Data Science & Machine Learning
72.9K subscribers
776 photos
2 videos
68 files
683 links
Join this channel to learn data science, artificial intelligence and machine learning with funny quizzes, interesting projects and amazing resources for free

For collaborations: @love_data
Download Telegram
Media is too big
VIEW IN TELEGRAM
OnSpace Mobile App builder: Build AI Apps in minutes

๐Ÿ‘‰https://www.onspace.ai/agentic-app-builder?via=tg_dsf

With OnSpace, you can build AI Mobile Apps by chatting with AI, and publish to PlayStore or AppStore.

What will you get:
- Create app by chatting with AI;
- Integrate with Any top AI power just by giving order (like Sora2, Nanobanan Pro & Gemini 3 Pro);
- Download APK,AAB file, publish to AppStore.
- Add payments and monetize like in-app-purchase and Stripe.
- Functional login & signup.
- Database + dashboard in minutes.
- Full tutorial on YouTube and within 1 day customer service
โค6
โœ… A-Z Data Science Roadmap (Beginner to Job Ready) ๐Ÿ“Š๐Ÿง 

1๏ธโƒฃ Learn Python Basics
โ€ข Variables, data types, loops, functions
โ€ข Libraries: NumPy, Pandas

2๏ธโƒฃ Data Cleaning Manipulation
โ€ข Handling missing values, duplicates
โ€ข Data wrangling with Pandas
โ€ข GroupBy, merge, pivot tables

3๏ธโƒฃ Data Visualization
โ€ข Matplotlib, Seaborn
โ€ข Plotly for interactive charts
โ€ข Visualizing distributions, trends, relationships

4๏ธโƒฃ Math for Data Science
โ€ข Statistics (mean, median, std, distributions)
โ€ข Probability basics
โ€ข Linear algebra (vectors, matrices)
โ€ข Calculus (for ML intuition)

5๏ธโƒฃ SQL for Data Analysis
โ€ข SELECT, JOIN, GROUP BY, subqueries
โ€ข Window functions
โ€ข Real-world queries on large datasets

6๏ธโƒฃ Exploratory Data Analysis (EDA)
โ€ข Univariate multivariate analysis
โ€ข Outlier detection
โ€ข Correlation heatmaps

7๏ธโƒฃ Machine Learning (ML)
โ€ข Supervised vs Unsupervised
โ€ข Regression, classification, clustering
โ€ข Train-test split, cross-validation
โ€ข Overfitting, regularization

8๏ธโƒฃ ML with scikit-learn
โ€ข Linear logistic regression
โ€ข Decision trees, random forest, SVM
โ€ข K-means clustering
โ€ข Model evaluation metrics (accuracy, RMSE, F1)

9๏ธโƒฃ Deep Learning (Basics)
โ€ข Neural networks, activation functions
โ€ข TensorFlow / PyTorch
โ€ข MNIST digit classifier

๐Ÿ”Ÿ Projects to Build
โ€ข Titanic survival prediction
โ€ข House price prediction
โ€ข Customer segmentation
โ€ข Sentiment analysis
โ€ข Dashboard + ML combo

1๏ธโƒฃ1๏ธโƒฃ Tools to Learn
โ€ข Jupyter Notebook
โ€ข Git GitHub
โ€ข Google Colab
โ€ข VS Code

1๏ธโƒฃ2๏ธโƒฃ Model Deployment
โ€ข Streamlit, Flask APIs
โ€ข Deploy on Render, Heroku or Hugging Face Spaces

1๏ธโƒฃ3๏ธโƒฃ Communication Skills
โ€ข Present findings clearly
โ€ข Build dashboards or reports
โ€ข Use storytelling with data

1๏ธโƒฃ4๏ธโƒฃ Portfolio Resume
โ€ข Upload projects on GitHub
โ€ข Write blogs on Medium/Kaggle
โ€ข Create a LinkedIn-optimized profile

๐Ÿ’ก Pro Tip: Learn by building real projects and explaining them simply!

