Core data science concepts you should know:
๐ข 1. Statistics & Probability
Descriptive statistics: Mean, median, mode, standard deviation, variance
Inferential statistics: Hypothesis testing, confidence intervals, p-values, t-tests, ANOVA
Probability distributions: Normal, Binomial, Poisson, Uniform
Bayes' Theorem
Central Limit Theorem
๐ 2. Data Wrangling & Cleaning
Handling missing values
Outlier detection and treatment
Data transformation (scaling, encoding, normalization)
Feature engineering
Dealing with imbalanced data
๐ 3. Exploratory Data Analysis (EDA)
Univariate, bivariate, and multivariate analysis
Correlation and covariance
Data visualization tools: Matplotlib, Seaborn, Plotly
Insights generation through visual storytelling
๐ค 4. Machine Learning Fundamentals
Supervised Learning: Linear regression, logistic regression, decision trees, SVM, k-NN
Unsupervised Learning: K-means, hierarchical clustering, PCA
Model evaluation: Accuracy, precision, recall, F1-score, ROC-AUC
Cross-validation and overfitting/underfitting
Bias-variance tradeoff
๐ง 5. Deep Learning (Basics)
Neural networks: Perceptron, MLP
Activation functions (ReLU, Sigmoid, Tanh)
Backpropagation
Gradient descent and learning rate
CNNs and RNNs (intro level)
๐๏ธ 6. Data Structures & Algorithms (DSA)
Arrays, lists, dictionaries, sets
Sorting and searching algorithms
Time and space complexity (Big-O notation)
Common problems: string manipulation, matrix operations, recursion
๐พ 7. SQL & Databases
SELECT, WHERE, GROUP BY, HAVING
JOINS (inner, left, right, full)
Subqueries and CTEs
Window functions
Indexing and normalization
๐ฆ 8. Tools & Libraries
Python: pandas, NumPy, scikit-learn, TensorFlow, PyTorch
R: dplyr, ggplot2, caret
Jupyter Notebooks for experimentation
Git and GitHub for version control
๐งช 9. A/B Testing & Experimentation
Control vs. treatment group
Hypothesis formulation
Significance level, p-value interpretation
Power analysis
๐ 10. Business Acumen & Storytelling
Translating data insights into business value
Crafting narratives with data
Building dashboards (Power BI, Tableau)
Knowing KPIs and business metrics
React โค๏ธ for more
๐ข 1. Statistics & Probability
Descriptive statistics: Mean, median, mode, standard deviation, variance
Inferential statistics: Hypothesis testing, confidence intervals, p-values, t-tests, ANOVA
Probability distributions: Normal, Binomial, Poisson, Uniform
Bayes' Theorem
Central Limit Theorem
๐ 2. Data Wrangling & Cleaning
Handling missing values
Outlier detection and treatment
Data transformation (scaling, encoding, normalization)
Feature engineering
Dealing with imbalanced data
๐ 3. Exploratory Data Analysis (EDA)
Univariate, bivariate, and multivariate analysis
Correlation and covariance
Data visualization tools: Matplotlib, Seaborn, Plotly
Insights generation through visual storytelling
๐ค 4. Machine Learning Fundamentals
Supervised Learning: Linear regression, logistic regression, decision trees, SVM, k-NN
Unsupervised Learning: K-means, hierarchical clustering, PCA
Model evaluation: Accuracy, precision, recall, F1-score, ROC-AUC
Cross-validation and overfitting/underfitting
Bias-variance tradeoff
๐ง 5. Deep Learning (Basics)
Neural networks: Perceptron, MLP
Activation functions (ReLU, Sigmoid, Tanh)
Backpropagation
Gradient descent and learning rate
CNNs and RNNs (intro level)
๐๏ธ 6. Data Structures & Algorithms (DSA)
Arrays, lists, dictionaries, sets
Sorting and searching algorithms
Time and space complexity (Big-O notation)
Common problems: string manipulation, matrix operations, recursion
๐พ 7. SQL & Databases
SELECT, WHERE, GROUP BY, HAVING
JOINS (inner, left, right, full)
Subqueries and CTEs
Window functions
Indexing and normalization
๐ฆ 8. Tools & Libraries
Python: pandas, NumPy, scikit-learn, TensorFlow, PyTorch
R: dplyr, ggplot2, caret
Jupyter Notebooks for experimentation
Git and GitHub for version control
๐งช 9. A/B Testing & Experimentation
Control vs. treatment group
Hypothesis formulation
Significance level, p-value interpretation
Power analysis
๐ 10. Business Acumen & Storytelling
Translating data insights into business value
Crafting narratives with data
Building dashboards (Power BI, Tableau)
Knowing KPIs and business metrics
React โค๏ธ for more
โค15๐2
Data Analytics Interview Questions
1. What is the difference between SQL and MySQL?
SQL is a standard language for retrieving and manipulating structured databases. On the contrary, MySQL is a relational database management system, like SQL Server, Oracle or IBM DB2, that is used to manage SQL databases.
2. What is a Cross-Join?
Cross join can be defined as a cartesian product of the two tables included in the join. The table after join contains the same number of rows as in the cross-product of the number of rows in the two tables. If a WHERE clause is used in cross join then the query will work like an INNER JOIN.
3. What is a Stored Procedure?
A stored procedure is a subroutine available to applications that access a relational database management system (RDBMS). Such procedures are stored in the database data dictionary. The sole disadvantage of stored procedure is that it can be executed nowhere except in the database and occupies more memory in the database server.
4. What is Pattern Matching in SQL?
SQL pattern matching provides for pattern search in data if you have no clue as to what that word should be. This kind of SQL query uses wildcards to match a string pattern, rather than writing the exact word. The LIKE operator is used in conjunction with SQL Wildcards to fetch the required information.
