Media is too big
VIEW IN TELEGRAM
OnSpace Mobile App builder: Build AI Apps in minutes
๐https://www.onspace.ai/agentic-app-builder?via=tg_dsf
With OnSpace, you can build AI Mobile Apps by chatting with AI, and publish to PlayStore or AppStore.
What will you get:
- Create app by chatting with AI;
- Integrate with Any top AI power just by giving order (like Sora2, Nanobanan Pro & Gemini 3 Pro);
- Download APK,AAB file, publish to AppStore.
- Add payments and monetize like in-app-purchase and Stripe.
- Functional login & signup.
- Database + dashboard in minutes.
- Full tutorial on YouTube and within 1 day customer service
๐https://www.onspace.ai/agentic-app-builder?via=tg_dsf
With OnSpace, you can build AI Mobile Apps by chatting with AI, and publish to PlayStore or AppStore.
What will you get:
- Create app by chatting with AI;
- Integrate with Any top AI power just by giving order (like Sora2, Nanobanan Pro & Gemini 3 Pro);
- Download APK,AAB file, publish to AppStore.
- Add payments and monetize like in-app-purchase and Stripe.
- Functional login & signup.
- Database + dashboard in minutes.
- Full tutorial on YouTube and within 1 day customer service
โค6
โ
A-Z Data Science Roadmap (Beginner to Job Ready) ๐๐ง
1๏ธโฃ Learn Python Basics
โข Variables, data types, loops, functions
โข Libraries: NumPy, Pandas
2๏ธโฃ Data Cleaning Manipulation
โข Handling missing values, duplicates
โข Data wrangling with Pandas
โข GroupBy, merge, pivot tables
3๏ธโฃ Data Visualization
โข Matplotlib, Seaborn
โข Plotly for interactive charts
โข Visualizing distributions, trends, relationships
4๏ธโฃ Math for Data Science
โข Statistics (mean, median, std, distributions)
โข Probability basics
โข Linear algebra (vectors, matrices)
โข Calculus (for ML intuition)
5๏ธโฃ SQL for Data Analysis
โข SELECT, JOIN, GROUP BY, subqueries
โข Window functions
โข Real-world queries on large datasets
6๏ธโฃ Exploratory Data Analysis (EDA)
โข Univariate multivariate analysis
โข Outlier detection
โข Correlation heatmaps
7๏ธโฃ Machine Learning (ML)
โข Supervised vs Unsupervised
โข Regression, classification, clustering
โข Train-test split, cross-validation
โข Overfitting, regularization
8๏ธโฃ ML with scikit-learn
โข Linear logistic regression
โข Decision trees, random forest, SVM
โข K-means clustering
โข Model evaluation metrics (accuracy, RMSE, F1)
9๏ธโฃ Deep Learning (Basics)
โข Neural networks, activation functions
โข TensorFlow / PyTorch
โข MNIST digit classifier
๐ Projects to Build
โข Titanic survival prediction
โข House price prediction
โข Customer segmentation
โข Sentiment analysis
โข Dashboard + ML combo
1๏ธโฃ1๏ธโฃ Tools to Learn
โข Jupyter Notebook
โข Git GitHub
โข Google Colab
โข VS Code
1๏ธโฃ2๏ธโฃ Model Deployment
โข Streamlit, Flask APIs
โข Deploy on Render, Heroku or Hugging Face Spaces
1๏ธโฃ3๏ธโฃ Communication Skills
โข Present findings clearly
โข Build dashboards or reports
โข Use storytelling with data
1๏ธโฃ4๏ธโฃ Portfolio Resume
โข Upload projects on GitHub
โข Write blogs on Medium/Kaggle
โข Create a LinkedIn-optimized profile
๐ก Pro Tip: Learn by building real projects and explaining them simply!
๐ฌ Tap โค๏ธ for more!
