

E. Business Communication
โ€ข Explain model results to non-tech stakeholders
โ€ข What metrics would you track for [business case]?
โ€ข Tell me about a time you used data to influence a decision

4๏ธโƒฃ Build Your Portfolio
โœ… Do projects like:
โ€ข E-commerce sales analysis
โ€ข Customer churn prediction
โ€ข Movie recommendation system
โœ… Host on GitHub or Kaggle
โœ… Add visual dashboards and insights

5๏ธโƒฃ Practice Platforms
โ€ข LeetCode (SQL, Python)
โ€ข HackerRank
โ€ข StrataScratch (SQL case studies)
โ€ข Kaggle (competitions notebooks)

๐Ÿ’ฌ Tap โค๏ธ for more!
โค19
โœ… Top Data Science Projects That Impress Recruiters ๐Ÿง ๐Ÿ“Š

1. End-to-End ML Pipeline
โ†’ Choose a real dataset (e.g. housing, Titanic)
โ†’ Include data cleaning, feature engineering, model training evaluation
โ†’ Tools: Python (Pandas, Scikit-learn), Jupyter

2. Customer Segmentation (Clustering)
โ†’ Use K-Means or DBSCAN to group customers
โ†’ Visualize clusters and describe patterns
โ†’ Tools: Python, Seaborn, Plotly

3. Sentiment Analysis on Tweets or Reviews
โ†’ Classify sentiments (positive/negative/neutral)
โ†’ Preprocessing: tokenization, stop words removal
โ†’ Tools: Python (NLTK/TextBlob), word clouds

4. Time Series Forecasting
โ†’ Predict sales, temperature, stock prices
โ†’ Use ARIMA, Prophet, or LSTM
โ†’ Tools: Python (statsmodels, Facebook Prophet)

5. Resume Parser or Job Match System
โ†’ NLP project that reads resumes and matches with job descriptions
โ†’ Use Named Entity Recognition cosine similarity
โ†’ Tools: Python (Spacy, sklearn)

6. Image Classification
โ†’ Classify animals, signs, or objects using CNNs
โ†’ Train with TensorFlow or PyTorch
โ†’ Tools: Python, Keras

7. Credit Risk Prediction
โ†’ Predict loan default using classification models
โ†’ Use imbalanced datasets, ROC-AUC, SMOTE
โ†’ Tools: Python, Scikit-learn

8. Fake News Detection
โ†’ Binary classifier using TF-IDF or BERT
โ†’ Clean and label news data
โ†’ Tools: Python (NLP), Transformers

Tips:
โ€“ Add storytelling with business context
โ€“ Highlight model performance (accuracy, F1-score, AUC)
โ€“ Share notebooks + dashboards + GitHub link
โ€“ Use real-world data (Kaggle, UCI, APIs)

๐Ÿ’ฌ Tap โค๏ธ for more!
โค10๐Ÿ‘2
๐Ÿš€ Roadmap to Master Data Science in 60 Days! ๐Ÿ“Š๐Ÿง 

๐Ÿ“… Week 1โ€“2: Foundations
๐Ÿ”น Day 1โ€“5: Python basics (variables, loops, functions)
๐Ÿ”น Day 6โ€“10: NumPy Pandas for data handling

๐Ÿ“… Week 3โ€“4: Data Visualization Statistics
๐Ÿ”น Day 11โ€“15: Matplotlib, Seaborn, Plotly
๐Ÿ”น Day 16โ€“20: Descriptive stats, probability, distributions

๐Ÿ“… Week 5โ€“6: Data Cleaning EDA
๐Ÿ”น Day 21โ€“25: Missing data, outliers, data types
๐Ÿ”น Day 26โ€“30: Exploratory Data Analysis (EDA) projects

๐Ÿ“… Week 7โ€“8: Machine Learning
๐Ÿ”น Day 31โ€“35: Regression, Classification (Scikit-learn)
๐Ÿ”น Day 36โ€“40: Model tuning, metrics, cross-validation

๐Ÿ“… Week 9โ€“10: Advanced Concepts
๐Ÿ”น Day 41โ€“45: Clustering, PCA, Time Series basics
๐Ÿ”น Day 46โ€“50: NLP or Deep Learning (basics with TensorFlow/Keras)

๐Ÿ“… Week 11โ€“12: Projects Deployment
๐Ÿ”น Day 51โ€“55: Build 2 projects (e.g., Loan Prediction, Sentiment Analysis)
๐Ÿ”น Day 56โ€“60: Deploy using Streamlit, Flask + GitHub

๐Ÿงฐ Tools to Learn:
โ€ข Jupyter, Google Colab
โ€ข Git GitHub
โ€ข Excel, SQL basics
โ€ข Power BI/Tableau (optional)

๐Ÿ’ฌ Tap โค๏ธ for more!
โค22๐Ÿ‘2
In every family tree, there is 1 person who breaks out the middle-class chain and works hard to become a millionaire and changes the lives of everyone forever.