๐Ÿ’ฌ Tap โค๏ธ for more!
โค10๐Ÿ‘2
โœ… If you're serious about learning Artificial Intelligence (AI) โ€” follow this roadmap ๐Ÿค–๐Ÿง 

1. Learn Python basics (variables, loops, functions, OOP) ๐Ÿ
2. Master NumPy Pandas for data handling ๐Ÿ“Š
3. Learn data visualization tools: Matplotlib, Seaborn ๐Ÿ“ˆ
4. Study math essentials: linear algebra, probability, stats โž—
5. Understand machine learning fundamentals:
โ€“ Supervised vs unsupervised
โ€“ Train/test split, cross-validation
โ€“ Overfitting, underfitting, bias-variance
6. Learn scikit-learn: regression, classification, clustering ๐Ÿงฎ
7. Work on real datasets (Titanic, Iris, Housing, MNIST) ๐Ÿ“‚
8. Explore deep learning: neural networks, activation, backpropagation ๐Ÿง 
9. Use TensorFlow or PyTorch for model building โš™๏ธ
10. Build basic AI models (image classifier, sentiment analysis) ๐Ÿ–ผ๏ธ๐Ÿ“œ
11. Learn NLP concepts: tokenization, embeddings, transformers โœ๏ธ
12. Study LLMs: how GPT, BERT, and LLaMA work ๐Ÿ“š
13. Build AI mini-projects: chatbot, recommender, object detection ๐Ÿค–
14. Learn about Generative AI: GANs, diffusion, image generation ๐ŸŽจ
15. Explore tools like Hugging Face, OpenAI API, LangChain ๐Ÿงฉ
16. Understand ethical AI: fairness, bias, privacy ๐Ÿ›ก๏ธ
17. Study AI use cases in healthcare, finance, education, robotics ๐Ÿฅ๐Ÿ’ฐ๐Ÿค–
18. Learn model evaluation: accuracy, F1, ROC, confusion matrix ๐Ÿ“
19. Learn model deployment: FastAPI, Flask, Streamlit, Docker ๐Ÿš€
20. Document everything on GitHub + create a portfolio site ๐ŸŒ
21. Follow AI research papers/blogs (arXiv, PapersWithCode) ๐Ÿ“„
22. Add 1โ€“2 strong AI projects to your resume ๐Ÿ’ผ
23. Apply for internships or freelance gigs to gain experience ๐ŸŽฏ

Tip: Pick small problems and solve them end-to-endโ€”data to deployment.

๐Ÿ’ฌ Tap โค๏ธ for more!
โค16
One Membership, a Complete AI Study Toolkit
๐Ÿš€For anyone has no idea how to accelerate their study with AI, thereโ€™s MuleRun.One account, all the studyโ€‘focused AI power youโ€™ve heard about!

๐ŸคฏIf you:
โ€ข feel FOMO about AI but donโ€™t know where to start
โ€ข are tired of jumping between different AI tools and websites
โ€ข just want something that actually helps you study


then MuleRun is built exactly for you.

๐Ÿค“With MuleRun, you can:
โ€ข instantly find and summarize academic papers
โ€ข turn a 1โ€‘hour YouTube lecture into a 1โ€‘minute keyโ€‘point summary
โ€ข let AI help you do anything directly in your browser


โ€ฆโ€ฆ

๐Ÿ’ก Click here to give it a try: https://mulerun.pxf.io/jePYd6
โค6๐Ÿ‘2
โœ… Data Science Interview Prep Guide ๐Ÿ“Š๐Ÿง 

Whether you're a fresher or career-switcher, hereโ€™s how to prep step-by-step:

1๏ธโƒฃ Understand the Role
Data scientists solve problems using data. Core responsibilities:
โ€ข Data cleaning analysis
โ€ข Building predictive models
โ€ข Communicating insights
โ€ข Working with business/product teams

2๏ธโƒฃ Core Skills Needed
โœ”๏ธ Python (NumPy, Pandas, Matplotlib, Scikit-learn)
โœ”๏ธ SQL
โœ”๏ธ Statistics probability
โœ”๏ธ Machine Learning basics
โœ”๏ธ Data storytelling visualization (Power BI / Tableau / Seaborn)

3๏ธโƒฃ Key Interview Areas

A. Python Coding
โ€ข Write code to clean and analyze data
โ€ข Solve logic problems (e.g., reverse a list, group data by key)
โ€ข List vs Dict vs DataFrame usage

