๐ ๐ง๐ผ๐ฝ ๐ฑ ๐ฆ๐ธ๐ถ๐น๐น๐ ๐๐ผ ๐ ๐ฎ๐๐๐ฒ๐ฟ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ | ๐๐ป๐ฟ๐ผ๐น๐น ๐ณ๐ผ๐ฟ ๐๐ฅ๐๐ ๐
๐ Upgrade your career with in-demand tech skills & FREE certifications!
1๏ธโฃ AI & ML โ https://pdlink.in/3U3eZuq
2๏ธโฃ Data Analytics โ https://pdlink.in/4lp7hXQ
3๏ธโฃ Cloud Computing โ https://pdlink.in/3GtNJlO
4๏ธโฃ Cyber Security โ https://pdlink.in/4nHBuTh
5๏ธโฃ More Courses โ https://pdlink.in/3ImMFAB
๐ 100% FREE | Certificates Provided | Learn Anytime, Anywhere
๐ Upgrade your career with in-demand tech skills & FREE certifications!
1๏ธโฃ AI & ML โ https://pdlink.in/3U3eZuq
2๏ธโฃ Data Analytics โ https://pdlink.in/4lp7hXQ
3๏ธโฃ Cloud Computing โ https://pdlink.in/3GtNJlO
4๏ธโฃ Cyber Security โ https://pdlink.in/4nHBuTh
5๏ธโฃ More Courses โ https://pdlink.in/3ImMFAB
๐ 100% FREE | Certificates Provided | Learn Anytime, Anywhere
โค3
๐ Data Science Essentials: What Every Data Enthusiast Should Know!
1๏ธโฃ Understand Your Data
Always start with data exploration. Check for missing values, outliers, and overall distribution to avoid misleading insights.
2๏ธโฃ Data Cleaning Matters
Noisy data leads to inaccurate predictions. Standardize formats, remove duplicates, and handle missing data effectively.
3๏ธโฃ Use Descriptive & Inferential Statistics
Mean, median, mode, variance, standard deviation, correlation, hypothesis testingโthese form the backbone of data interpretation.
4๏ธโฃ Master Data Visualization
Bar charts, histograms, scatter plots, and heatmaps make insights more accessible and actionable.
5๏ธโฃ Learn SQL for Efficient Data Extraction
Write optimized queries (
6๏ธโฃ Build Strong Programming Skills
Python (Pandas, NumPy, Scikit-learn) and R are essential for data manipulation and analysis.
7๏ธโฃ Understand Machine Learning Basics
Know key algorithmsโlinear regression, decision trees, random forests, and clusteringโto develop predictive models.
8๏ธโฃ Learn Dashboarding & Storytelling
Power BI and Tableau help convert raw data into actionable insights for stakeholders.
๐ฅ Pro Tip: Always cross-check your results with different techniques to ensure accuracy!
DOUBLE TAP โค๏ธ IF YOU FOUND THIS HELPFUL!
1๏ธโฃ Understand Your Data
Always start with data exploration. Check for missing values, outliers, and overall distribution to avoid misleading insights.
2๏ธโฃ Data Cleaning Matters
Noisy data leads to inaccurate predictions. Standardize formats, remove duplicates, and handle missing data effectively.
3๏ธโฃ Use Descriptive & Inferential Statistics
Mean, median, mode, variance, standard deviation, correlation, hypothesis testingโthese form the backbone of data interpretation.
4๏ธโฃ Master Data Visualization
Bar charts, histograms, scatter plots, and heatmaps make insights more accessible and actionable.
5๏ธโฃ Learn SQL for Efficient Data Extraction
Write optimized queries (
SELECT
, JOIN
, GROUP BY
, WHERE
) to retrieve relevant data from databases.6๏ธโฃ Build Strong Programming Skills
Python (Pandas, NumPy, Scikit-learn) and R are essential for data manipulation and analysis.
7๏ธโฃ Understand Machine Learning Basics
Know key algorithmsโlinear regression, decision trees, random forests, and clusteringโto develop predictive models.
8๏ธโฃ Learn Dashboarding & Storytelling
Power BI and Tableau help convert raw data into actionable insights for stakeholders.
๐ฅ Pro Tip: Always cross-check your results with different techniques to ensure accuracy!