May that be you in 2026.

Happy New Year! โค๏ธ
โค75๐Ÿ”ฅ14๐Ÿ‘2
โœ… Python Basics for Data Science: Part-1

Variables Data Types

In Python, variables are used to store data, and data types define what kind of data is stored. This is the first and most essential building block of your data science journey.

1๏ธโƒฃ What is a Variable?
A variable is like a label for data stored in memory. You can assign any value to a variable and reuse it throughout your code.

Syntax:
x = 10  
name = "Riya"
is_active = True


2๏ธโƒฃ Common Data Types in Python

โ€ข int โ€“ Integers (whole numbers)
age = 25

โ€ข float โ€“ Decimal numbers
height = 5.8

โ€ข str โ€“ Text/String
city = "Mumbai"

โ€ข bool โ€“ Boolean (True or False)
is_student = False

โ€ข list โ€“ A collection of items
fruits = ["apple", "banana", "mango"]

โ€ข tuple โ€“ Ordered, immutable collection
coordinates = (10.5, 20.3)

โ€ข dict โ€“ Key-value pairs
student = {"name": "Riya", "score": 90}


3๏ธโƒฃ Type Checking
You can check the type of any variable using type()
print(type(age))       # <class 'int'>  
print(type(city)) # <class 'str'>


4๏ธโƒฃ Type Conversion
Change data from one type to another:
num = "100"
converted = int(num)
print(type(converted)) # <class 'int'>


5๏ธโƒฃ Why This Matters in Data Science
Data comes in various types. Understanding and managing types is critical for:
โ€ข Cleaning data
โ€ข Performing calculations
โ€ข Avoiding errors in analysis

โœ… Practice Task for You:
โ€ข Create 5 variables with different data types
โ€ข Use type() to print each one
โ€ข Convert a string to an integer and do basic math

๐Ÿ’ฌ Tap โค๏ธ for more!
โค13๐Ÿ‘4
๐—™๐—ฅ๐—˜๐—˜ ๐—ข๐—ป๐—น๐—ถ๐—ป๐—ฒ ๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ๐—ฐ๐—น๐—ฎ๐˜€๐˜€ ๐—•๐˜† ๐—œ๐—ป๐—ฑ๐˜‚๐˜€๐˜๐—ฟ๐˜† ๐—˜๐˜…๐—ฝ๐—ฒ๐—ฟ๐˜๐˜€ ๐Ÿ˜

Roadmap to land your dream job in top product-based companies

๐—›๐—ถ๐—ด๐—ต๐—น๐—ถ๐—ด๐—ต๐˜๐—ฒ๐˜€:-
- 90-Day Placement Plan
- Tech & Non-Tech Career Path
- Interview Preparation Tips
- Live Q&A

๐—ฅ๐—ฒ๐—ด๐—ถ๐˜€๐˜๐—ฒ๐—ฟ ๐—™๐—ผ๐—ฟ ๐—™๐—ฅ๐—˜๐—˜๐Ÿ‘‡:- 

https://pdlink.in/3Ltb3CE

Date & Time:- 06th January 2026 , 7PM
โค1
โœ… Python Basics for Data Science: Part-2

Loops Functions ๐Ÿ”๐Ÿง 

These two concepts are key to writing clean, efficient, and reusable code โ€” especially when working with data.

1๏ธโƒฃ Loops in Python
Loops help you repeat tasks like reading data, checking values, or processing items in a list.

For Loop
fruits = ["apple", "banana", "mango"]
for fruit in fruits:
print(fruit)


While Loop
count = 1
while count <= 3:
print("Loading...", count)
count += 1


Loop with Condition
numbers = [10, 5, 20, 3]
for num in numbers:
if num > 10:
print(num, "is greater than 10")


2๏ธโƒฃ Functions in Python
Functions let you group code into blocks you can reuse.