B. Statistics Probability
โ€ข Hypothesis testing
โ€ข p-values, confidence intervals
โ€ข Normal distribution, sampling

C. Machine Learning Concepts
โ€ข Supervised vs unsupervised learning
โ€ข Overfitting, regularization, cross-validation
โ€ข Algorithms: Linear Regression, Decision Trees, KNN, SVM

D. SQL
โ€ข Joins, GROUP BY, subqueries
โ€ข Window functions
โ€ข Data aggregation and filtering

E. Business Communication
โ€ข Explain model results to non-tech stakeholders
โ€ข What metrics would you track for [business case]?
โ€ข Tell me about a time you used data to influence a decision

4๏ธโƒฃ Build Your Portfolio
โœ… Do projects like:
โ€ข E-commerce sales analysis
โ€ข Customer churn prediction
โ€ข Movie recommendation system
โœ… Host on GitHub or Kaggle
โœ… Add visual dashboards and insights

5๏ธโƒฃ Practice Platforms
โ€ข LeetCode (SQL, Python)
โ€ข HackerRank
โ€ข StrataScratch (SQL case studies)
โ€ข Kaggle (competitions notebooks)

๐Ÿ’ฌ Tap โค๏ธ for more!
โค17
โœ… Top Data Science Projects That Impress Recruiters ๐Ÿง ๐Ÿ“Š

1. End-to-End ML Pipeline
โ†’ Choose a real dataset (e.g. housing, Titanic)
โ†’ Include data cleaning, feature engineering, model training evaluation
โ†’ Tools: Python (Pandas, Scikit-learn), Jupyter

2. Customer Segmentation (Clustering)
โ†’ Use K-Means or DBSCAN to group customers
โ†’ Visualize clusters and describe patterns
โ†’ Tools: Python, Seaborn, Plotly

3. Sentiment Analysis on Tweets or Reviews
โ†’ Classify sentiments (positive/negative/neutral)
โ†’ Preprocessing: tokenization, stop words removal
โ†’ Tools: Python (NLTK/TextBlob), word clouds

4. Time Series Forecasting
โ†’ Predict sales, temperature, stock prices
โ†’ Use ARIMA, Prophet, or LSTM
โ†’ Tools: Python (statsmodels, Facebook Prophet)

5. Resume Parser or Job Match System
โ†’ NLP project that reads resumes and matches with job descriptions
โ†’ Use Named Entity Recognition cosine similarity
โ†’ Tools: Python (Spacy, sklearn)

6. Image Classification
โ†’ Classify animals, signs, or objects using CNNs
โ†’ Train with TensorFlow or PyTorch
โ†’ Tools: Python, Keras

7. Credit Risk Prediction
โ†’ Predict loan default using classification models
โ†’ Use imbalanced datasets, ROC-AUC, SMOTE
โ†’ Tools: Python, Scikit-learn

8. Fake News Detection
โ†’ Binary classifier using TF-IDF or BERT
โ†’ Clean and label news data
โ†’ Tools: Python (NLP), Transformers

Tips:
โ€“ Add storytelling with business context
โ€“ Highlight model performance (accuracy, F1-score, AUC)
โ€“ Share notebooks + dashboards + GitHub link
โ€“ Use real-world data (Kaggle, UCI, APIs)

๐Ÿ’ฌ Tap โค๏ธ for more!
โค10๐Ÿ‘2
๐Ÿš€ Roadmap to Master Data Science in 60 Days! ๐Ÿ“Š๐Ÿง 

๐Ÿ“… Week 1โ€“2: Foundations
๐Ÿ”น Day 1โ€“5: Python basics (variables, loops, functions)
๐Ÿ”น Day 6โ€“10: NumPy Pandas for data handling

๐Ÿ“… Week 3โ€“4: Data Visualization Statistics
๐Ÿ”น Day 11โ€“15: Matplotlib, Seaborn, Plotly
๐Ÿ”น Day 16โ€“20: Descriptive stats, probability, distributions

๐Ÿ“… Week 5โ€“6: Data Cleaning EDA
๐Ÿ”น Day 21โ€“25: Missing data, outliers, data types
๐Ÿ”น Day 26โ€“30: Exploratory Data Analysis (EDA) projects