DOUBLE TAP โค๏ธ IF YOU FOUND THIS HELPFUL!
โค14
What is a Python module?
Anonymous Quiz
10%
A. A folder with multiple files
12%
B. A function defined in Python
56%
C. A .py file containing functions, classes, or variables
22%
D. A built-in library
๐ฅ2โค1
Which of the following is a built-in Python module?
Anonymous Quiz
39%
A. pandas
8%
B. tensorflow
45%
C. random
9%
D. requests
๐ฅ2โค1
What is required to make a Python folder a package?
Anonymous Quiz
18%
A. At least two .py files
17%
B. A setup.py file
33%
C. An _init_.py file
32%
D. A main.py file
โค1๐ฅ1
How do you install an external module like numpy?
Anonymous Quiz
18%
A. import numpy
8%
B. run numpy.install()
4%
C. use install numpy
70%
D. pip install numpy
โค5๐ฅ1
What does this line do?
from mytools import cleaner
from mytools import cleaner
Anonymous Quiz
5%
A. Creates a new module
14%
B. Imports a class from cleaner.py
73%
C. Imports the cleaner module from the mytools package
7%
D. Installs a module from pip
โค2๐ฅ2
๐ฎ๐ฑ+ ๐ ๐๐๐-๐๐ป๐ผ๐ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐๐ป๐๐ฒ๐ฟ๐๐ถ๐ฒ๐ ๐ค๐๐ฒ๐๐๐ถ๐ผ๐ป๐ ๐๐ผ ๐๐ฎ๐ป๐ฑ ๐ฌ๐ผ๐๐ฟ ๐๐ฟ๐ฒ๐ฎ๐บ ๐๐ผ๐ฏ ๐
Breaking into Data Analytics isnโt just about knowing the tools โ itโs about answering the right questions with confidence๐งโ๐ปโจ๏ธ
Whether youโre aiming for your first role or looking to level up your career, these real interview questions will test your skills๐๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3JumloI
Donโt just learn โ prepare smartโ ๏ธ
Breaking into Data Analytics isnโt just about knowing the tools โ itโs about answering the right questions with confidence๐งโ๐ปโจ๏ธ
Whether youโre aiming for your first role or looking to level up your career, these real interview questions will test your skills๐๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3JumloI
Donโt just learn โ prepare smartโ ๏ธ
โค2
When starting off your data analytics journey you DON'T need to be a SQL guru from the get-go.
In fact, most SQL skills you will only learn on the job with:
- real business problems.
- actual data sets.
- imperfect data architecture.
- other people to collaborate with.
So be kind to yourself, give yourself time to grow and above all...
try to become proficient at SQL rather than perfect.
The rest will take care of itself along the way! ๐
In fact, most SQL skills you will only learn on the job with:
- real business problems.
- actual data sets.
- imperfect data architecture.
- other people to collaborate with.
So be kind to yourself, give yourself time to grow and above all...
try to become proficient at SQL rather than perfect.
The rest will take care of itself along the way! ๐
โค7๐1
๐ง๐ผ๐ฝ ๐ ๐ก๐๐ ๐๐ถ๐ฟ๐ถ๐ป๐ด ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐๐ ,๐๐๐๐ถ๐ป๐ฒ๐๐ ๐๐ป๐ฎ๐น๐๐๐๐ & ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐๐ถ๐๐๐๐
Companies Hiring:-
- Goldman Sachs
- Natwest Group
- Siemens
- JP Morgan
- Accenture & Many More
Salary Range :- 5 To 24LPA
Job Location :- PAN India
๐๐ฝ๐ฝ๐น๐ ๐ก๐ผ๐๐:-
https://bit.ly/44qMX2k
Select your experience & Complete The Registration Process
Select the company name & apply for the role that matches you
Companies Hiring:-
- Goldman Sachs
- Natwest Group
- Siemens
- JP Morgan
- Accenture & Many More
Salary Range :- 5 To 24LPA
Job Location :- PAN India
๐๐ฝ๐ฝ๐น๐ ๐ก๐ผ๐๐:-
https://bit.ly/44qMX2k
Select your experience & Complete The Registration Process
Select the company name & apply for the role that matches you
โค2๐ฅ1
SQL Cheatsheet ๐
This SQL cheatsheet is designed to be your quick reference guide for SQL programming. Whether youโre a beginner learning how to query databases or an experienced developer looking for a handy resource, this cheatsheet covers essential SQL topics.
