Data Science & Machine Learning
73.1K subscribers
778 photos
2 videos
68 files
685 links
Join this channel to learn data science, artificial intelligence and machine learning with funny quizzes, interesting projects and amazing resources for free

For collaborations: @love_data
Download Telegram
โœ… Essential NLP Techniques Every Data Scientist Should Know ๐Ÿš€ ๐Ÿ“

These NLP techniques are crucial for extracting insights from text and building intelligent applications.

1๏ธโƒฃ Tokenization: Breaking Down Text ๐Ÿงฉ
- Split text into individual units (words, phrases, symbols).
- Essential for preparing text for analysis.

2๏ธโƒฃ Stop Word Removal: Clearing the Clutter ๐Ÿšซ
- Remove common words (e.g., "the," "a," "is") that don't carry much meaning.
- Helps focus on important content words.

3๏ธโƒฃ Stemming & Lemmatization: Reducing to the Root ๐ŸŒณ
- Reduce words to their base form (stem or lemma).
- Improves analysis by grouping related words together.
โ€“ Stemming (fast but may create non-words): running -> run
โ€“ Lemmatization (accurate but slower): better -> good

4๏ธโƒฃ Named Entity Recognition (NER): Spotting the Key Players ๐Ÿ‘ค
- Identify and classify named entities (people, organizations, locations, dates).
- Useful for extracting structured information.

5๏ธโƒฃ TF-IDF: Identifying Important Words โš–๏ธ
- Measures word importance in a document relative to the entire corpus.
- Helps identify keywords and significant terms.
- TF (Term Frequency): How often a word appears in a document.
- IDF (Inverse Document Frequency): How rare the word is across all documents.

6๏ธโƒฃ Bag of Words: Representing Text Numerically ๐Ÿ”ข
- Create a vector representation of text based on word counts.
- Useful for machine learning algorithms that require numerical input.

๐Ÿ’ก Master these techniques to analyze text, classify documents, and build NLP models.

React โค๏ธ for more
โค4
Planning for Data Science or Data Engineering Interview.

Focus on SQL & Python first. Here are some important questions which you should know.

๐ˆ๐ฆ๐ฉ๐จ๐ซ๐ญ๐š๐ง๐ญ ๐’๐๐‹ ๐ช๐ฎ๐ž๐ฌ๐ญ๐ข๐จ๐ง๐ฌ

1- Find out nth Order/Salary from the tables.
2- Find the no of output records in each join from given Table 1 & Table 2
3- YOY,MOM Growth related questions.
4- Find out Employee ,Manager Hierarchy (Self join related question) or
Employees who are earning more than managers.
5- RANK,DENSERANK related questions
6- Some row level scanning medium to complex questions using CTE or recursive CTE, like (Missing no /Missing Item from the list etc.)
7- No of matches played by every team or Source to Destination flight combination using CROSS JOIN.
8-Use window functions to perform advanced analytical tasks, such as calculating moving averages or detecting outliers.
9- Implement logic to handle hierarchical data, such as finding all descendants of a given node in a tree structure.
10-Identify and remove duplicate records from a table.

๐ˆ๐ฆ๐ฉ๐จ๐ซ๐ญ๐š๐ง๐ญ ๐๐ฒ๐ญ๐ก๐จ๐ง ๐ช๐ฎ๐ž๐ฌ๐ญ๐ข๐จ๐ง๐ฌ

1- Reversing a String using an Extended Slicing techniques.
2- Count Vowels from Given words .
3- Find the highest occurrences of each word from string and sort them in order.
4- Remove Duplicates from List.
5-Sort a List without using Sort keyword.
6-Find the pair of numbers in this list whose sum is n no.
7-Find the max and min no in the list without using inbuilt functions.
8-Calculate the Intersection of Two Lists without using Built-in Functions
9-Write Python code to make API requests to a public API (e.g., weather API) and process the JSON response.
10-Implement a function to fetch data from a database table, perform data manipulation, and update the database.

Join for more: https://t.iss.one/datasciencefun

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
โค4
Data Science Essential Libraries โœ…
โค7
Here you can find free SQL Resources
๐Ÿ‘‡๐Ÿ‘‡
https://t.iss.one/sqlspecialist
โค3
Step-by-Step Roadmap to Learn Data Science in 2025:

Step 1: Understand the Role
A data scientist in 2025 is expected to:

Analyze data to extract insights

Build predictive models using ML

Communicate findings to stakeholders

Work with large datasets in cloud environments


Step 2: Master the Prerequisite Skills

A. Programming

Learn Python (must-have): Focus on pandas, numpy, matplotlib, seaborn, scikit-learn

R (optional but helpful for statistical analysis)

SQL: Strong command over data extraction and transformation


B. Math & Stats

Probability, Descriptive & Inferential Statistics

Linear Algebra & Calculus (only what's necessary for ML)

Hypothesis testing


Step 3: Learn Data Handling

Data Cleaning, Preprocessing

Exploratory Data Analysis (EDA)