1๏ธโฃ Learn Python Basics
โข Variables, data types, loops, functions
โข Libraries: NumPy, Pandas
2๏ธโฃ Data Cleaning Manipulation
โข Handling missing values, duplicates
โข Data wrangling with Pandas
โข GroupBy, merge, pivot tables
3๏ธโฃ Data Visualization
โข Matplotlib, Seaborn
โข Plotly for interactive charts
โข Visualizing distributions, trends, relationships
4๏ธโฃ Math for Data Science
โข Statistics (mean, median, std, distributions)
โข Probability basics
โข Linear algebra (vectors, matrices)
โข Calculus (for ML intuition)
5๏ธโฃ SQL for Data Analysis
โข SELECT, JOIN, GROUP BY, subqueries
โข Window functions
โข Real-world queries on large datasets
6๏ธโฃ Exploratory Data Analysis (EDA)
โข Univariate multivariate analysis
โข Outlier detection
โข Correlation heatmaps
7๏ธโฃ Machine Learning (ML)
โข Supervised vs Unsupervised
โข Regression, classification, clustering
โข Train-test split, cross-validation
โข Overfitting, regularization
8๏ธโฃ ML with scikit-learn
โข Linear logistic regression
โข Decision trees, random forest, SVM
โข K-means clustering
โข Model evaluation metrics (accuracy, RMSE, F1)
9๏ธโฃ Deep Learning (Basics)
โข Neural networks, activation functions
โข TensorFlow / PyTorch
โข MNIST digit classifier
๐ Projects to Build
โข Titanic survival prediction
โข House price prediction
โข Customer segmentation
โข Sentiment analysis
โข Dashboard + ML combo
1๏ธโฃ1๏ธโฃ Tools to Learn
โข Jupyter Notebook
โข Git GitHub
โข Google Colab
โข VS Code
1๏ธโฃ2๏ธโฃ Model Deployment
โข Streamlit, Flask APIs
โข Deploy on Render, Heroku or Hugging Face Spaces
1๏ธโฃ3๏ธโฃ Communication Skills
โข Present findings clearly
โข Build dashboards or reports
โข Use storytelling with data
1๏ธโฃ4๏ธโฃ Portfolio Resume
โข Upload projects on GitHub
โข Write blogs on Medium/Kaggle
โข Create a LinkedIn-optimized profile
๐ก Pro Tip: Learn by building real projects and explaining them simply!
๐ฌ Tap โค๏ธ for more!
โค10๐2
โ
If you're serious about learning Artificial Intelligence (AI) โ follow this roadmap ๐ค๐ง
1. Learn Python basics (variables, loops, functions, OOP) ๐
2. Master NumPy Pandas for data handling ๐
3. Learn data visualization tools: Matplotlib, Seaborn ๐
4. Study math essentials: linear algebra, probability, stats โ
5. Understand machine learning fundamentals:
โ Supervised vs unsupervised
โ Train/test split, cross-validation
โ Overfitting, underfitting, bias-variance
6. Learn scikit-learn: regression, classification, clustering ๐งฎ
7. Work on real datasets (Titanic, Iris, Housing, MNIST) ๐
8. Explore deep learning: neural networks, activation, backpropagation ๐ง
9. Use TensorFlow or PyTorch for model building โ๏ธ
10. Build basic AI models (image classifier, sentiment analysis) ๐ผ๏ธ๐
11. Learn NLP concepts: tokenization, embeddings, transformers โ๏ธ
12. Study LLMs: how GPT, BERT, and LLaMA work ๐
13. Build AI mini-projects: chatbot, recommender, object detection ๐ค
14. Learn about Generative AI: GANs, diffusion, image generation ๐จ
15. Explore tools like Hugging Face, OpenAI API, LangChain ๐งฉ
16. Understand ethical AI: fairness, bias, privacy ๐ก๏ธ
17. Study AI use cases in healthcare, finance, education, robotics ๐ฅ๐ฐ๐ค
18. Learn model evaluation: accuracy, F1, ROC, confusion matrix ๐
19. Learn model deployment: FastAPI, Flask, Streamlit, Docker ๐
20. Document everything on GitHub + create a portfolio site ๐
21. Follow AI research papers/blogs (arXiv, PapersWithCode) ๐
22. Add 1โ2 strong AI projects to your resume ๐ผ
23. Apply for internships or freelance gigs to gain experience ๐ฏ
Tip: Pick small problems and solve them end-to-endโdata to deployment.
๐ฌ Tap โค๏ธ for more!
1. Learn Python basics (variables, loops, functions, OOP) ๐
2. Master NumPy Pandas for data handling ๐
3. Learn data visualization tools: Matplotlib, Seaborn ๐
4. Study math essentials: linear algebra, probability, stats โ
5. Understand machine learning fundamentals:
โ Supervised vs unsupervised
โ Train/test split, cross-validation
โ Overfitting, underfitting, bias-variance
6. Learn scikit-learn: regression, classification, clustering ๐งฎ
7. Work on real datasets (Titanic, Iris, Housing, MNIST) ๐
8. Explore deep learning: neural networks, activation, backpropagation ๐ง
9. Use TensorFlow or PyTorch for model building โ๏ธ
10. Build basic AI models (image classifier, sentiment analysis) ๐ผ๏ธ๐
11. Learn NLP concepts: tokenization, embeddings, transformers โ๏ธ
12. Study LLMs: how GPT, BERT, and LLaMA work ๐
13. Build AI mini-projects: chatbot, recommender, object detection ๐ค
14. Learn about Generative AI: GANs, diffusion, image generation ๐จ
15. Explore tools like Hugging Face, OpenAI API, LangChain ๐งฉ
16. Understand ethical AI: fairness, bias, privacy ๐ก๏ธ
17. Study AI use cases in healthcare, finance, education, robotics ๐ฅ๐ฐ๐ค
18. Learn model evaluation: accuracy, F1, ROC, confusion matrix ๐
19. Learn model deployment: FastAPI, Flask, Streamlit, Docker ๐
20. Document everything on GitHub + create a portfolio site ๐
21. Follow AI research papers/blogs (arXiv, PapersWithCode) ๐
22. Add 1โ2 strong AI projects to your resume ๐ผ
23. Apply for internships or freelance gigs to gain experience ๐ฏ
Tip: Pick small problems and solve them end-to-endโdata to deployment.