1. Database Basics
-
-
2. Tables
- Create Table:
- Drop Table:
- Alter Table:
3. Insert Data
-
4. Select Queries
- Basic Select:
- Select Specific Columns:
- Select with Condition:
5. Update Data
-
6. Delete Data
-
7. Joins
- Inner Join:
- Left Join:
- Right Join:
8. Aggregations
- Count:
- Sum:
- Group By:
9. Sorting & Limiting
- Order By:
- Limit Results:
10. Indexes
- Create Index:
- Drop Index:
11. Subqueries
-
12. Views
- Create View:
- Drop View:
This SQL cheatsheet is designed to be your quick reference guide for SQL programming. Whether youโre a beginner learning how to query databases or an experienced developer looking for a handy resource, this cheatsheet covers essential SQL topics.
1. Database Basics
-
CREATE DATABASE db_name;
-
USE db_name;
2. Tables
- Create Table:
CREATE TABLE table_name (col1 datatype, col2 datatype);
- Drop Table:
DROP TABLE table_name;
- Alter Table:
ALTER TABLE table_name ADD column_name datatype;
3. Insert Data
-
INSERT INTO table_name (col1, col2) VALUES (val1, val2);
4. Select Queries
- Basic Select:
SELECT * FROM table_name;
- Select Specific Columns:
SELECT col1, col2 FROM table_name;
- Select with Condition:
SELECT * FROM table_name WHERE condition;
5. Update Data
-
UPDATE table_name SET col1 = value1 WHERE condition;
6. Delete Data
-
DELETE FROM table_name WHERE condition;
7. Joins
- Inner Join:
SELECT * FROM table1 INNER JOIN table2 ON table1.col = table2.col;
- Left Join:
SELECT * FROM table1 LEFT JOIN table2 ON table1.col = table2.col;
- Right Join:
SELECT * FROM table1 RIGHT JOIN table2 ON table1.col = table2.col;
8. Aggregations
- Count:
SELECT COUNT(*) FROM table_name;
- Sum:
SELECT SUM(col) FROM table_name;
- Group By:
SELECT col, COUNT(*) FROM table_name GROUP BY col;
9. Sorting & Limiting
- Order By:
SELECT * FROM table_name ORDER BY col ASC|DESC;
- Limit Results:
SELECT * FROM table_name LIMIT n;
10. Indexes
- Create Index:
CREATE INDEX idx_name ON table_name (col);
- Drop Index:
DROP INDEX idx_name;
11. Subqueries
-
SELECT * FROM table_name WHERE col IN (SELECT col FROM other_table);
12. Views
- Create View:
CREATE VIEW view_name AS SELECT * FROM table_name;
- Drop View:
DROP VIEW view_name;
โค6๐2
Since many of you were asking me to send Data Science Session
๐So we have come with a session for you!! ๐จ๐ปโ๐ป ๐ฉ๐ปโ๐ป
This will help you to speed up your job hunting process ๐ช
Register here
๐๐
https://go.acciojob.com/RYFvdU
Only limited free slots are available so Register Now
๐So we have come with a session for you!! ๐จ๐ปโ๐ป ๐ฉ๐ปโ๐ป
This will help you to speed up your job hunting process ๐ช
Register here
๐๐
https://go.acciojob.com/RYFvdU
Only limited free slots are available so Register Now
โค2
๐๐๐ซ๐ง ๐
๐๐๐ ๐๐ซ๐๐๐ฅ๐ ๐๐๐ซ๐ญ๐ข๐๐ข๐๐๐ญ๐ข๐จ๐ง๐ฌ ๐ข๐ง ๐๐๐๐ โ ๐๐ฅ๐จ๐ฎ๐, ๐๐ & ๐๐๐ญ๐!๐
Oracleโs Race to Certification is here โ your chance to earn globally recognized certifications for FREE!๐ฅ
๐ก Choose from in-demand certifications in:
โ๏ธ Cloud
๐ค AI
๐ Data
โฆand more!
