Data Science & Machine Learning
73.1K subscribers
781 photos
2 videos
68 files
688 links
Join this channel to learn data science, artificial intelligence and machine learning with funny quizzes, interesting projects and amazing resources for free

For collaborations: @love_data
Download Telegram
Data Analyst Roadmap

Like if it helps ❀️
❀12πŸ‘1
Core data science concepts you should know:

πŸ”’ 1. Statistics & Probability

Descriptive statistics: Mean, median, mode, standard deviation, variance

Inferential statistics: Hypothesis testing, confidence intervals, p-values, t-tests, ANOVA

Probability distributions: Normal, Binomial, Poisson, Uniform

Bayes' Theorem

Central Limit Theorem


πŸ“Š 2. Data Wrangling & Cleaning

Handling missing values

Outlier detection and treatment

Data transformation (scaling, encoding, normalization)

Feature engineering

Dealing with imbalanced data


πŸ“ˆ 3. Exploratory Data Analysis (EDA)

Univariate, bivariate, and multivariate analysis

Correlation and covariance

Data visualization tools: Matplotlib, Seaborn, Plotly

Insights generation through visual storytelling


πŸ€– 4. Machine Learning Fundamentals

Supervised Learning: Linear regression, logistic regression, decision trees, SVM, k-NN

Unsupervised Learning: K-means, hierarchical clustering, PCA

Model evaluation: Accuracy, precision, recall, F1-score, ROC-AUC

Cross-validation and overfitting/underfitting

Bias-variance tradeoff


🧠 5. Deep Learning (Basics)

Neural networks: Perceptron, MLP

Activation functions (ReLU, Sigmoid, Tanh)

Backpropagation

Gradient descent and learning rate

CNNs and RNNs (intro level)


πŸ—ƒοΈ 6. Data Structures & Algorithms (DSA)

Arrays, lists, dictionaries, sets

Sorting and searching algorithms

Time and space complexity (Big-O notation)

Common problems: string manipulation, matrix operations, recursion


πŸ’Ύ 7. SQL & Databases

SELECT, WHERE, GROUP BY, HAVING

JOINS (inner, left, right, full)

Subqueries and CTEs

Window functions

Indexing and normalization


πŸ“¦ 8. Tools & Libraries

Python: pandas, NumPy, scikit-learn, TensorFlow, PyTorch

R: dplyr, ggplot2, caret

Jupyter Notebooks for experimentation

Git and GitHub for version control


πŸ§ͺ 9. A/B Testing & Experimentation

Control vs. treatment group

Hypothesis formulation

Significance level, p-value interpretation

Power analysis


🌐 10. Business Acumen & Storytelling

Translating data insights into business value

Crafting narratives with data

Building dashboards (Power BI, Tableau)

Knowing KPIs and business metrics

React ❀️ for more
❀11
Steps to become a data analyst

Learn the Basics of Data Analysis:
Familiarize yourself with foundational concepts in data analysis, statistics, and data visualization. Online courses and textbooks can help.
Free books & other useful data analysis resources - https://t.iss.one/learndataanalysis

Develop Technical Skills:
Gain proficiency in essential tools and technologies such as:

SQL: Learn how to query and manipulate data in relational databases.
Free Resources- @sqlanalyst

Excel: Master data manipulation, basic analysis, and visualization.
Free Resources- @excel_analyst

Data Visualization Tools: Become skilled in tools like Tableau, Power BI, or Python libraries like Matplotlib and Seaborn.
Free Resources- @PowerBI_analyst

Programming: Learn a programming language like Python or R for data analysis and manipulation.
Free Resources- @pythonanalyst

Statistical Packages: Familiarize yourself with packages like Pandas, NumPy, and SciPy (for Python) or ggplot2 (for R).

Hands-On Practice:
Apply your knowledge to real datasets. You can find publicly available datasets on platforms like Kaggle or create your datasets for analysis.

Build a Portfolio:
Create data analysis projects to showcase your skills. Share them on platforms like GitHub, where potential employers can see your work.

Networking:
Attend data-related meetups, conferences, and online communities. Networking can lead to job opportunities and valuable insights.

Data Analysis Projects:
Work on personal or freelance data analysis projects to gain experience and demonstrate your abilities.

Job Search:
Start applying for entry-level data analyst positions or internships. Look for job listings on company websites, job boards, and LinkedIn.
Jobs & Internship opportunities: @getjobss

Prepare for Interviews:
Practice common data analyst interview questions and be ready to discuss your past projects and experiences.

Continual Learning:
The field of data analysis is constantly evolving. Stay updated with new tools, techniques, and industry trends.

Soft Skills:
Develop soft skills like critical thinking, problem-solving, communication, and attention to detail, as they are crucial for data analysts.