๐ฌ Tap โค๏ธ for more!
โค16
One Membership, a Complete AI Study Toolkit
๐For anyone has no idea how to accelerate their study with AI, thereโs MuleRun.One account, all the studyโfocused AI power youโve heard about!
๐คฏIf you:
โข feel FOMO about AI but donโt know where to start
โข are tired of jumping between different AI tools and websites
โข just want something that actually helps you study
then MuleRun is built exactly for you.
๐คWith MuleRun, you can:
โข instantly find and summarize academic papers
โข turn a 1โhour YouTube lecture into a 1โminute keyโpoint summary
โข let AI help you do anything directly in your browser
โฆโฆ
๐ก Click here to give it a try: https://mulerun.pxf.io/jePYd6
๐For anyone has no idea how to accelerate their study with AI, thereโs MuleRun.One account, all the studyโfocused AI power youโve heard about!
๐คฏIf you:
โข feel FOMO about AI but donโt know where to start
โข are tired of jumping between different AI tools and websites
โข just want something that actually helps you study
then MuleRun is built exactly for you.
๐คWith MuleRun, you can:
โข instantly find and summarize academic papers
โข turn a 1โhour YouTube lecture into a 1โminute keyโpoint summary
โข let AI help you do anything directly in your browser
โฆโฆ
๐ก Click here to give it a try: https://mulerun.pxf.io/jePYd6
โค6๐2
โ
Data Science Interview Prep Guide ๐๐ง
Whether you're a fresher or career-switcher, hereโs how to prep step-by-step:
1๏ธโฃ Understand the Role
Data scientists solve problems using data. Core responsibilities:
โข Data cleaning analysis
โข Building predictive models
โข Communicating insights
โข Working with business/product teams
2๏ธโฃ Core Skills Needed
โ๏ธ Python (NumPy, Pandas, Matplotlib, Scikit-learn)
โ๏ธ SQL
โ๏ธ Statistics probability
โ๏ธ Machine Learning basics
โ๏ธ Data storytelling visualization (Power BI / Tableau / Seaborn)
3๏ธโฃ Key Interview Areas
A. Python Coding
โข Write code to clean and analyze data
โข Solve logic problems (e.g., reverse a list, group data by key)
โข List vs Dict vs DataFrame usage
B. Statistics Probability
โข Hypothesis testing
โข p-values, confidence intervals
โข Normal distribution, sampling
C. Machine Learning Concepts
โข Supervised vs unsupervised learning
โข Overfitting, regularization, cross-validation
โข Algorithms: Linear Regression, Decision Trees, KNN, SVM
D. SQL
โข Joins, GROUP BY, subqueries
โข Window functions
โข Data aggregation and filtering
E. Business Communication
โข Explain model results to non-tech stakeholders
โข What metrics would you track for [business case]?
โข Tell me about a time you used data to influence a decision
4๏ธโฃ Build Your Portfolio
โ Do projects like:
โข E-commerce sales analysis
โข Customer churn prediction
โข Movie recommendation system
โ Host on GitHub or Kaggle
โ Add visual dashboards and insights
5๏ธโฃ Practice Platforms
โข LeetCode (SQL, Python)
โข HackerRank
โข StrataScratch (SQL case studies)
โข Kaggle (competitions notebooks)
๐ฌ Tap โค๏ธ for more!
Whether you're a fresher or career-switcher, hereโs how to prep step-by-step:
1๏ธโฃ Understand the Role
Data scientists solve problems using data. Core responsibilities:
โข Data cleaning analysis
โข Building predictive models
โข Communicating insights
โข Working with business/product teams
2๏ธโฃ Core Skills Needed
โ๏ธ Python (NumPy, Pandas, Matplotlib, Scikit-learn)
โ๏ธ SQL
โ๏ธ Statistics probability
โ๏ธ Machine Learning basics
โ๏ธ Data storytelling visualization (Power BI / Tableau / Seaborn)
3๏ธโฃ Key Interview Areas
A. Python Coding
โข Write code to clean and analyze data
โข Solve logic problems (e.g., reverse a list, group data by key)
โข List vs Dict vs DataFrame usage
B. Statistics Probability
โข Hypothesis testing
โข p-values, confidence intervals
โข Normal distribution, sampling
C. Machine Learning Concepts
โข Supervised vs unsupervised learning
โข Overfitting, regularization, cross-validation
โข Algorithms: Linear Regression, Decision Trees, KNN, SVM
D. SQL
โข Joins, GROUP BY, subqueries
โข Window functions
โข Data aggregation and filtering
E. Business Communication
โข Explain model results to non-tech stakeholders
โข What metrics would you track for [business case]?