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4lx2tin
โกBut hurry โ spots are limited, and the clock is ticking!โ ๏ธ
Oracleโs Race to Certification is here โ your chance to earn globally recognized certifications for FREE!๐ฅ
๐ก Choose from in-demand certifications in:
โ๏ธ Cloud
๐ค AI
๐ Data
โฆand more!
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4lx2tin
โกBut hurry โ spots are limited, and the clock is ticking!โ ๏ธ
โค2
๐ Complete Roadmap to Become a Data Scientist in 5 Months
๐ Week 1-2: Fundamentals
โ Day 1-3: Introduction to Data Science, its applications, and roles.
โ Day 4-7: Brush up on Python programming ๐.
โ Day 8-10: Learn basic statistics ๐ and probability ๐ฒ.
๐ Week 3-4: Data Manipulation & Visualization
๐ Day 11-15: Master Pandas for data manipulation.
๐ Day 16-20: Learn Matplotlib & Seaborn for data visualization.
๐ค Week 5-6: Machine Learning Foundations
๐ฌ Day 21-25: Introduction to scikit-learn.
๐ Day 26-30: Learn Linear & Logistic Regression.
๐ Week 7-8: Advanced Machine Learning
๐ณ Day 31-35: Explore Decision Trees & Random Forests.
๐ Day 36-40: Learn Clustering (K-Means, DBSCAN) & Dimensionality Reduction.
๐ง Week 9-10: Deep Learning
๐ค Day 41-45: Basics of Neural Networks with TensorFlow/Keras.
๐ธ Day 46-50: Learn CNNs & RNNs for image & text data.
๐ Week 11-12: Data Engineering
๐ Day 51-55: Learn SQL & Databases.
๐งน Day 56-60: Data Preprocessing & Cleaning.
๐ Week 13-14: Model Evaluation & Optimization
๐ Day 61-65: Learn Cross-validation & Hyperparameter Tuning.
๐ Day 66-70: Understand Evaluation Metrics (Accuracy, Precision, Recall, F1-score).
๐ Week 15-16: Big Data & Tools
๐ Day 71-75: Introduction to Big Data Technologies (Hadoop, Spark).
โ๏ธ Day 76-80: Learn Cloud Computing (AWS, GCP, Azure).
๐ Week 17-18: Deployment & Production
๐ Day 81-85: Deploy models using Flask or FastAPI.
๐ฆ Day 86-90: Learn Docker & Cloud Deployment (AWS, Heroku).
๐ฏ Week 19-20: Specialization
๐ Day 91-95: Choose NLP or Computer Vision, based on your interest.
๐ Week 21-22: Projects & Portfolio
๐ Day 96-100: Work on Personal Data Science Projects.
๐ฌ Week 23-24: Soft Skills & Networking
๐ค Day 101-105: Improve Communication & Presentation Skills.
๐ Day 106-110: Attend Online Meetups & Forums.
๐ฏ Week 25-26: Interview Preparation
๐ป Day 111-115: Practice Coding Interviews (LeetCode, HackerRank).
๐ Day 116-120: Review your projects & prepare for discussions.
๐จโ๐ป Week 27-28: Apply for Jobs
๐ฉ Day 121-125: Start applying for Entry-Level Data Scientist positions.
๐ค Week 29-30: Interviews
๐ Day 126-130: Attend Interviews & Practice Whiteboard Problems.
๐ Week 31-32: Continuous Learning
๐ฐ Day 131-135: Stay updated with the Latest Data Science Trends.
๐ Week 33-34: Accepting Offers
๐ Day 136-140: Evaluate job offers & Negotiate Your Salary.
๐ข Week 35-36: Settling In
๐ฏ Day 141-150: Start your New Data Science Job, adapt & keep learning!
๐ Enjoy Learning & Build Your Dream Career in Data Science! ๐๐ฅ
๐ Week 1-2: Fundamentals
โ Day 1-3: Introduction to Data Science, its applications, and roles.
โ Day 4-7: Brush up on Python programming ๐.
โ Day 8-10: Learn basic statistics ๐ and probability ๐ฒ.