๐Ÿ“… Week 7โ€“8: Machine Learning
๐Ÿ”น Day 31โ€“35: Regression, Classification (Scikit-learn)
๐Ÿ”น Day 36โ€“40: Model tuning, metrics, cross-validation

๐Ÿ“… Week 9โ€“10: Advanced Concepts
๐Ÿ”น Day 41โ€“45: Clustering, PCA, Time Series basics
๐Ÿ”น Day 46โ€“50: NLP or Deep Learning (basics with TensorFlow/Keras)

๐Ÿ“… Week 11โ€“12: Projects Deployment
๐Ÿ”น Day 51โ€“55: Build 2 projects (e.g., Loan Prediction, Sentiment Analysis)
๐Ÿ”น Day 56โ€“60: Deploy using Streamlit, Flask + GitHub

๐Ÿงฐ Tools to Learn:
โ€ข Jupyter, Google Colab
โ€ข Git GitHub
โ€ข Excel, SQL basics
โ€ข Power BI/Tableau (optional)

๐Ÿ’ฌ Tap โค๏ธ for more!
โค22๐Ÿ‘2
In every family tree, there is 1 person who breaks out the middle-class chain and works hard to become a millionaire and changes the lives of everyone forever.

May that be you in 2026.

Happy New Year! โค๏ธ
โค74๐Ÿ”ฅ14๐Ÿ‘2
โœ… Python Basics for Data Science: Part-1

Variables Data Types

In Python, variables are used to store data, and data types define what kind of data is stored. This is the first and most essential building block of your data science journey.

1๏ธโƒฃ What is a Variable?
A variable is like a label for data stored in memory. You can assign any value to a variable and reuse it throughout your code.

Syntax:
x = 10  
name = "Riya"
is_active = True


2๏ธโƒฃ Common Data Types in Python

โ€ข int โ€“ Integers (whole numbers)
age = 25

โ€ข float โ€“ Decimal numbers
height = 5.8

โ€ข str โ€“ Text/String
city = "Mumbai"

โ€ข bool โ€“ Boolean (True or False)
is_student = False

โ€ข list โ€“ A collection of items
fruits = ["apple", "banana", "mango"]

โ€ข tuple โ€“ Ordered, immutable collection
coordinates = (10.5, 20.3)

โ€ข dict โ€“ Key-value pairs
student = {"name": "Riya", "score": 90}


3๏ธโƒฃ Type Checking
You can check the type of any variable using type()
print(type(age))       # <class 'int'>  
print(type(city)) # <class 'str'>


4๏ธโƒฃ Type Conversion
Change data from one type to another:
num = "100"
converted = int(num)
print(type(converted)) # <class 'int'>


5๏ธโƒฃ Why This Matters in Data Science
Data comes in various types. Understanding and managing types is critical for:
โ€ข Cleaning data
โ€ข Performing calculations
โ€ข Avoiding errors in analysis

โœ… Practice Task for You:
โ€ข Create 5 variables with different data types
โ€ข Use type() to print each one
โ€ข Convert a string to an integer and do basic math

๐Ÿ’ฌ Tap โค๏ธ for more!
โค12๐Ÿ‘4
๐—™๐—ฅ๐—˜๐—˜ ๐—ข๐—ป๐—น๐—ถ๐—ป๐—ฒ ๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ๐—ฐ๐—น๐—ฎ๐˜€๐˜€ ๐—•๐˜† ๐—œ๐—ป๐—ฑ๐˜‚๐˜€๐˜๐—ฟ๐˜† ๐—˜๐˜…๐—ฝ๐—ฒ๐—ฟ๐˜๐˜€ ๐Ÿ˜

Roadmap to land your dream job in top product-based companies

๐—›๐—ถ๐—ด๐—ต๐—น๐—ถ๐—ด๐—ต๐˜๐—ฒ๐˜€:-
- 90-Day Placement Plan
- Tech & Non-Tech Career Path
- Interview Preparation Tips
- Live Q&A

๐—ฅ๐—ฒ๐—ด๐—ถ๐˜€๐˜๐—ฒ๐—ฟ ๐—™๐—ผ๐—ฟ ๐—™๐—ฅ๐—˜๐—˜๐Ÿ‘‡:- 

https://pdlink.in/3Ltb3CE

Date & Time:- 06th January 2026 , 7PM
โค1
โœ… Python Basics for Data Science: Part-2

Loops Functions ๐Ÿ”๐Ÿง 

These two concepts are key to writing clean, efficient, and reusable code โ€” especially when working with data.