โข Tell me about a time you used data to influence a decision
4๏ธโฃ Build Your Portfolio
โ Do projects like:
โข E-commerce sales analysis
โข Customer churn prediction
โข Movie recommendation system
โ Host on GitHub or Kaggle
โ Add visual dashboards and insights
5๏ธโฃ Practice Platforms
โข LeetCode (SQL, Python)
โข HackerRank
โข StrataScratch (SQL case studies)
โข Kaggle (competitions notebooks)
๐ฌ Tap โค๏ธ for more!
โค17
โ
Top Data Science Projects That Impress Recruiters ๐ง ๐
1. End-to-End ML Pipeline
โ Choose a real dataset (e.g. housing, Titanic)
โ Include data cleaning, feature engineering, model training evaluation
โ Tools: Python (Pandas, Scikit-learn), Jupyter
2. Customer Segmentation (Clustering)
โ Use K-Means or DBSCAN to group customers
โ Visualize clusters and describe patterns
โ Tools: Python, Seaborn, Plotly
3. Sentiment Analysis on Tweets or Reviews
โ Classify sentiments (positive/negative/neutral)
โ Preprocessing: tokenization, stop words removal
โ Tools: Python (NLTK/TextBlob), word clouds
4. Time Series Forecasting
โ Predict sales, temperature, stock prices
โ Use ARIMA, Prophet, or LSTM
โ Tools: Python (statsmodels, Facebook Prophet)
5. Resume Parser or Job Match System
โ NLP project that reads resumes and matches with job descriptions
โ Use Named Entity Recognition cosine similarity
โ Tools: Python (Spacy, sklearn)
6. Image Classification
โ Classify animals, signs, or objects using CNNs
โ Train with TensorFlow or PyTorch
โ Tools: Python, Keras
7. Credit Risk Prediction
โ Predict loan default using classification models
โ Use imbalanced datasets, ROC-AUC, SMOTE
โ Tools: Python, Scikit-learn
8. Fake News Detection
โ Binary classifier using TF-IDF or BERT
โ Clean and label news data
โ Tools: Python (NLP), Transformers
Tips:
โ Add storytelling with business context
โ Highlight model performance (accuracy, F1-score, AUC)
โ Share notebooks + dashboards + GitHub link
โ Use real-world data (Kaggle, UCI, APIs)
๐ฌ Tap โค๏ธ for more!
1. End-to-End ML Pipeline
โ Choose a real dataset (e.g. housing, Titanic)
โ Include data cleaning, feature engineering, model training evaluation
โ Tools: Python (Pandas, Scikit-learn), Jupyter
2. Customer Segmentation (Clustering)
โ Use K-Means or DBSCAN to group customers
โ Visualize clusters and describe patterns
โ Tools: Python, Seaborn, Plotly
3. Sentiment Analysis on Tweets or Reviews
โ Classify sentiments (positive/negative/neutral)
โ Preprocessing: tokenization, stop words removal
โ Tools: Python (NLTK/TextBlob), word clouds
4. Time Series Forecasting
โ Predict sales, temperature, stock prices
โ Use ARIMA, Prophet, or LSTM
โ Tools: Python (statsmodels, Facebook Prophet)
5. Resume Parser or Job Match System
โ NLP project that reads resumes and matches with job descriptions
โ Use Named Entity Recognition cosine similarity
โ Tools: Python (Spacy, sklearn)
6. Image Classification
โ Classify animals, signs, or objects using CNNs
โ Train with TensorFlow or PyTorch
โ Tools: Python, Keras
7. Credit Risk Prediction
โ Predict loan default using classification models
โ Use imbalanced datasets, ROC-AUC, SMOTE
โ Tools: Python, Scikit-learn
8. Fake News Detection
โ Binary classifier using TF-IDF or BERT
โ Clean and label news data
โ Tools: Python (NLP), Transformers
Tips:
โ Add storytelling with business context
โ Highlight model performance (accuracy, F1-score, AUC)
โ Share notebooks + dashboards + GitHub link
โ Use real-world data (Kaggle, UCI, APIs)
๐ฌ Tap โค๏ธ for more!