๐ Week 3-4: Data Manipulation & Visualization
๐ Day 11-15: Master Pandas for data manipulation.
๐ Day 16-20: Learn Matplotlib & Seaborn for data visualization.
๐ค Week 5-6: Machine Learning Foundations
๐ฌ Day 21-25: Introduction to scikit-learn.
๐ Day 26-30: Learn Linear & Logistic Regression.
๐ Week 7-8: Advanced Machine Learning
๐ณ Day 31-35: Explore Decision Trees & Random Forests.
๐ Day 36-40: Learn Clustering (K-Means, DBSCAN) & Dimensionality Reduction.
๐ง Week 9-10: Deep Learning
๐ค Day 41-45: Basics of Neural Networks with TensorFlow/Keras.
๐ธ Day 46-50: Learn CNNs & RNNs for image & text data.
๐ Week 11-12: Data Engineering
๐ Day 51-55: Learn SQL & Databases.
๐งน Day 56-60: Data Preprocessing & Cleaning.
๐ Week 13-14: Model Evaluation & Optimization
๐ Day 61-65: Learn Cross-validation & Hyperparameter Tuning.
๐ Day 66-70: Understand Evaluation Metrics (Accuracy, Precision, Recall, F1-score).
๐ Week 15-16: Big Data & Tools
๐ Day 71-75: Introduction to Big Data Technologies (Hadoop, Spark).
โ๏ธ Day 76-80: Learn Cloud Computing (AWS, GCP, Azure).
๐ Week 17-18: Deployment & Production
๐ Day 81-85: Deploy models using Flask or FastAPI.
๐ฆ Day 86-90: Learn Docker & Cloud Deployment (AWS, Heroku).
๐ฏ Week 19-20: Specialization
๐ Day 91-95: Choose NLP or Computer Vision, based on your interest.
๐ Week 21-22: Projects & Portfolio
๐ Day 96-100: Work on Personal Data Science Projects.
๐ฌ Week 23-24: Soft Skills & Networking
๐ค Day 101-105: Improve Communication & Presentation Skills.
๐ Day 106-110: Attend Online Meetups & Forums.
๐ฏ Week 25-26: Interview Preparation
๐ป Day 111-115: Practice Coding Interviews (LeetCode, HackerRank).
๐ Day 116-120: Review your projects & prepare for discussions.
๐จโ๐ป Week 27-28: Apply for Jobs
๐ฉ Day 121-125: Start applying for Entry-Level Data Scientist positions.
๐ค Week 29-30: Interviews
๐ Day 126-130: Attend Interviews & Practice Whiteboard Problems.
๐ Week 31-32: Continuous Learning
๐ฐ Day 131-135: Stay updated with the Latest Data Science Trends.
๐ Week 33-34: Accepting Offers
๐ Day 136-140: Evaluate job offers & Negotiate Your Salary.
๐ข Week 35-36: Settling In
๐ฏ Day 141-150: Start your New Data Science Job, adapt & keep learning!
๐ Enjoy Learning & Build Your Dream Career in Data Science! ๐๐ฅ
โค5
[ YouCine App V1.16.5 ]- Your Ultimate Entertainment Hub!
๐บ Access over 1 million TV shows, movies, anime, Disney and kids' content from around the globe! Plus, enjoy FREE live streaming of NBA basketball and soccer matches.
๐ข Mobile Download Link๐ ๐ ๐
https://ycapp.co/xtiveyc
https://ycapp.co/xtiveyc
โจ Over 1 million movies and TV shows.
โค๏ธ Multiple languages ๐บ๐ธ๐ต๐น๐ช๐ธโค๏ธ Enjoy AD-FREE channels for a seamless experience. โค๏ธ Access unlimited free content anytime.โค๏ธ Secure, ad-free and virus-free.โค๏ธ Watch live football matches including the Premier League, La Liga, Champions League, and more! ๐โฝ๏ธ
๐ข TV Download Link๐ ๐ ๐
https://ycapp.co/xtivetv
https://ycapp.co/xtiveyc
https://ycapp.co/xtiveyc
https://ycapp.co/xtivetv
๐ New users can download and register to join YouCine now and get a free 7-day VIP trial!๐ Netflix!x, Pr!me video, D!sney+, Crunchyroll content also available
Please open Telegram to view this post
VIEW IN TELEGRAM
โค1