Data Science & Machine Learning
73.2K subscribers
790 photos
2 videos
68 files
689 links
Join this channel to learn data science, artificial intelligence and machine learning with funny quizzes, interesting projects and amazing resources for free

For collaborations: @love_data
Download Telegram
COMMON TERMINOLOGIES IN PYTHON - PART 1

Have you ever gotten into a discussion with a programmer before? Did you find some of the Terminologies mentioned strange or you didn't fully understand them?

In this series, we would be looking at the common Terminologies in python.

It is important to know these Terminologies to be able to professionally/properly explain your codes to people and/or to be able to understand what people say in an instant when these codes are mentioned. Below are a few:

IDLE (Integrated Development and Learning Environment) - this is an environment that allows you to easily write Python code. IDLE can be used to execute a single statements and create, modify, and execute Python scripts.

Python Shell - This is the interactive environment that allows you to type in python code and execute them immediately

System Python - This is the version of python that comes with your operating system

Prompt - usually represented by the symbol ">>>" and it simply means that python is waiting for you to give it some instructions

REPL (Read-Evaluate-Print-Loop) - this refers to the sequence of events in your interactive window in form of a loop (python reads the code inputted>the code is evaluated>output is printed)

Argument - this is a value that is passed to a function when called eg print("Hello World")... "Hello World" is the argument that is being passed.

Function - this is a code that takes some input, known as arguments, processes that input and produces an output called a return value. E.g print("Hello World")... print is the function

Return Value - this is the value that a function returns to the calling script or function when it completes its task (in other words, Output). E.g.
>>> print("Hello World")
Hello World
Where Hello World is your return value.

Note: A return value can be any of these variable types: handle, integer, object, or string

Script - This is a file where you store your python code in a text file and execute all of the code with a single command

Script files - this is a file containing a group of python scripts
โค4
Being a Generalist Data Scientist won't get you hired.
Here is how you can specialize ๐Ÿ‘‡

Companies have specific problems that require certain skills to solve. If you do not know which path you want to follow. Start broad first, explore your options, then specialize.

To discover what you enjoy the most, try answering different questions for each DS role:


- ๐Œ๐š๐œ๐ก๐ข๐ง๐ž ๐‹๐ž๐š๐ซ๐ง๐ข๐ง๐  ๐„๐ง๐ ๐ข๐ง๐ž๐ž๐ซ
Qs:
โ€œHow should we monitor model performance in production?โ€

- ๐ƒ๐š๐ญ๐š ๐€๐ง๐š๐ฅ๐ฒ๐ฌ๐ญ / ๐๐ซ๐จ๐๐ฎ๐œ๐ญ ๐ƒ๐š๐ญ๐š ๐’๐œ๐ข๐ž๐ง๐ญ๐ข๐ฌ๐ญ
Qs:
โ€œHow can we visualize customer segmentation to highlight key demographics?โ€

- ๐ƒ๐š๐ญ๐š ๐’๐œ๐ข๐ž๐ง๐ญ๐ข๐ฌ๐ญ
Qs:
โ€œHow can we use clustering to identify new customer segments for targeted marketing?โ€

- ๐Œ๐š๐œ๐ก๐ข๐ง๐ž ๐‹๐ž๐š๐ซ๐ง๐ข๐ง๐  ๐‘๐ž๐ฌ๐ž๐š๐ซ๐œ๐ก๐ž๐ซ
Qs:
โ€œWhat novel architectures can we explore to improve model robustness?โ€

- ๐Œ๐‹๐Ž๐ฉ๐ฌ ๐„๐ง๐ ๐ข๐ง๐ž๐ž๐ซ
Qs:
โ€œHow can we automate the deployment of machine learning models to ensure continuous integration and delivery?โ€

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
โค7
What are the differences between a Power BI dataset, a Report, and a Dashboard?

In Power BI:

1. Dataset: It's where your raw data resides. Think of it as your data source. You import or connect to data, transform it, and then store it in a dataset within Power BI.

2. Report: Reports visualize data from your dataset. They consist of visuals like charts, graphs, tables, etc., created using the data in your dataset. Reports allow you to explore and analyze your data in depth.