โค10๐2
๐ Roadmap to Master Data Science in 60 Days! ๐๐ง
๐ Week 1โ2: Foundations
๐น Day 1โ5: Python basics (variables, loops, functions)
๐น Day 6โ10: NumPy Pandas for data handling
๐ Week 3โ4: Data Visualization Statistics
๐น Day 11โ15: Matplotlib, Seaborn, Plotly
๐น Day 16โ20: Descriptive stats, probability, distributions
๐ Week 5โ6: Data Cleaning EDA
๐น Day 21โ25: Missing data, outliers, data types
๐น Day 26โ30: Exploratory Data Analysis (EDA) projects
๐ Week 7โ8: Machine Learning
๐น Day 31โ35: Regression, Classification (Scikit-learn)
๐น Day 36โ40: Model tuning, metrics, cross-validation
๐ Week 9โ10: Advanced Concepts
๐น Day 41โ45: Clustering, PCA, Time Series basics
๐น Day 46โ50: NLP or Deep Learning (basics with TensorFlow/Keras)
๐ Week 11โ12: Projects Deployment
๐น Day 51โ55: Build 2 projects (e.g., Loan Prediction, Sentiment Analysis)
๐น Day 56โ60: Deploy using Streamlit, Flask + GitHub
๐งฐ Tools to Learn:
โข Jupyter, Google Colab
โข Git GitHub
โข Excel, SQL basics
โข Power BI/Tableau (optional)
๐ฌ Tap โค๏ธ for more!
๐ Week 1โ2: Foundations
๐น Day 1โ5: Python basics (variables, loops, functions)
๐น Day 6โ10: NumPy Pandas for data handling
๐ Week 3โ4: Data Visualization Statistics
๐น Day 11โ15: Matplotlib, Seaborn, Plotly
๐น Day 16โ20: Descriptive stats, probability, distributions
๐ Week 5โ6: Data Cleaning EDA
๐น Day 21โ25: Missing data, outliers, data types
๐น Day 26โ30: Exploratory Data Analysis (EDA) projects
๐ Week 7โ8: Machine Learning
๐น Day 31โ35: Regression, Classification (Scikit-learn)
๐น Day 36โ40: Model tuning, metrics, cross-validation
๐ Week 9โ10: Advanced Concepts
๐น Day 41โ45: Clustering, PCA, Time Series basics
๐น Day 46โ50: NLP or Deep Learning (basics with TensorFlow/Keras)
๐ Week 11โ12: Projects Deployment
๐น Day 51โ55: Build 2 projects (e.g., Loan Prediction, Sentiment Analysis)
๐น Day 56โ60: Deploy using Streamlit, Flask + GitHub
๐งฐ Tools to Learn:
โข Jupyter, Google Colab
โข Git GitHub
โข Excel, SQL basics
โข Power BI/Tableau (optional)
๐ฌ Tap โค๏ธ for more!
โค22๐2
In every family tree, there is 1 person who breaks out the middle-class chain and works hard to become a millionaire and changes the lives of everyone forever.
May that be you in 2026.
Happy New Year! โค๏ธ
May that be you in 2026.
Happy New Year! โค๏ธ
โค74๐ฅ14๐2
โ
Python Basics for Data Science: Part-1
Variables Data Types
In Python, variables are used to store data, and data types define what kind of data is stored. This is the first and most essential building block of your data science journey.
1๏ธโฃ What is a Variable?
A variable is like a label for data stored in memory. You can assign any value to a variable and reuse it throughout your code.
Syntax:
2๏ธโฃ Common Data Types in Python
โข int โ Integers (whole numbers)
โข float โ Decimal numbers
โข str โ Text/String
โข bool โ Boolean (True or False)
โข list โ A collection of items
โข tuple โ Ordered, immutable collection
โข dict โ Key-value pairs
3๏ธโฃ Type Checking
You can check the type of any variable using
4๏ธโฃ Type Conversion
Change data from one type to another:
5๏ธโฃ Why This Matters in Data Science
Data comes in various types. Understanding and managing types is critical for:
โข Cleaning data
โข Performing calculations
โข Avoiding errors in analysis
โ Practice Task for You:
โข Create 5 variables with different data types
โข Use
โข Convert a string to an integer and do basic math
๐ฌ Tap โค๏ธ for more!
Variables Data Types
In Python, variables are used to store data, and data types define what kind of data is stored. This is the first and most essential building block of your data science journey.
1๏ธโฃ What is a Variable?
A variable is like a label for data stored in memory. You can assign any value to a variable and reuse it throughout your code.