1๏ธโƒฃ Loops in Python
Loops help you repeat tasks like reading data, checking values, or processing items in a list.

For Loop
fruits = ["apple", "banana", "mango"]
for fruit in fruits:
print(fruit)


While Loop
count = 1
while count <= 3:
print("Loading...", count)
count += 1


Loop with Condition
numbers = [10, 5, 20, 3]
for num in numbers:
if num > 10:
print(num, "is greater than 10")


2๏ธโƒฃ Functions in Python
Functions let you group code into blocks you can reuse.

Basic Function
def greet(name):
return f"Hello, {name}!"

print(greet("Riya"))


Function with Logic
def is_even(num):
if num % 2 == 0:
return True
return False

print(is_even(4)) # Output: True


Function for Calculation
def square(x):
return x * x

print(square(6)) # Output: 36


โœ… Why This Matters in Data Science
โ€ข Loops help in iterating over datasets
โ€ข Functions make your data cleaning reusable
โ€ข Helps organize long analysis code into simple blocks

๐ŸŽฏ Practice Task for You:
โ€ข Write a for loop to print numbers from 1 to 10
โ€ข Create a function that takes two numbers and returns their average
โ€ข Make a function that returns "Even" or "Odd" based on input

๐Ÿ’ฌ Tap โค๏ธ for more!
โค13
๐—ง๐—ผ๐—ฝ ๐Ÿฑ ๐—œ๐—ป-๐——๐—ฒ๐—บ๐—ฎ๐—ป๐—ฑ ๐—ฆ๐—ธ๐—ถ๐—น๐—น๐˜€ ๐˜๐—ผ ๐—™๐—ผ๐—ฐ๐˜‚๐˜€ ๐—ผ๐—ป ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฒ๐Ÿ˜

Start learning industry-relevant data skills today at zero cost!

๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€:- https://pdlink.in/497MMLw

๐—”๐—œ & ๐— ๐—Ÿ :- https://pdlink.in/4bhetTu

๐—–๐—น๐—ผ๐˜‚๐—ฑ ๐—–๐—ผ๐—บ๐—ฝ๐˜‚๐˜๐—ถ๐—ป๐—ด:- https://pdlink.in/3LoutZd

๐—–๐˜†๐—ฏ๐—ฒ๐—ฟ ๐—ฆ๐—ฒ๐—ฐ๐˜‚๐—ฟ๐—ถ๐˜๐˜†:- https://pdlink.in/3N9VOyW

๐—ข๐˜๐—ต๐—ฒ๐—ฟ ๐—ง๐—ฒ๐—ฐ๐—ต ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€:- https://pdlink.in/4qgtrxU

๐ŸŽ“ Enroll Now & Get Certified
โค1
โœ… Python for Data Science: Part-3

NumPy Pandas Basics ๐Ÿ“Š๐Ÿ
These two libraries form the foundation for handling and analyzing data in Python.

1๏ธโƒฃ NumPy โ€“ Numerical Python
NumPy helps with fast numerical operations and array handling.

Importing NumPy
import numpy as np

Create Arrays
arr = np.array([1, 2, 3])
print(arr)

Array Operations
a = np.array([1, 2, 3])
b = np.array([4, 5, 6])
print(a + b) # [5 7 9]
print(a * 2) # [2 4 6]

Useful NumPy Functions
np.mean(a)          # Average
np.max(b) # Max value
np.arange(0, 10, 2) # [0 2 4 6 8]

2๏ธโƒฃ Pandas โ€“ Data Analysis Library
Pandas is used to work with data in table format (DataFrames).

