Data Science & Machine Learning
73.2K subscribers
790 photos
2 videos
68 files
689 links
Join this channel to learn data science, artificial intelligence and machine learning with funny quizzes, interesting projects and amazing resources for free

For collaborations: @love_data
Download Telegram
🔗 Roadmap to master Machine Learning
5
🔗 Roadmap to master Machine Learning
9
Want to make a transition to a career in data?

Here is a 7-step plan for each data role

Data Scientist

Statistics and Math: Advanced statistics, linear algebra, calculus.
Machine Learning: Supervised and unsupervised learning algorithms.
xData Wrangling: Cleaning and transforming datasets.
Big Data: Hadoop, Spark, SQL/NoSQL databases.
Data Visualization: Matplotlib, Seaborn, D3.js.
Domain Knowledge: Industry-specific data science applications.

Data Analyst

Data Visualization: Tableau, Power BI, Excel for visualizations.
SQL: Querying and managing databases.
Statistics: Basic statistical analysis and probability.
Excel: Data manipulation and analysis.
Python/R: Programming for data analysis.
Data Cleaning: Techniques for data preprocessing.
Business Acumen: Understanding business context for insights.

Data Engineer

SQL/NoSQL Databases: MySQL, PostgreSQL, MongoDB, Cassandra.
ETL Tools: Apache NiFi, Talend, Informatica.
Big Data: Hadoop, Spark, Kafka.
Programming: Python, Java, Scala.
Data Warehousing: Redshift, BigQuery, Snowflake.
Cloud Platforms: AWS, GCP, Azure.
Data Modeling: Designing and implementing data models.

#data
5
This is how ML works
😁15🥰41
Here's a concise cheat sheet to help you get started with Python for Data Analytics. This guide covers essential libraries and functions that you'll frequently use.


1. Python Basics
- Variables:
x = 10
y = "Hello"

- Data Types:
  - Integers: x = 10
  - Floats: y = 3.14
  - Strings: name = "Alice"
  - Lists: my_list = [1, 2, 3]
  - Dictionaries: my_dict = {"key": "value"}
  - Tuples: my_tuple = (1, 2, 3)

- Control Structures:
  - if, elif, else statements
  - Loops: 
  
    for i in range(5):
        print(i)
   

  - While loop:
  
    while x < 5:
        print(x)
        x += 1
   

2. Importing Libraries

- NumPy:
  import numpy as np
 

- Pandas:
  import pandas as pd
 

- Matplotlib:
  import matplotlib.pyplot as plt
 

- Seaborn:
  import seaborn as sns
 

3. NumPy for Numerical Data

- Creating Arrays:
  arr = np.array([1, 2, 3, 4])
 

- Array Operations:
  arr.sum()
  arr.mean()
 

- Reshaping Arrays:
  arr.reshape((2, 2))
 

- Indexing and Slicing:
  arr[0:2]  # First two elements
 

4. Pandas for Data Manipulation

- Creating DataFrames:
  df = pd.DataFrame({
      'col1': [1, 2, 3],
      'col2': ['A', 'B', 'C']
  })
 

- Reading Data:
  df = pd.read_csv('file.csv')
 

- Basic Operations:
  df.head()          # First 5 rows
  df.describe()      # Summary statistics
  df.info()          # DataFrame info
 

- Selecting Columns:
  df['col1']
  df[['col1', 'col2']]
 

- Filtering Data:
  df[df['col1'] > 2]
 

- Handling Missing Data:
  df.dropna()        # Drop missing values
  df.fillna(0)       # Replace missing values
 

- GroupBy:
  df.groupby('col2').mean()
 

5. Data Visualization

- Matplotlib:
  plt.plot(df['col1'], df['col2'])
  plt.xlabel('X-axis')
  plt.ylabel('Y-axis')
  plt.title('Title')
  plt.show()
 

- Seaborn:
  sns.histplot(df['col1'])
  sns.boxplot(x='col1', y='col2', data=df)
 

6. Common Data Operations

- Merging DataFrames:
  pd.merge(df1, df2, on='key')
 

- Pivot Table:
  df.pivot_table(index='col1', columns='col2', values='col3')
 

- Applying Functions:
  df['col1'].apply(lambda x: x*2)
 

7. Basic Statistics

- Descriptive Stats:
  df['col1'].mean()
  df['col1'].median()
  df['col1'].std()
 

- Correlation:
  df.corr()
 

This cheat sheet should give you a solid foundation in Python for data analytics. As you get more comfortable, you can delve deeper into each library's documentation for more advanced features.