Basic Function
def greet(name):
return f"Hello, {name}!"

print(greet("Riya"))


Function with Logic
def is_even(num):
if num % 2 == 0:
return True
return False

print(is_even(4)) # Output: True


Function for Calculation
def square(x):
return x * x

print(square(6)) # Output: 36


โœ… Why This Matters in Data Science
โ€ข Loops help in iterating over datasets
โ€ข Functions make your data cleaning reusable
โ€ข Helps organize long analysis code into simple blocks

๐ŸŽฏ Practice Task for You:
โ€ข Write a for loop to print numbers from 1 to 10
โ€ข Create a function that takes two numbers and returns their average
โ€ข Make a function that returns "Even" or "Odd" based on input

๐Ÿ’ฌ Tap โค๏ธ for more!
โค13
๐—ง๐—ผ๐—ฝ ๐Ÿฑ ๐—œ๐—ป-๐——๐—ฒ๐—บ๐—ฎ๐—ป๐—ฑ ๐—ฆ๐—ธ๐—ถ๐—น๐—น๐˜€ ๐˜๐—ผ ๐—™๐—ผ๐—ฐ๐˜‚๐˜€ ๐—ผ๐—ป ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฒ๐Ÿ˜

Start learning industry-relevant data skills today at zero cost!

๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€:- https://pdlink.in/497MMLw

๐—”๐—œ & ๐— ๐—Ÿ :- https://pdlink.in/4bhetTu

๐—–๐—น๐—ผ๐˜‚๐—ฑ ๐—–๐—ผ๐—บ๐—ฝ๐˜‚๐˜๐—ถ๐—ป๐—ด:- https://pdlink.in/3LoutZd

๐—–๐˜†๐—ฏ๐—ฒ๐—ฟ ๐—ฆ๐—ฒ๐—ฐ๐˜‚๐—ฟ๐—ถ๐˜๐˜†:- https://pdlink.in/3N9VOyW

๐—ข๐˜๐—ต๐—ฒ๐—ฟ ๐—ง๐—ฒ๐—ฐ๐—ต ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€:- https://pdlink.in/4qgtrxU

๐ŸŽ“ Enroll Now & Get Certified
โค1
โœ… Python for Data Science: Part-3

NumPy Pandas Basics ๐Ÿ“Š๐Ÿ
These two libraries form the foundation for handling and analyzing data in Python.

1๏ธโƒฃ NumPy โ€“ Numerical Python
NumPy helps with fast numerical operations and array handling.

Importing NumPy
import numpy as np

Create Arrays
arr = np.array([1, 2, 3])
print(arr)

Array Operations
a = np.array([1, 2, 3])
b = np.array([4, 5, 6])
print(a + b) # [5 7 9]
print(a * 2) # [2 4 6]

Useful NumPy Functions
np.mean(a)          # Average
np.max(b) # Max value
np.arange(0, 10, 2) # [0 2 4 6 8]

2๏ธโƒฃ Pandas โ€“ Data Analysis Library
Pandas is used to work with data in table format (DataFrames).

Importing Pandas
import pandas as pd

Create a DataFrame
data = {
"Name": ["Riya", "Aman"],
"Age": [24, 30]
}
df = pd.DataFrame(data)
print(df)

Read CSV File
df = pd.read_csv("data.csv")

Basic DataFrame Operations
df.head()       # First 5 rows  
df.info() # Column types
df.describe() # Stats summary
df["Age"].mean() # Average age

Filter Rows
df[df["Age"] > 25]

๐ŸŽฏ Why This Matters
โ€ข NumPy makes math faster and easier
โ€ข Pandas helps clean, explore, and transform data
โ€ข Essential for real-world data analysis

Practice Task:
โ€ข Create a NumPy array of 10 numbers
โ€ข Make a Pandas DataFrame with 2 columns (Name, Score)
โ€ข Filter all scores above 80

๐Ÿ’ฌ Tap โค๏ธ for more
โค6๐Ÿ‘1
๐ŸŽฏ ๐—ก๐—ฒ๐˜„ ๐˜†๐—ฒ๐—ฎ๐—ฟ, ๐—ป๐—ฒ๐˜„ ๐˜€๐—ธ๐—ถ๐—น๐—น๐˜€.

If you've been meaning to learn ๐—ฎ๐—ด๐—ฒ๐—ป๐˜๐—ถ๐—ฐ ๐—”๐—œ, this is your starting point.

Build a real RAG assistant from scratch.
Beginner-friendly. Completely self-paced.