Importing Pandas
import pandas as pd

Create a DataFrame
data = {
"Name": ["Riya", "Aman"],
"Age": [24, 30]
}
df = pd.DataFrame(data)
print(df)

Read CSV File
df = pd.read_csv("data.csv")

Basic DataFrame Operations
df.head()       # First 5 rows  
df.info() # Column types
df.describe() # Stats summary
df["Age"].mean() # Average age

Filter Rows
df[df["Age"] > 25]

๐ŸŽฏ Why This Matters
โ€ข NumPy makes math faster and easier
โ€ข Pandas helps clean, explore, and transform data
โ€ข Essential for real-world data analysis

Practice Task:
โ€ข Create a NumPy array of 10 numbers
โ€ข Make a Pandas DataFrame with 2 columns (Name, Score)
โ€ข Filter all scores above 80

๐Ÿ’ฌ Tap โค๏ธ for more
โค5๐Ÿ‘1
๐ŸŽฏ ๐—ก๐—ฒ๐˜„ ๐˜†๐—ฒ๐—ฎ๐—ฟ, ๐—ป๐—ฒ๐˜„ ๐˜€๐—ธ๐—ถ๐—น๐—น๐˜€.

If you've been meaning to learn ๐—ฎ๐—ด๐—ฒ๐—ป๐˜๐—ถ๐—ฐ ๐—”๐—œ, this is your starting point.

Build a real RAG assistant from scratch.
Beginner-friendly. Completely self-paced.

๐Ÿฑ๐Ÿฌ,๐Ÿฌ๐Ÿฌ๐Ÿฌ+ ๐—น๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ฒ๐—ฟ๐˜€ from 130+ countries already enrolled.

https://www.readytensor.ai/agentic-ai-essentials-cert/
โค2
๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฎ๐—ป๐—ฑ ๐—”๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ถ๐—ฎ๐—น ๐—œ๐—ป๐˜๐—ฒ๐—น๐—น๐—ถ๐—ด๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—ฃ๐—ฟ๐—ผ๐—ด๐—ฟ๐—ฎ๐—บ ๐—ฏ๐˜† ๐—œ๐—œ๐—ง ๐—ฅ๐—ผ๐—ผ๐—ฟ๐—ธ๐—ฒ๐—ฒ๐Ÿ˜

Deadline: 11th January 2026

Eligibility: Open to everyone
Duration: 6 Months
Program Mode: Online
Taught By: IIT Roorkee Professors

Companies majorly hire candidates having Data Science and Artificial Intelligence knowledge these days.

๐—ฅ๐—ฒ๐—ด๐—ถ๐˜€๐˜๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—Ÿ๐—ถ๐—ป๐—ธ๐Ÿ‘‡

https://pdlink.in/4qNGMO6

Only Limited Seats Available!
โœ… Python for Data Science: Part-4

Data Visualization with Matplotlib, Seaborn Plotly ๐Ÿ“Š๐Ÿ“ˆ

1๏ธโƒฃ Matplotlib โ€“ Basic Plotting
Great for simple line, bar, and scatter plots.

Import and Line Plot
import matplotlib.pyplot as plt

x = [1, 2, 3, 4]
y = [10, 20, 25, 30]
plt.plot(x, y)
plt.title("Line Plot")
plt.xlabel("X-axis")
plt.ylabel("Y-axis")
plt.show()

Bar Plot
names = ["A", "B", "C"]
scores = [80, 90, 70]
plt.bar(names, scores)
plt.title("Scores by Name")
plt.show()


2๏ธโƒฃ Seaborn โ€“ Statistical Visualization
Built on Matplotlib with better styling.

Import and Plot
import seaborn as sns
import pandas as pd

df = pd.DataFrame({
"Name": ["Riya", "Aman", "John", "Sara"],
"Score": [85, 92, 78, 88]
})

sns.barplot(x="Name", y="Score", data=df)

Other Seaborn Plots
sns.histplot(df["Score"])          # Histogram  
sns.boxplot(x=df["Score"]) # Box plot


3๏ธโƒฃ Plotly โ€“ Interactive Graphs
Great for dashboards and interactivity.

Basic Line Plot
import plotly.express as px

df = pd.DataFrame({
"x": [1, 2, 3],
"y": [10, 20, 15]
})

fig = px.line(df, x="x", y="y", title="Interactive Line Plot")
fig.show()


๐ŸŽฏ Why Visualization Matters
โ€ข Helps spot patterns in data
โ€ข Makes insights clear and shareable
โ€ข Supports better decision-making

Practice Task:
โ€ข Create a line plot using matplotlib
โ€ข Use seaborn to plot a boxplot for scores
โ€ข Try any interactive chart using plotly

๐Ÿ’ฌ Tap โค๏ธ for more
โค7