1. What is the difference between SQL and MySQL?
SQL is a standard language for retrieving and manipulating structured databases. On the contrary, MySQL is a relational database management system, like SQL Server, Oracle or IBM DB2, that is used to manage SQL databases.
2. What is a Cross-Join?
Cross join can be defined as a cartesian product of the two tables included in the join. The table after join contains the same number of rows as in the cross-product of the number of rows in the two tables. If a WHERE clause is used in cross join then the query will work like an INNER JOIN.
3. What is a Stored Procedure?
A stored procedure is a subroutine available to applications that access a relational database management system (RDBMS). Such procedures are stored in the database data dictionary. The sole disadvantage of stored procedure is that it can be executed nowhere except in the database and occupies more memory in the database server.
4. What is Pattern Matching in SQL?
SQL pattern matching provides for pattern search in data if you have no clue as to what that word should be. This kind of SQL query uses wildcards to match a string pattern, rather than writing the exact word. The LIKE operator is used in conjunction with SQL Wildcards to fetch the required information.
โค6
10 powerful lessons:
1. Embrace Writing to Clear Your Mind
โณ Writing down your thoughts and ideas can help you clarify and organize your thoughts.
โณ Write out your goals and plans to enhance focus and motivation.
2. Always Aim for the Stars
โณ Set ambitious goals that challenge you to grow and learn.
โณ Surround yourself with people who inspire and push you to be your best.
3. Great Leaders Put Others First
โณ Great leaders focus on their team's success, not just their own.
โณ Leadership is not about personal gain, but about positively impacting others.
4. The Power of Task Segmentation
โณ Breaking large tasks into smaller ones can help you feel less overwhelmed and more focused.
โณ Smaller tasks are easier to complete, which can help you build momentum and stay motivated.
5. Reframing Challenges
โณ Embrace challenges as opportunities to learn and grow.
โณ Reflect on failures to identify areas for improvement.
6. Leadership is About Service, Not Power
โณ Leadership is about empowering others to be their best selves.
โณ Great leaders inspire others to innovate and think creatively.
7. The Power of Pen and Paper
โณ Writing helps you understand your own thoughts better.
โณ Write out your thoughts and feelings to gain perspective and clarity.
8. Master the Power of Active Listening
โณ Focus on what others are saying, not on your reply.
โณ Avoid interrupting or formulating your response while the other person is speaking.
9. Writing Sharpens Your Thoughts
โณ Writing forces you to organize your thoughts.
โณ Seeing ideas on paper helps you spot flaws and improvements.
10. Embrace Discipline for Lasting Success
โณ Discipline is choosing between what you want now and what you want most.
โณ Small, consistent actions lead to big results over time.
10 simple yet transformative lessons to shift your mindset.
1. Embrace Writing to Clear Your Mind
โณ Writing down your thoughts and ideas can help you clarify and organize your thoughts.
โณ Write out your goals and plans to enhance focus and motivation.
2. Always Aim for the Stars
โณ Set ambitious goals that challenge you to grow and learn.
โณ Surround yourself with people who inspire and push you to be your best.
3. Great Leaders Put Others First
โณ Great leaders focus on their team's success, not just their own.
โณ Leadership is not about personal gain, but about positively impacting others.
4. The Power of Task Segmentation
โณ Breaking large tasks into smaller ones can help you feel less overwhelmed and more focused.
โณ Smaller tasks are easier to complete, which can help you build momentum and stay motivated.
5. Reframing Challenges
โณ Embrace challenges as opportunities to learn and grow.
โณ Reflect on failures to identify areas for improvement.
6. Leadership is About Service, Not Power
โณ Leadership is about empowering others to be their best selves.
โณ Great leaders inspire others to innovate and think creatively.
7. The Power of Pen and Paper
โณ Writing helps you understand your own thoughts better.
โณ Write out your thoughts and feelings to gain perspective and clarity.
8. Master the Power of Active Listening
โณ Focus on what others are saying, not on your reply.
โณ Avoid interrupting or formulating your response while the other person is speaking.
9. Writing Sharpens Your Thoughts
โณ Writing forces you to organize your thoughts.
โณ Seeing ideas on paper helps you spot flaws and improvements.
10. Embrace Discipline for Lasting Success
โณ Discipline is choosing between what you want now and what you want most.
โณ Small, consistent actions lead to big results over time.
10 simple yet transformative lessons to shift your mindset.
โค11๐2
Roadmap to Become a Data Analyst:
๐ Learn Excel & Google Sheets (Formulas, Pivot Tables)
โ๐ Master SQL (SELECT, JOINs, CTEs, Window Functions)
โ๐ Learn Data Visualization (Power BI / Tableau)
โ๐ Understand Statistics & Probability
โ๐ Learn Python (Pandas, NumPy, Matplotlib, Seaborn)
โ๐ Work with Real Datasets (Kaggle / Public APIs)
โ๐ Learn Data Cleaning & Preprocessing Techniques
โ๐ Build Case Studies & Projects
โ๐ Create Portfolio & Resume
โโ Apply for Internships / Jobs
React โค๏ธ for More ๐ผ
๐ Learn Excel & Google Sheets (Formulas, Pivot Tables)
โ๐ Master SQL (SELECT, JOINs, CTEs, Window Functions)
โ๐ Learn Data Visualization (Power BI / Tableau)
โ๐ Understand Statistics & Probability
โ๐ Learn Python (Pandas, NumPy, Matplotlib, Seaborn)
โ๐ Work with Real Datasets (Kaggle / Public APIs)
โ๐ Learn Data Cleaning & Preprocessing Techniques
โ๐ Build Case Studies & Projects
โ๐ Create Portfolio & Resume
โโ Apply for Internships / Jobs
React โค๏ธ for More ๐ผ
โค23