๐Ÿฑ๐Ÿฌ,๐Ÿฌ๐Ÿฌ๐Ÿฌ+ ๐—น๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ฒ๐—ฟ๐˜€ from 130+ countries already enrolled.

https://www.readytensor.ai/agentic-ai-essentials-cert/
โค2
๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฎ๐—ป๐—ฑ ๐—”๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ถ๐—ฎ๐—น ๐—œ๐—ป๐˜๐—ฒ๐—น๐—น๐—ถ๐—ด๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—ฃ๐—ฟ๐—ผ๐—ด๐—ฟ๐—ฎ๐—บ ๐—ฏ๐˜† ๐—œ๐—œ๐—ง ๐—ฅ๐—ผ๐—ผ๐—ฟ๐—ธ๐—ฒ๐—ฒ๐Ÿ˜

Deadline: 11th January 2026

Eligibility: Open to everyone
Duration: 6 Months
Program Mode: Online
Taught By: IIT Roorkee Professors

Companies majorly hire candidates having Data Science and Artificial Intelligence knowledge these days.

๐—ฅ๐—ฒ๐—ด๐—ถ๐˜€๐˜๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—Ÿ๐—ถ๐—ป๐—ธ๐Ÿ‘‡

https://pdlink.in/4qNGMO6

Only Limited Seats Available!
โœ… Python for Data Science: Part-4

Data Visualization with Matplotlib, Seaborn Plotly ๐Ÿ“Š๐Ÿ“ˆ

1๏ธโƒฃ Matplotlib โ€“ Basic Plotting
Great for simple line, bar, and scatter plots.

Import and Line Plot
import matplotlib.pyplot as plt

x = [1, 2, 3, 4]
y = [10, 20, 25, 30]
plt.plot(x, y)
plt.title("Line Plot")
plt.xlabel("X-axis")
plt.ylabel("Y-axis")
plt.show()

Bar Plot
names = ["A", "B", "C"]
scores = [80, 90, 70]
plt.bar(names, scores)
plt.title("Scores by Name")
plt.show()


2๏ธโƒฃ Seaborn โ€“ Statistical Visualization
Built on Matplotlib with better styling.

Import and Plot
import seaborn as sns
import pandas as pd

df = pd.DataFrame({
"Name": ["Riya", "Aman", "John", "Sara"],
"Score": [85, 92, 78, 88]
})

sns.barplot(x="Name", y="Score", data=df)

Other Seaborn Plots
sns.histplot(df["Score"])          # Histogram  
sns.boxplot(x=df["Score"]) # Box plot


3๏ธโƒฃ Plotly โ€“ Interactive Graphs
Great for dashboards and interactivity.

Basic Line Plot
import plotly.express as px

df = pd.DataFrame({
"x": [1, 2, 3],
"y": [10, 20, 15]
})

fig = px.line(df, x="x", y="y", title="Interactive Line Plot")
fig.show()


๐ŸŽฏ Why Visualization Matters
โ€ข Helps spot patterns in data
โ€ข Makes insights clear and shareable
โ€ข Supports better decision-making

Practice Task:
โ€ข Create a line plot using matplotlib
โ€ข Use seaborn to plot a boxplot for scores
โ€ข Try any interactive chart using plotly

๐Ÿ’ฌ Tap โค๏ธ for more
โค7
๐—™๐—ฅ๐—˜๐—˜ ๐—ข๐—ป๐—น๐—ถ๐—ป๐—ฒ ๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ๐—ฐ๐—น๐—ฎ๐˜€๐˜€ ๐—ข๐—ป ๐—Ÿ๐—ฎ๐˜๐—ฒ๐˜€๐˜ ๐—ง๐—ฒ๐—ฐ๐—ต๐—ป๐—ผ๐—น๐—ผ๐—ด๐—ถ๐—ฒ๐˜€๐Ÿ˜

- Data Science 
- AI/ML
- Data Analytics
- UI/UX
- Full-stack Development 

Get Job-Ready Guidance in Your Tech Journey

๐—ฅ๐—ฒ๐—ด๐—ถ๐˜€๐˜๐—ฒ๐—ฟ ๐—™๐—ผ๐—ฟ ๐—™๐—ฅ๐—˜๐—˜๐Ÿ‘‡:- 

https://pdlink.in/4sw5Ev8

Date :- 11th January 2026
โœ… Python for Data Science: Part-5

๐Ÿ“Š Descriptive Statistics, Probability Distributions

1๏ธโƒฃ Descriptive Statistics with Pandas
Quick way to summarize datasets.