Feature Engineering

Tools: Python (pandas), Excel, SQL


Step 4: Master Machine Learning

Supervised Learning: Linear/Logistic Regression, Decision Trees, Random Forests, XGBoost

Unsupervised Learning: K-Means, Hierarchical Clustering, PCA

Deep Learning (optional): Use TensorFlow or PyTorch

Evaluation Metrics: Accuracy, AUC, Confusion Matrix, RMSE


Step 5: Learn Data Visualization & Storytelling

Python (matplotlib, seaborn, plotly)

Power BI / Tableau

Communicating insights clearly is as important as modeling


Step 6: Use Real Datasets & Projects

Work on projects using Kaggle, UCI, or public APIs

Examples:

Customer churn prediction

Sales forecasting

Sentiment analysis

Fraud detection



Step 7: Understand Cloud & MLOps (2025+ Skills)

Cloud: AWS (S3, EC2, SageMaker), GCP, or Azure

MLOps: Model deployment (Flask, FastAPI), CI/CD for ML, Docker basics


Step 8: Build Portfolio & Resume

Create GitHub repos with well-documented code

Post projects and blogs on Medium or LinkedIn

Prepare a data science-specific resume


Step 9: Apply Smartly

Focus on job roles like: Data Scientist, ML Engineer, Data Analyst โ†’ DS

Use platforms like LinkedIn, Glassdoor, Hirect, AngelList, etc.

Practice data science interviews: case studies, ML concepts, SQL + Python coding


Step 10: Keep Learning & Updating

Follow top newsletters: Data Elixir, Towards Data Science

Read papers (arXiv, Google Scholar) on trending topics: LLMs, AutoML, Explainable AI

Upskill with certifications (Google Data Cert, Coursera, DataCamp, Udemy)

Free Resources to learn Data Science

Kaggle Courses: https://www.kaggle.com/learn

CS50 AI by Harvard: https://cs50.harvard.edu/ai/

Fast.ai: https://course.fast.ai/

Google ML Crash Course: https://developers.google.com/machine-learning/crash-course

Data Science Learning Series: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D/998

Data Science Books: https://t.iss.one/datalemur

React โค๏ธ for more
โค6๐Ÿ‘1
Best Code Editors For Python ๐Ÿ‘จโ€๐Ÿ’ป
โค9๐Ÿ‘5
๐Ÿ”— Roadmap to master Machine Learning
โค4๐Ÿ‘1
๐Ÿ”— Roadmap to master Machine Learning
โค4
Important Python Functions โœ…
โค7
Python Commands Cheatsheet โœ…
โค4
Machine Learning Roadmap
โค7
Core data science concepts you should know:

๐Ÿ”ข 1. Statistics & Probability

Descriptive statistics: Mean, median, mode, standard deviation, variance

Inferential statistics: Hypothesis testing, confidence intervals, p-values, t-tests, ANOVA

Probability distributions: Normal, Binomial, Poisson, Uniform

Bayes' Theorem

Central Limit Theorem


๐Ÿ“Š 2. Data Wrangling & Cleaning

Handling missing values

Outlier detection and treatment

Data transformation (scaling, encoding, normalization)

Feature engineering

Dealing with imbalanced data


๐Ÿ“ˆ 3. Exploratory Data Analysis (EDA)

Univariate, bivariate, and multivariate analysis

Correlation and covariance

Data visualization tools: Matplotlib, Seaborn, Plotly

Insights generation through visual storytelling


๐Ÿค– 4. Machine Learning Fundamentals

Supervised Learning: Linear regression, logistic regression, decision trees, SVM, k-NN

Unsupervised Learning: K-means, hierarchical clustering, PCA

Model evaluation: Accuracy, precision, recall, F1-score, ROC-AUC

Cross-validation and overfitting/underfitting

Bias-variance tradeoff


๐Ÿง  5. Deep Learning (Basics)

Neural networks: Perceptron, MLP

Activation functions (ReLU, Sigmoid, Tanh)

Backpropagation

Gradient descent and learning rate

CNNs and RNNs (intro level)


๐Ÿ—ƒ๏ธ 6. Data Structures & Algorithms (DSA)

Arrays, lists, dictionaries, sets

Sorting and searching algorithms

Time and space complexity (Big-O notation)

Common problems: string manipulation, matrix operations, recursion


๐Ÿ’พ 7. SQL & Databases

SELECT, WHERE, GROUP BY, HAVING

JOINS (inner, left, right, full)

Subqueries and CTEs

Window functions

Indexing and normalization


๐Ÿ“ฆ 8. Tools & Libraries

Python: pandas, NumPy, scikit-learn, TensorFlow, PyTorch

R: dplyr, ggplot2, caret

Jupyter Notebooks for experimentation

Git and GitHub for version control


๐Ÿงช 9. A/B Testing & Experimentation

Control vs. treatment group

Hypothesis formulation

Significance level, p-value interpretation

Power analysis


๐ŸŒ 10. Business Acumen & Storytelling

Translating data insights into business value

Crafting narratives with data

Building dashboards (Power BI, Tableau)

Knowing KPIs and business metrics

React โค๏ธ for more
โค15๐Ÿ‘2