3. Dashboard: Dashboards are a collection of visuals from one or more reports, designed to give a snapshot view of your data. They provide a high-level overview of key metrics and trends. You can pin visuals from different reports onto a dashboard to create a unified view.

I have curated the best interview resources to crack Power BI Interviews ๐Ÿ‘‡๐Ÿ‘‡
https://whatsapp.com/channel/0029Vai1xKf1dAvuk6s1v22c

Hope you'll like it

Like this post if you need more resources like this ๐Ÿ‘โค๏ธ
โค5๐Ÿ‘2
Java vs Python ๐Ÿ‘†
โค5๐Ÿ‘1
Essential Topics to Master Data Analytics Interviews: ๐Ÿš€

SQL:
1. Foundations
- SELECT statements with WHERE, ORDER BY, GROUP BY, HAVING
- Basic JOINS (INNER, LEFT, RIGHT, FULL)
- Navigate through simple databases and tables

2. Intermediate SQL
- Utilize Aggregate functions (COUNT, SUM, AVG, MAX, MIN)
- Embrace Subqueries and nested queries
- Master Common Table Expressions (WITH clause)
- Implement CASE statements for logical queries

3. Advanced SQL
- Explore Advanced JOIN techniques (self-join, non-equi join)
- Dive into Window functions (OVER, PARTITION BY, ROW_NUMBER, RANK, DENSE_RANK, lead, lag)
- Optimize queries with indexing
- Execute Data manipulation (INSERT, UPDATE, DELETE)

Python:
1. Python Basics
- Grasp Syntax, variables, and data types
- Command Control structures (if-else, for and while loops)
- Understand Basic data structures (lists, dictionaries, sets, tuples)
- Master Functions, lambda functions, and error handling (try-except)
- Explore Modules and packages

2. Pandas & Numpy
- Create and manipulate DataFrames and Series
- Perfect Indexing, selecting, and filtering data
- Handle missing data (fillna, dropna)
- Aggregate data with groupby, summarizing data
- Merge, join, and concatenate datasets

3. Data Visualization with Python
- Plot with Matplotlib (line plots, bar plots, histograms)
- Visualize with Seaborn (scatter plots, box plots, pair plots)
- Customize plots (sizes, labels, legends, color palettes)
- Introduction to interactive visualizations (e.g., Plotly)

Excel:
1. Excel Essentials
- Conduct Cell operations, basic formulas (SUMIFS, COUNTIFS, AVERAGEIFS, IF, AND, OR, NOT & Nested Functions etc.)
- Dive into charts and basic data visualization
- Sort and filter data, use Conditional formatting

2. Intermediate Excel
- Master Advanced formulas (V/XLOOKUP, INDEX-MATCH, nested IF)
- Leverage PivotTables and PivotCharts for summarizing data
- Utilize data validation tools
- Employ What-if analysis tools (Data Tables, Goal Seek)

3. Advanced Excel
- Harness Array formulas and advanced functions
- Dive into Data Model & Power Pivot
- Explore Advanced Filter, Slicers, and Timelines in Pivot Tables
- Create dynamic charts and interactive dashboards

Power BI:
1. Data Modeling in Power BI
- Import data from various sources
- Establish and manage relationships between datasets
- Grasp Data modeling basics (star schema, snowflake schema)

2. Data Transformation in Power BI
- Use Power Query for data cleaning and transformation
- Apply advanced data shaping techniques
- Create Calculated columns and measures using DAX

3. Data Visualization and Reporting in Power BI
- Craft interactive reports and dashboards
- Utilize Visualizations (bar, line, pie charts, maps)
- Publish and share reports, schedule data refreshes

Statistics Fundamentals:
- Mean, Median, Mode
- Standard Deviation, Variance
- Probability Distributions, Hypothesis Testing
- P-values, Confidence Intervals
- Correlation, Simple Linear Regression
- Normal Distribution, Binomial Distribution, Poisson Distribution.

Show some โค๏ธ if you're ready to elevate your data analytics journey! ๐Ÿ“Š

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
โค10๐Ÿ‘1
Prepare for placement season in 6 months
โค7
SQL Interview Questions with Answers

Like for more โค๏ธ
โค5