import pandas as pd

data = {"Marks": [85, 92, 78, 88, 90]}
df = pd.DataFrame(data)

print(df.describe()) # count, mean, std, min, max, etc.
print(df["Marks"].mean()) # Average
print(df["Marks"].median()) # Middle value
print(df["Marks"].mode()) # Most frequent value


2๏ธโƒฃ Probability Basics
Chances of an event occurring (0 to 1)

Tossing a coin
prob_heads = 1 / 2
print(prob_heads) # 0.5

Multiple outcomes example:

from itertools import product

outcomes = list(product(["H", "T"], repeat=2))
print(outcomes) # [('H', 'H'), ('H', 'T'), ('T', 'H'), ('T', 'T')]


3๏ธโƒฃ Normal Distribution using NumPy Seaborn

import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

data = np.random.normal(loc=0, scale=1, size=1000)

sns.histplot(data, kde=True)
plt.title("Normal Distribution")
plt.show()


4๏ธโƒฃ Other Distributions
โ€ข Binomial โ†’ pass/fail outcomes
โ€ข Poisson โ†’ rare event frequency
โ€ข Uniform โ†’ all outcomes equally likely

Binomial Example:

from scipy.stats import binom

# 10 trials, p = 0.5
print(binom.pmf(k=5, n=10, p=0.5)) # Probability of 5 successes


๐ŸŽฏ Why This Matters
โ€ข Descriptive stats help understand data quickly
โ€ข Distributions help model real-world situations
โ€ข Probability supports prediction and risk analysis

Practice Task:
โ€ข Generate a normal distribution
โ€ข Calculate mean, median, std
โ€ข Plot binomial probability of success

๐Ÿ’ฌ Tap โค๏ธ for more
โค4
โœ… Data Science Resume Tips ๐Ÿ“Š๐Ÿ’ผ

To land data science roles, your resume should highlight problem-solving, tools, and real insights.

1๏ธโƒฃ Contact Info (Top)
โ€ข Name, email, GitHub, LinkedIn, portfolio/Kaggle
โ€ข Optional: location, phone

2๏ธโƒฃ Summary (2โ€“3 lines)
Brief overview showing your skills + value
โžก โ€œData scientist with strong Python, ML & SQL skills. Built projects in healthcare & finance. Proven ability to turn data into insights.โ€

3๏ธโƒฃ Skills Section
Group by type:
โ€ข Languages: Python, R, SQL
โ€ข Libraries: Pandas, NumPy, Scikit-learn, Matplotlib, Seaborn
โ€ข Tools: Jupyter, Git, Tableau, Power BI
โ€ข ML/Stats: Regression, Classification, Clustering, A/B testing

4๏ธโƒฃ Projects (Most Important)
List 3โ€“4 impactful projects:
โ€ข Clear title
โ€ข Dataset used
โ€ข What you did (EDA, model, visualizations)
โ€ข Tools used
โ€ข GitHub + live dashboard (if any)

Example:
Loan Default Prediction โ€“ Used logistic regression + feature engineering on Kaggle dataset to predict defaults. 82% accuracy.
GitHub: [link]

5๏ธโƒฃ Work Experience / Internships
Show how you used data to create value:
โ€ข โ€œBuilt churn prediction model โ†’ reduced churn by 15%โ€
โ€ข โ€œAutomated Excel reports using Python, saving 6 hrs/weekโ€

6๏ธโƒฃ Education
โ€ข Degree or certifications
โ€ข Mention bootcamps, if relevant

7๏ธโƒฃ Certifications (Optional)
โ€ข Google Data Analytics
โ€ข IBM Data Science
โ€ข Coursera/edX Machine Learning

๐Ÿ’ก Tips:
โ€ข Show impact: โ€œIncreased accuracy by 10%โ€
โ€ข Use real datasets
โ€ข Keep layout clean and focused

๐Ÿ’ฌ Tap โค๏ธ for more!
โค4
๐—›๐—ถ๐—ด๐—ต ๐——๐—ฒ๐—บ๐—ฎ๐—ป๐—ฑ๐—ถ๐—ป๐—ด ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐—ช๐—ถ๐˜๐—ต ๐—ฃ๐—น๐—ฎ๐—ฐ๐—ฒ๐—บ๐—ฒ๐—ป๐˜ ๐—”๐˜€๐˜€๐—ถ๐˜€๐˜๐—ฎ๐—ป๐—ฐ๐—ฒ๐Ÿ˜

Learn from IIT faculty and industry experts.

