Data Science & Machine Learning
73.1K subscribers
779 photos
2 videos
68 files
686 links
Join this channel to learn data science, artificial intelligence and machine learning with funny quizzes, interesting projects and amazing resources for free

For collaborations: @love_data
Download Telegram
Step-by-Step Roadmap to Learn Data Science in 2025:

Step 1: Understand the Role
A data scientist in 2025 is expected to:

Analyze data to extract insights

Build predictive models using ML

Communicate findings to stakeholders

Work with large datasets in cloud environments


Step 2: Master the Prerequisite Skills

A. Programming

Learn Python (must-have): Focus on pandas, numpy, matplotlib, seaborn, scikit-learn

R (optional but helpful for statistical analysis)

SQL: Strong command over data extraction and transformation


B. Math & Stats

Probability, Descriptive & Inferential Statistics

Linear Algebra & Calculus (only what's necessary for ML)

Hypothesis testing


Step 3: Learn Data Handling

Data Cleaning, Preprocessing

Exploratory Data Analysis (EDA)

Feature Engineering

Tools: Python (pandas), Excel, SQL


Step 4: Master Machine Learning

Supervised Learning: Linear/Logistic Regression, Decision Trees, Random Forests, XGBoost

Unsupervised Learning: K-Means, Hierarchical Clustering, PCA

Deep Learning (optional): Use TensorFlow or PyTorch

Evaluation Metrics: Accuracy, AUC, Confusion Matrix, RMSE


Step 5: Learn Data Visualization & Storytelling

Python (matplotlib, seaborn, plotly)

Power BI / Tableau

Communicating insights clearly is as important as modeling


Step 6: Use Real Datasets & Projects

Work on projects using Kaggle, UCI, or public APIs

Examples:

Customer churn prediction

Sales forecasting

Sentiment analysis

Fraud detection



Step 7: Understand Cloud & MLOps (2025+ Skills)

Cloud: AWS (S3, EC2, SageMaker), GCP, or Azure

MLOps: Model deployment (Flask, FastAPI), CI/CD for ML, Docker basics


Step 8: Build Portfolio & Resume

Create GitHub repos with well-documented code

Post projects and blogs on Medium or LinkedIn

Prepare a data science-specific resume


Step 9: Apply Smartly

Focus on job roles like: Data Scientist, ML Engineer, Data Analyst → DS

Use platforms like LinkedIn, Glassdoor, Hirect, AngelList, etc.

Practice data science interviews: case studies, ML concepts, SQL + Python coding


Step 10: Keep Learning & Updating

Follow top newsletters: Data Elixir, Towards Data Science

Read papers (arXiv, Google Scholar) on trending topics: LLMs, AutoML, Explainable AI

Upskill with certifications (Google Data Cert, Coursera, DataCamp, Udemy)

Free Resources to learn Data Science

Kaggle Courses: https://www.kaggle.com/learn

CS50 AI by Harvard: https://cs50.harvard.edu/ai/

Fast.ai: https://course.fast.ai/

Google ML Crash Course: https://developers.google.com/machine-learning/crash-course

Data Science Learning Series: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D/998

Data Science Books: https://t.iss.one/datalemur

React ❤️ for more
6👏1
Best Code Editors For Python 👨‍💻
9👍5
🔗 Roadmap to master Machine Learning
4👍1
🔗 Roadmap to master Machine Learning
4
Important Python Functions
7
Python Commands Cheatsheet
4
Machine Learning Roadmap
7
Core data science concepts you should know:

🔢 1. Statistics & Probability

Descriptive statistics: Mean, median, mode, standard deviation, variance

Inferential statistics: Hypothesis testing, confidence intervals, p-values, t-tests, ANOVA

Probability distributions: Normal, Binomial, Poisson, Uniform

Bayes' Theorem

Central Limit Theorem


📊 2. Data Wrangling & Cleaning

Handling missing values

Outlier detection and treatment

Data transformation (scaling, encoding, normalization)

Feature engineering

Dealing with imbalanced data


📈 3. Exploratory Data Analysis (EDA)

Univariate, bivariate, and multivariate analysis

Correlation and covariance

Data visualization tools: Matplotlib, Seaborn, Plotly

Insights generation through visual storytelling


🤖 4. Machine Learning Fundamentals

Supervised Learning: Linear regression, logistic regression, decision trees, SVM, k-NN

Unsupervised Learning: K-means, hierarchical clustering, PCA

Model evaluation: Accuracy, precision, recall, F1-score, ROC-AUC

Cross-validation and overfitting/underfitting

Bias-variance tradeoff


🧠 5. Deep Learning (Basics)