Never ever give up:
The journey to becoming a data analyst can be challenging, with complex concepts and technical skills to learn. There may be moments of frustration and self-doubt, but remember that these are normal parts of the learning process. Keep pushing through setbacks, keep learning, and stay committed to your goal.

ENJOY LEARNING πŸ‘πŸ‘
❀3πŸ”₯2πŸ‘1
Data Analyst: Analyzes data to provide insights and reports for decision-making.

Data Scientist: Builds models to predict outcomes and uncover deeper insights from data.

Data Engineer: Creates and maintains the systems that store and process data.
❀4πŸ‘1
If you want to Excel in Data Science and become an expert, master these essential concepts:

Core Data Science Skills:

β€’ Python for Data Science – Pandas, NumPy, Matplotlib, Seaborn
β€’ SQL for Data Extraction – SELECT, JOIN, GROUP BY, CTEs, Window Functions
β€’ Data Cleaning & Preprocessing – Handling missing data, outliers, duplicates
β€’ Exploratory Data Analysis (EDA) – Visualizing data trends

Machine Learning (ML):

β€’ Supervised Learning – Linear Regression, Decision Trees, Random Forest
β€’ Unsupervised Learning – Clustering, PCA, Anomaly Detection
β€’ Model Evaluation – Cross-validation, Confusion Matrix, ROC-AUC
β€’ Hyperparameter Tuning – Grid Search, Random Search

Deep Learning (DL):

β€’ Neural Networks – TensorFlow, PyTorch, Keras
β€’ CNNs & RNNs – Image & sequential data processing
β€’ Transformers & LLMs – GPT, BERT, Stable Diffusion

Big Data & Cloud Computing:

β€’ Hadoop & Spark – Handling large datasets
β€’ AWS, GCP, Azure – Cloud-based data science solutions
β€’ MLOps – Deploy models using Flask, FastAPI, Docker

Statistics & Mathematics for Data Science:

β€’ Probability & Hypothesis Testing – P-values, T-tests, Chi-square
β€’ Linear Algebra & Calculus – Matrices, Vectors, Derivatives
β€’ Time Series Analysis – ARIMA, Prophet, LSTMs

Real-World Applications:

β€’ Recommendation Systems – Personalized AI suggestions
β€’ NLP (Natural Language Processing) – Sentiment Analysis, Chatbots
β€’ AI-Powered Business Insights – Data-driven decision-making

React with ❀️ for more
❀9πŸ‘1
Ever wondered what the difference is between a Data Analyst and a Data Scientist? Both roles are in high demand, but they tackle data in different ways.
❀9
SQL Cheatsheet πŸ“

This SQL cheatsheet is designed to be your quick reference guide for SQL programming. Whether you’re a beginner learning how to query databases or an experienced developer looking for a handy resource, this cheatsheet covers essential SQL topics.

1. Database Basics
- CREATE DATABASE db_name;
- USE db_name;

2. Tables
- Create Table: CREATE TABLE table_name (col1 datatype, col2 datatype);
- Drop Table: DROP TABLE table_name;
- Alter Table: ALTER TABLE table_name ADD column_name datatype;

3. Insert Data
- INSERT INTO table_name (col1, col2) VALUES (val1, val2);

4. Select Queries
- Basic Select: SELECT * FROM table_name;
- Select Specific Columns: SELECT col1, col2 FROM table_name;
- Select with Condition: SELECT * FROM table_name WHERE condition;

5. Update Data
- UPDATE table_name SET col1 = value1 WHERE condition;

6. Delete Data
- DELETE FROM table_name WHERE condition;

7. Joins
- Inner Join: SELECT * FROM table1 INNER JOIN table2 ON table1.col = table2.col;
- Left Join: SELECT * FROM table1 LEFT JOIN table2 ON table1.col = table2.col;
- Right Join: SELECT * FROM table1 RIGHT JOIN table2 ON table1.col = table2.col;

8. Aggregations
- Count: SELECT COUNT(*) FROM table_name;
- Sum: SELECT SUM(col) FROM table_name;
- Group By: SELECT col, COUNT(*) FROM table_name GROUP BY col;

9. Sorting & Limiting
- Order By: SELECT * FROM table_name ORDER BY col ASC|DESC;
- Limit Results: SELECT * FROM table_name LIMIT n;

10. Indexes
- Create Index: CREATE INDEX idx_name ON table_name (col);
- Drop Index: DROP INDEX idx_name;

11. Subqueries
- SELECT * FROM table_name WHERE col IN (SELECT col FROM other_table);

12. Views
- Create View: CREATE VIEW view_name AS SELECT * FROM table_name;
- Drop View: DROP VIEW view_name;
❀5πŸ”₯1
πŸš€ Complete Roadmap to Become a Data Scientist in 5 Months

πŸ“… Week 1-2: Fundamentals
βœ… Day 1-3: Introduction to Data Science, its applications, and roles.
βœ… Day 4-7: Brush up on Python programming 🐍.
βœ… Day 8-10: Learn basic statistics πŸ“Š and probability 🎲.