IIT Roorkee DS & AI Program :- https://pdlink.in/4qHVFkI

IIT Patna AI & ML :- https://pdlink.in/4pBNxkV

IIM Mumbai DM & Analytics :- https://pdlink.in/4jvuHdE

IIM Rohtak Product Management:- https://pdlink.in/4aMtk8i

IIT Roorkee Agentic Systems:- https://pdlink.in/4aTKgdc

Upskill in todayโ€™s most in-demand tech domains and boost your career ๐Ÿš€
โค2
โœ… GitHub Profile Tips for Data Scientists ๐Ÿง ๐Ÿ“Š

Your GitHub = your portfolio. Make it show skills, tools, and thinking.

1๏ธโƒฃ Profile README
โ€ข Who you are & what you work on
โ€ข Mention tools (Python, Pandas, SQL, Scikit-learn, Power BI)
โ€ข Add project links & contact info
โœ… Example:
โ€œAspiring Data Scientist skilled in Python, ML & visualization. Love solving business problems with data.โ€

2๏ธโƒฃ Highlight 3โ€“6 Strong Projects
Each repo must have:
โ€ข Clear README:
โ€“ What problem you solved
โ€“ Dataset used
โ€“ Key steps (EDA โ†’ Model โ†’ Results)
โ€“ Tools & libraries
โ€ข Jupyter notebooks (cleaned + explained)
โ€ข Charts & results with conclusions
โœ… Tip: Include PDF/report or dashboard screenshots

3๏ธโƒฃ Project Ideas to Include
โ€ข Sales insights dashboard (Power BI or Tableau)
โ€ข ML model (churn, fraud, sentiment)
โ€ข NLP app (text summarizer, topic model)
โ€ข EDA project on Kaggle dataset
โ€ข SQL project with queries & joins

4๏ธโƒฃ Show Real Workflows
โ€ข Use .py scripts + .ipynb notebooks
โ€ข Add data cleaning + preprocessing steps
โ€ข Track experiments (metrics, models tried)

5๏ธโƒฃ Regular Commits
โ€ข Update notebooks
โ€ข Push improvements
โ€ข Show learning progress over time

๐Ÿ“Œ Practice Task:
Pick 1 project โ†’ Write full README โ†’ Push to GitHub today

๐Ÿ’ฌ Tap โค๏ธ for more!
โค7๐Ÿ‘3
โœ… Data Science Mistakes Beginners Should Avoid โš ๏ธ๐Ÿ“‰

1๏ธโƒฃ Skipping the Basics
โ€ข Jumping into ML without Python, Stats, or Pandas
โœ… Build strong foundations in math, programming & EDA first

2๏ธโƒฃ Not Understanding the Problem
โ€ข Applying models blindly
โ€ข Irrelevant features and metrics
โœ… Always clarify business goals before coding

3๏ธโƒฃ Treating Data Cleaning as Optional
โ€ข Training on dirty/incomplete data
โœ… Spend time on preprocessing โ€” itโ€™s 70% of real work

4๏ธโƒฃ Using Complex Models Too Early
โ€ข Overfitting small datasets
โ€ข Ignoring simpler, interpretable models
โœ… Start with baseline models (Logistic Regression, Decision Trees)

5๏ธโƒฃ No Evaluation Strategy
โ€ข Relying only on accuracy
โœ… Use proper metrics (F1, AUC, MAE) based on problem type

6๏ธโƒฃ Not Visualizing Data
โ€ข Missed outliers and patterns
โœ… Use Seaborn, Matplotlib, Plotly for EDA

7๏ธโƒฃ Poor Feature Engineering
โ€ข Feeding raw data into models
โœ… Create meaningful features that boost performance

8๏ธโƒฃ Ignoring Domain Knowledge
โ€ข Features donโ€™t align with real-world logic
โœ… Talk to stakeholders or do research before modeling

9๏ธโƒฃ No Practice with Real Datasets
โ€ข Kaggle-only learning
โœ… Work with messy, real-world data (open data portals, APIs)

๐Ÿ”Ÿ Not Documenting or Sharing Work
โ€ข No GitHub, no portfolio
โœ… Document notebooks, write blogs, push projects online

๐Ÿ’ฌ Tap โค๏ธ for more!
โค9