Syntax:
x = 10
name = "Riya"
is_active = True
2๏ธโฃ Common Data Types in Python
โข int โ Integers (whole numbers)
age = 25
โข float โ Decimal numbers
height = 5.8
โข str โ Text/String
city = "Mumbai"
โข bool โ Boolean (True or False)
is_student = False
โข list โ A collection of items
fruits = ["apple", "banana", "mango"]
โข tuple โ Ordered, immutable collection
coordinates = (10.5, 20.3)
โข dict โ Key-value pairs
student = {"name": "Riya", "score": 90}3๏ธโฃ Type Checking
You can check the type of any variable using
type() print(type(age)) # <class 'int'>
print(type(city)) # <class 'str'>
4๏ธโฃ Type Conversion
Change data from one type to another:
num = "100"
converted = int(num)
print(type(converted)) # <class 'int'>
5๏ธโฃ Why This Matters in Data Science
Data comes in various types. Understanding and managing types is critical for:
โข Cleaning data
โข Performing calculations
โข Avoiding errors in analysis
โ Practice Task for You:
โข Create 5 variables with different data types
โข Use
type() to print each one โข Convert a string to an integer and do basic math
๐ฌ Tap โค๏ธ for more!
โค12๐4
๐๐ฅ๐๐ ๐ข๐ป๐น๐ถ๐ป๐ฒ ๐ ๐ฎ๐๐๐ฒ๐ฟ๐ฐ๐น๐ฎ๐๐ ๐๐ ๐๐ป๐ฑ๐๐๐๐ฟ๐ ๐๐
๐ฝ๐ฒ๐ฟ๐๐ ๐
Roadmap to land your dream job in top product-based companies
๐๐ถ๐ด๐ต๐น๐ถ๐ด๐ต๐๐ฒ๐:-
- 90-Day Placement Plan
- Tech & Non-Tech Career Path
- Interview Preparation Tips
- Live Q&A
๐ฅ๐ฒ๐ด๐ถ๐๐๐ฒ๐ฟ ๐๐ผ๐ฟ ๐๐ฅ๐๐๐:-
https://pdlink.in/3Ltb3CE
Date & Time:- 06th January 2026 , 7PM
Roadmap to land your dream job in top product-based companies
๐๐ถ๐ด๐ต๐น๐ถ๐ด๐ต๐๐ฒ๐:-
- 90-Day Placement Plan
- Tech & Non-Tech Career Path
- Interview Preparation Tips
- Live Q&A
๐ฅ๐ฒ๐ด๐ถ๐๐๐ฒ๐ฟ ๐๐ผ๐ฟ ๐๐ฅ๐๐๐:-
https://pdlink.in/3Ltb3CE
Date & Time:- 06th January 2026 , 7PM
โค1
โ
Python Basics for Data Science: Part-2
Loops Functions ๐๐ง
These two concepts are key to writing clean, efficient, and reusable code โ especially when working with data.
1๏ธโฃ Loops in Python
Loops help you repeat tasks like reading data, checking values, or processing items in a list.
For Loop
While Loop
Loop with Condition
2๏ธโฃ Functions in Python
Functions let you group code into blocks you can reuse.
Basic Function
Function with Logic
Function for Calculation
โ Why This Matters in Data Science
โข Loops help in iterating over datasets
โข Functions make your data cleaning reusable
โข Helps organize long analysis code into simple blocks
๐ฏ Practice Task for You:
โข Write a for loop to print numbers from 1 to 10
โข Create a function that takes two numbers and returns their average
โข Make a function that returns "Even" or "Odd" based on input
๐ฌ Tap โค๏ธ for more!
Loops Functions ๐๐ง
These two concepts are key to writing clean, efficient, and reusable code โ especially when working with data.
1๏ธโฃ Loops in Python
Loops help you repeat tasks like reading data, checking values, or processing items in a list.
For Loop
fruits = ["apple", "banana", "mango"]
for fruit in fruits:
print(fruit)
While Loop
count = 1
while count <= 3:
print("Loading...", count)
count += 1
Loop with Condition
numbers = [10, 5, 20, 3]
for num in numbers:
if num > 10:
print(num, "is greater than 10")
2๏ธโฃ Functions in Python
Functions let you group code into blocks you can reuse.
Basic Function
def greet(name):
return f"Hello, {name}!"
print(greet("Riya"))
Function with Logic
def is_even(num):
if num % 2 == 0:
return True
return False
print(is_even(4)) # Output: True
Function for Calculation
def square(x):
return x * x
print(square(6)) # Output: 36
โ Why This Matters in Data Science
โข Loops help in iterating over datasets
โข Functions make your data cleaning reusable
โข Helps organize long analysis code into simple blocks
๐ฏ Practice Task for You:
โข Write a for loop to print numbers from 1 to 10
โข Create a function that takes two numbers and returns their average
โข Make a function that returns "Even" or "Odd" based on input
๐ฌ Tap โค๏ธ for more!
โค13
๐ง๐ผ๐ฝ ๐ฑ ๐๐ป-๐๐ฒ๐บ๐ฎ๐ป๐ฑ ๐ฆ๐ธ๐ถ๐น๐น๐ ๐๐ผ ๐๐ผ๐ฐ๐๐ ๐ผ๐ป ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฒ๐
Start learning industry-relevant data skills today at zero cost!
๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐:- https://pdlink.in/497MMLw
๐๐ & ๐ ๐ :- https://pdlink.in/4bhetTu
๐๐น๐ผ๐๐ฑ ๐๐ผ๐บ๐ฝ๐๐๐ถ๐ป๐ด:- https://pdlink.in/3LoutZd
๐๐๐ฏ๐ฒ๐ฟ ๐ฆ๐ฒ๐ฐ๐๐ฟ๐ถ๐๐:- https://pdlink.in/3N9VOyW
๐ข๐๐ต๐ฒ๐ฟ ๐ง๐ฒ๐ฐ๐ต ๐๐ผ๐๐ฟ๐๐ฒ๐:- https://pdlink.in/4qgtrxU
๐ Enroll Now & Get Certified
Start learning industry-relevant data skills today at zero cost!
๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐:- https://pdlink.in/497MMLw
๐๐ & ๐ ๐ :- https://pdlink.in/4bhetTu
๐๐น๐ผ๐๐ฑ ๐๐ผ๐บ๐ฝ๐๐๐ถ๐ป๐ด:- https://pdlink.in/3LoutZd
๐๐๐ฏ๐ฒ๐ฟ ๐ฆ๐ฒ๐ฐ๐๐ฟ๐ถ๐๐:- https://pdlink.in/3N9VOyW
๐ข๐๐ต๐ฒ๐ฟ ๐ง๐ฒ๐ฐ๐ต ๐๐ผ๐๐ฟ๐๐ฒ๐:- https://pdlink.in/4qgtrxU
๐ Enroll Now & Get Certified
โค1
โ
Python for Data Science: Part-3
NumPy Pandas Basics ๐๐
These two libraries form the foundation for handling and analyzing data in Python.
1๏ธโฃ NumPy โ Numerical Python
NumPy helps with fast numerical operations and array handling.
Importing NumPy
Create Arrays
Array Operations
Useful NumPy Functions
2๏ธโฃ Pandas โ Data Analysis Library
Pandas is used to work with data in table format (DataFrames).
Importing Pandas
Create a DataFrame
Read CSV File
Basic DataFrame Operations
Filter Rows
๐ฏ Why This Matters
โข NumPy makes math faster and easier
โข Pandas helps clean, explore, and transform data
โข Essential for real-world data analysis
Practice Task:
โข Create a NumPy array of 10 numbers
โข Make a Pandas DataFrame with 2 columns (Name, Score)
โข Filter all scores above 80
๐ฌ Tap โค๏ธ for more
NumPy Pandas Basics ๐๐
These two libraries form the foundation for handling and analyzing data in Python.
1๏ธโฃ NumPy โ Numerical Python
NumPy helps with fast numerical operations and array handling.
Importing NumPy
import numpy as np
Create Arrays
arr = np.array([1, 2, 3])
print(arr)
Array Operations
a = np.array([1, 2, 3])
b = np.array([4, 5, 6])
print(a + b) # [5 7 9]
print(a * 2) # [2 4 6]
Useful NumPy Functions
np.mean(a) # Average
np.max(b) # Max value
np.arange(0, 10, 2) # [0 2 4 6 8]
2๏ธโฃ Pandas โ Data Analysis Library
Pandas is used to work with data in table format (DataFrames).
Importing Pandas
import pandas as pd
Create a DataFrame
data = {
"Name": ["Riya", "Aman"],
"Age": [24, 30]
}
df = pd.DataFrame(data)
print(df)Read CSV File
df = pd.read_csv("data.csv")Basic DataFrame Operations
df.head() # First 5 rows
df.info() # Column types
df.describe() # Stats summary
df["Age"].mean() # Average age
Filter Rows
df[df["Age"] > 25]
๐ฏ Why This Matters
โข NumPy makes math faster and easier
โข Pandas helps clean, explore, and transform data
โข Essential for real-world data analysis
Practice Task:
โข Create a NumPy array of 10 numbers
โข Make a Pandas DataFrame with 2 columns (Name, Score)
โข Filter all scores above 80
๐ฌ Tap โค๏ธ for more
โค5๐1
๐ฏ ๐ก๐ฒ๐ ๐๐ฒ๐ฎ๐ฟ, ๐ป๐ฒ๐ ๐๐ธ๐ถ๐น๐น๐.
If you've been meaning to learn ๐ฎ๐ด๐ฒ๐ป๐๐ถ๐ฐ ๐๐, this is your starting point.
Build a real RAG assistant from scratch.
Beginner-friendly. Completely self-paced.