πŸ” Week 3-4: Data Manipulation & Visualization
πŸ“ Day 11-15: Master Pandas for data manipulation.
πŸ“ˆ Day 16-20: Learn Matplotlib & Seaborn for data visualization.

πŸ€– Week 5-6: Machine Learning Foundations
πŸ”¬ Day 21-25: Introduction to scikit-learn.
πŸ“Š Day 26-30: Learn Linear & Logistic Regression.

πŸ— Week 7-8: Advanced Machine Learning
🌳 Day 31-35: Explore Decision Trees & Random Forests.
πŸ“Œ Day 36-40: Learn Clustering (K-Means, DBSCAN) & Dimensionality Reduction.

🧠 Week 9-10: Deep Learning
πŸ€– Day 41-45: Basics of Neural Networks with TensorFlow/Keras.
πŸ“Έ Day 46-50: Learn CNNs & RNNs for image & text data.

πŸ› Week 11-12: Data Engineering
πŸ—„ Day 51-55: Learn SQL & Databases.
🧹 Day 56-60: Data Preprocessing & Cleaning.

πŸ“Š Week 13-14: Model Evaluation & Optimization
πŸ“ Day 61-65: Learn Cross-validation & Hyperparameter Tuning.
πŸ“‰ Day 66-70: Understand Evaluation Metrics (Accuracy, Precision, Recall, F1-score).

πŸ— Week 15-16: Big Data & Tools
🐘 Day 71-75: Introduction to Big Data Technologies (Hadoop, Spark).
☁️ Day 76-80: Learn Cloud Computing (AWS, GCP, Azure).

πŸš€ Week 17-18: Deployment & Production
πŸ›  Day 81-85: Deploy models using Flask or FastAPI.
πŸ“¦ Day 86-90: Learn Docker & Cloud Deployment (AWS, Heroku).

🎯 Week 19-20: Specialization
πŸ“ Day 91-95: Choose NLP or Computer Vision, based on your interest.

πŸ† Week 21-22: Projects & Portfolio
πŸ“‚ Day 96-100: Work on Personal Data Science Projects.

πŸ’¬ Week 23-24: Soft Skills & Networking
🎀 Day 101-105: Improve Communication & Presentation Skills.
🌐 Day 106-110: Attend Online Meetups & Forums.

🎯 Week 25-26: Interview Preparation
πŸ’» Day 111-115: Practice Coding Interviews (LeetCode, HackerRank).
πŸ“‚ Day 116-120: Review your projects & prepare for discussions.

πŸ‘¨β€πŸ’» Week 27-28: Apply for Jobs
πŸ“© Day 121-125: Start applying for Entry-Level Data Scientist positions.

🎀 Week 29-30: Interviews
πŸ“ Day 126-130: Attend Interviews & Practice Whiteboard Problems.

πŸ”„ Week 31-32: Continuous Learning
πŸ“° Day 131-135: Stay updated with the Latest Data Science Trends.

πŸ† Week 33-34: Accepting Offers
πŸ“ Day 136-140: Evaluate job offers & Negotiate Your Salary.

🏒 Week 35-36: Settling In
🎯 Day 141-150: Start your New Data Science Job, adapt & keep learning!

πŸŽ‰ Enjoy Learning & Build Your Dream Career in Data Science! πŸš€πŸ”₯
❀7
SQL Joins β€” A Practical Cheatsheet for Professionals

If you’re working with relational data β€” whether you’re a business analyst, backend dev, or aspiring data scientist β€” mastering SQL joins isn’t optional. It’s fundamental.

Here’s a concise guide to the most important join types, with real-world use cases:


INNER JOIN

Returns records with matching keys from both tables.
Use case: Show only customers who’ve placed at least one order.


LEFT JOIN (OUTER)

Returns all rows from the left table, and matched rows from the right.
Use case: List all customers, including those with zero orders.


RIGHT JOIN (OUTER)

Returns all rows from the right table. Rarely used, but powerful.
Use case: Show all orders, even if the customer was deleted.


FULL OUTER JOIN

Returns all records from both tables.
Use case: Capture everything β€” matched and unmatched.


CROSS JOIN

Returns the cartesian product.
Use case: Generate every possible product/supplier combo.


SELF JOIN

Joins a table to itself.
Use case: Show employees and their reporting managers.


Best Practices

Use aliases (A, B) for clean code
Prefer JOIN ON over WHERE for clarity
Always test joins with LIMIT to prevent overloads
❀6πŸ”₯3
Random Module in Python πŸ‘†
❀7