I have curated the best resources to learn Python 👇👇
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L

Hope you'll like it

Like this post if you need more resources like this 👍❤️
13🔥1
If you are interested to learn SQL for data analytics purpose and clear the interviews, just cover the following topics

1)Install MYSQL workbench
2) Select
3) From
4) where
5) group by
6) having
7) limit
8) Joins (Left, right , inner, self, cross)
9) Aggregate function ( Sum, Max, Min , Avg)
9) windows function ( row num, rank, dense rank, lead, lag, Sum () over)
10)Case
11) Like
12) Sub queries
13) CTE
14) Replace CTE with temp tables
15) Methods to optimize Sql queries
16) Solve problems and case studies at Ankit Bansal youtube channel

Trick: Just copy each term and paste on youtube and watch any 10 to 15 minute on each topic and practise it while learning , By doing this , you get the basics understanding

17) Now time to go on youtube and search data analysis end to end project using sql

18) Watch them and practise them end to end.

17) learn integration with power bi

In this way , you will not only memorize the concepts but also learn how to implement them in your current working and projects and will be able to defend it in your interviews as well.

Like for more

Here you can find essential SQL Interview Resources👇
https://t.iss.one/DataSimplifier

Hope it helps :)
6🤔2
10 Machine Learning Concepts You Must Know

Supervised vs Unsupervised Learning – Understand the foundation of ML tasks
Bias-Variance Tradeoff – Balance underfitting and overfitting
Feature Engineering – The secret sauce to boost model performance
Train-Test Split & Cross-Validation – Evaluate models the right way
Confusion Matrix – Measure model accuracy, precision, recall, and F1
Gradient Descent – The algorithm behind learning in most models
Regularization (L1/L2) – Prevent overfitting by penalizing complexity
Decision Trees & Random Forests – Interpretable and powerful models
Support Vector Machines – Great for classification with clear boundaries
Neural Networks – The foundation of deep learning

React with ❤️ for detailed explained

Data Science & Machine Learning Resources: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D

ENJOY LEARNING 👍👍
11
Data Analytics Interview Topics in structured way :

🔵Python: Data Structures: Lists, tuples, dictionaries, sets Pandas: Data manipulation (DataFrame operations, merging, reshaping) NumPy: Numeric computing, arrays Visualization: Matplotlib, Seaborn for creating charts

🔵SQL: Basic : SELECT, WHERE, JOIN, GROUP BY, ORDER BY Advanced : Subqueries, nested queries, window functions DBMS: Creating tables, altering schema, indexing Joins: Inner join, outer join, left/right join Data Manipulation: UPDATE, DELETE, INSERT statements Aggregate Functions: SUM, AVG, COUNT, MAX, MIN

🔵Excel: Formulas & Functions: VLOOKUP, HLOOKUP, IF, SUMIF, COUNTIF Data Cleaning: Removing duplicates, handling errors, text-to-columns PivotTables Charts and Graphs What-If Analysis: Scenario Manager, Goal Seek, Solver

🔵Power BI:
Data Modeling: Creating relationships between datasets
Transformation: Cleaning & shaping data using
Power Query Editor Visualization: Creating interactive reports and dashboards
DAX (Data Analysis Expressions): Formulas for calculated columns, measures Publishing and sharing reports, scheduling data refresh

🔵 Statistics Fundamentals: Mean, median, mode Variance, standard deviation Probability distributions Hypothesis testing, p-values, confidence intervals

🔵Data Manipulation and Cleaning: Data preprocessing techniques (handling missing values, outliers), Data normalization and standardization Data transformation Handling categorical data

🔵Data Visualization: Chart types (bar, line, scatter, histogram, boxplot) Data visualization libraries (matplotlib, seaborn, ggplot) Effective data storytelling through visualization

Also showcase these skills using data portfolio if possible

Like for more content like this 😍
5
📊 Data Science Project Ideas to Practice & Master Your Skills

🟢 Beginner Level
• Titanic Survival Prediction (Logistic Regression)
• House Price Prediction (Linear Regression)
• Exploratory Data Analysis on IPL or Netflix Dataset
• Customer Segmentation (K-Means Clustering)
• Weather Data Visualization

🟡 Intermediate Level
• Sentiment Analysis on Tweets
• Credit Card Fraud Detection
• Time Series Forecasting (Stock or Sales Data)
• Image Classification using CNN (Fashion MNIST)
• Recommendation System for Movies/Products

🔴 Advanced Level
• End-to-End Machine Learning Pipeline with Deployment
• NLP Chatbot using Transformers
• Real-Time Dashboard with Streamlit + ML
• Anomaly Detection in Network Traffic
• A/B Testing & Business Decision Modeling

💬 Double Tap ❤️ for more! 🤖📈
13
Math Topics every Data Scientist should know
5
AI Tech Stack 👆
8