๐ฑ๐ฌ,๐ฌ๐ฌ๐ฌ+ ๐น๐ฒ๐ฎ๐ฟ๐ป๐ฒ๐ฟ๐ from 130+ countries already enrolled.
https://www.readytensor.ai/agentic-ai-essentials-cert/
If you've been meaning to learn ๐ฎ๐ด๐ฒ๐ป๐๐ถ๐ฐ ๐๐, this is your starting point.
Build a real RAG assistant from scratch.
Beginner-friendly. Completely self-paced.
๐ฑ๐ฌ,๐ฌ๐ฌ๐ฌ+ ๐น๐ฒ๐ฎ๐ฟ๐ป๐ฒ๐ฟ๐ from 130+ countries already enrolled.
https://www.readytensor.ai/agentic-ai-essentials-cert/
โค2
๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐ฎ๐ป๐ฑ ๐๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ถ๐ฎ๐น ๐๐ป๐๐ฒ๐น๐น๐ถ๐ด๐ฒ๐ป๐ฐ๐ฒ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐ฃ๐ฟ๐ผ๐ด๐ฟ๐ฎ๐บ ๐ฏ๐ ๐๐๐ง ๐ฅ๐ผ๐ผ๐ฟ๐ธ๐ฒ๐ฒ๐
Deadline: 11th January 2026
Eligibility: Open to everyone
Duration: 6 Months
Program Mode: Online
Taught By: IIT Roorkee Professors
Companies majorly hire candidates having Data Science and Artificial Intelligence knowledge these days.
๐ฅ๐ฒ๐ด๐ถ๐๐๐ฟ๐ฎ๐๐ถ๐ผ๐ป ๐๐ถ๐ป๐ธ๐:
https://pdlink.in/4qNGMO6
Only Limited Seats Available!
Deadline: 11th January 2026
Eligibility: Open to everyone
Duration: 6 Months
Program Mode: Online
Taught By: IIT Roorkee Professors
Companies majorly hire candidates having Data Science and Artificial Intelligence knowledge these days.
๐ฅ๐ฒ๐ด๐ถ๐๐๐ฟ๐ฎ๐๐ถ๐ผ๐ป ๐๐ถ๐ป๐ธ๐:
https://pdlink.in/4qNGMO6
Only Limited Seats Available!
โ
Python for Data Science: Part-4
Data Visualization with Matplotlib, Seaborn Plotly ๐๐
1๏ธโฃ Matplotlib โ Basic Plotting
Great for simple line, bar, and scatter plots.
Import and Line Plot
Bar Plot
2๏ธโฃ Seaborn โ Statistical Visualization
Built on Matplotlib with better styling.
Import and Plot
Other Seaborn Plots
3๏ธโฃ Plotly โ Interactive Graphs
Great for dashboards and interactivity.
Basic Line Plot
๐ฏ Why Visualization Matters
โข Helps spot patterns in data
โข Makes insights clear and shareable
โข Supports better decision-making
Practice Task:
โข Create a line plot using matplotlib
โข Use seaborn to plot a boxplot for scores
โข Try any interactive chart using plotly
๐ฌ Tap โค๏ธ for more
Data Visualization with Matplotlib, Seaborn Plotly ๐๐
1๏ธโฃ Matplotlib โ Basic Plotting
Great for simple line, bar, and scatter plots.
Import and Line Plot
import matplotlib.pyplot as plt
x = [1, 2, 3, 4]
y = [10, 20, 25, 30]
plt.plot(x, y)
plt.title("Line Plot")
plt.xlabel("X-axis")
plt.ylabel("Y-axis")
plt.show()
Bar Plot
names = ["A", "B", "C"]
scores = [80, 90, 70]
plt.bar(names, scores)
plt.title("Scores by Name")
plt.show()
2๏ธโฃ Seaborn โ Statistical Visualization
Built on Matplotlib with better styling.
Import and Plot
import seaborn as sns
import pandas as pd
df = pd.DataFrame({
"Name": ["Riya", "Aman", "John", "Sara"],
"Score": [85, 92, 78, 88]
})
sns.barplot(x="Name", y="Score", data=df)
Other Seaborn Plots
sns.histplot(df["Score"]) # Histogram
sns.boxplot(x=df["Score"]) # Box plot
3๏ธโฃ Plotly โ Interactive Graphs
Great for dashboards and interactivity.
Basic Line Plot
import plotly.express as px
df = pd.DataFrame({
"x": [1, 2, 3],
"y": [10, 20, 15]
})
fig = px.line(df, x="x", y="y", title="Interactive Line Plot")
fig.show()
๐ฏ Why Visualization Matters
โข Helps spot patterns in data
โข Makes insights clear and shareable
โข Supports better decision-making
Practice Task:
โข Create a line plot using matplotlib
โข Use seaborn to plot a boxplot for scores
โข Try any interactive chart using plotly
๐ฌ Tap โค๏ธ for more
โค7