Neural networks: Perceptron, MLP

Activation functions (ReLU, Sigmoid, Tanh)

Backpropagation

Gradient descent and learning rate

CNNs and RNNs (intro level)


🗃️ 6. Data Structures & Algorithms (DSA)

Arrays, lists, dictionaries, sets

Sorting and searching algorithms

Time and space complexity (Big-O notation)

Common problems: string manipulation, matrix operations, recursion


💾 7. SQL & Databases

SELECT, WHERE, GROUP BY, HAVING

JOINS (inner, left, right, full)

Subqueries and CTEs

Window functions

Indexing and normalization


📦 8. Tools & Libraries

Python: pandas, NumPy, scikit-learn, TensorFlow, PyTorch

R: dplyr, ggplot2, caret

Jupyter Notebooks for experimentation

Git and GitHub for version control


🧪 9. A/B Testing & Experimentation

Control vs. treatment group

Hypothesis formulation

Significance level, p-value interpretation

Power analysis


🌐 10. Business Acumen & Storytelling

Translating data insights into business value

Crafting narratives with data

Building dashboards (Power BI, Tableau)

Knowing KPIs and business metrics

React ❤️ for more
15👍2
Data Analytics Interview Questions

1. What is the difference between SQL and MySQL?

SQL is a standard language for retrieving and manipulating structured databases. On the contrary, MySQL is a relational database management system, like SQL Server, Oracle or IBM DB2, that is used to manage SQL databases.


2. What is a Cross-Join?

Cross join can be defined as a cartesian product of the two tables included in the join. The table after join contains the same number of rows as in the cross-product of the number of rows in the two tables. If a WHERE clause is used in cross join then the query will work like an INNER JOIN.


3. What is a Stored Procedure?

A stored procedure is a subroutine available to applications that access a relational database management system (RDBMS). Such procedures are stored in the database data dictionary. The sole disadvantage of stored procedure is that it can be executed nowhere except in the database and occupies more memory in the database server.


4. What is Pattern Matching in SQL?

SQL pattern matching provides for pattern search in data if you have no clue as to what that word should be. This kind of SQL query uses wildcards to match a string pattern, rather than writing the exact word. The LIKE operator is used in conjunction with SQL Wildcards to fetch the required information.
6
10 powerful lessons:

1. Embrace Writing to Clear Your Mind
↳ Writing down your thoughts and ideas can help you clarify and organize your thoughts.
↳ Write out your goals and plans to enhance focus and motivation.

2. Always Aim for the Stars
↳ Set ambitious goals that challenge you to grow and learn.
↳ Surround yourself with people who inspire and push you to be your best.

3. Great Leaders Put Others First
↳ Great leaders focus on their team's success, not just their own.
↳ Leadership is not about personal gain, but about positively impacting others.

4. The Power of Task Segmentation
↳ Breaking large tasks into smaller ones can help you feel less overwhelmed and more focused.
↳ Smaller tasks are easier to complete, which can help you build momentum and stay motivated.


5. Reframing Challenges
↳ Embrace challenges as opportunities to learn and grow.
↳ Reflect on failures to identify areas for improvement.

6. Leadership is About Service, Not Power
↳ Leadership is about empowering others to be their best selves.
↳ Great leaders inspire others to innovate and think creatively.

7. The Power of Pen and Paper
↳ Writing helps you understand your own thoughts better.
↳ Write out your thoughts and feelings to gain perspective and clarity.

8. Master the Power of Active Listening
↳ Focus on what others are saying, not on your reply.
↳ Avoid interrupting or formulating your response while the other person is speaking.

9. Writing Sharpens Your Thoughts
↳ Writing forces you to organize your thoughts.
↳ Seeing ideas on paper helps you spot flaws and improvements.

10. Embrace Discipline for Lasting Success
↳ Discipline is choosing between what you want now and what you want most.
↳ Small, consistent actions lead to big results over time.

10 simple yet transformative lessons to shift your mindset.
11👍2
Roadmap to Become a Data Analyst:

📊 Learn Excel & Google Sheets (Formulas, Pivot Tables)
📊 Master SQL (SELECT, JOINs, CTEs, Window Functions)
📊 Learn Data Visualization (Power BI / Tableau)
📊 Understand Statistics & Probability
📊 Learn Python (Pandas, NumPy, Matplotlib, Seaborn)
📊 Work with Real Datasets (Kaggle / Public APIs)
📊 Learn Data Cleaning & Preprocessing Techniques
📊 Build Case Studies & Projects
📊 Create Portfolio & Resume
Apply for Internships / Jobs

React ❤️ for More 💼
23
Pandas Cheatsheet 👆
14