Data Science & Machine Learning
73.1K subscribers
779 photos
2 videos
68 files
686 links
Join this channel to learn data science, artificial intelligence and machine learning with funny quizzes, interesting projects and amazing resources for free

For collaborations: @love_data
Download Telegram
Seaborn Cheatsheet โœ…
โค8๐Ÿ”ฅ1
Essential Topics to Master Data Analytics Interviews: ๐Ÿš€

SQL:
1. Foundations
- SELECT statements with WHERE, ORDER BY, GROUP BY, HAVING
- Basic JOINS (INNER, LEFT, RIGHT, FULL)
- Navigate through simple databases and tables

2. Intermediate SQL
- Utilize Aggregate functions (COUNT, SUM, AVG, MAX, MIN)
- Embrace Subqueries and nested queries
- Master Common Table Expressions (WITH clause)
- Implement CASE statements for logical queries

3. Advanced SQL
- Explore Advanced JOIN techniques (self-join, non-equi join)
- Dive into Window functions (OVER, PARTITION BY, ROW_NUMBER, RANK, DENSE_RANK, lead, lag)
- Optimize queries with indexing
- Execute Data manipulation (INSERT, UPDATE, DELETE)

Python:
1. Python Basics
- Grasp Syntax, variables, and data types
- Command Control structures (if-else, for and while loops)
- Understand Basic data structures (lists, dictionaries, sets, tuples)
- Master Functions, lambda functions, and error handling (try-except)
- Explore Modules and packages

2. Pandas & Numpy
- Create and manipulate DataFrames and Series
- Perfect Indexing, selecting, and filtering data
- Handle missing data (fillna, dropna)
- Aggregate data with groupby, summarizing data
- Merge, join, and concatenate datasets

3. Data Visualization with Python
- Plot with Matplotlib (line plots, bar plots, histograms)
- Visualize with Seaborn (scatter plots, box plots, pair plots)
- Customize plots (sizes, labels, legends, color palettes)
- Introduction to interactive visualizations (e.g., Plotly)

Excel:
1. Excel Essentials
- Conduct Cell operations, basic formulas (SUMIFS, COUNTIFS, AVERAGEIFS, IF, AND, OR, NOT & Nested Functions etc.)
- Dive into charts and basic data visualization
- Sort and filter data, use Conditional formatting

2. Intermediate Excel
- Master Advanced formulas (V/XLOOKUP, INDEX-MATCH, nested IF)
- Leverage PivotTables and PivotCharts for summarizing data
- Utilize data validation tools
- Employ What-if analysis tools (Data Tables, Goal Seek)

3. Advanced Excel
- Harness Array formulas and advanced functions
- Dive into Data Model & Power Pivot
- Explore Advanced Filter, Slicers, and Timelines in Pivot Tables
- Create dynamic charts and interactive dashboards

Power BI:
1. Data Modeling in Power BI
- Import data from various sources
- Establish and manage relationships between datasets
- Grasp Data modeling basics (star schema, snowflake schema)

2. Data Transformation in Power BI
- Use Power Query for data cleaning and transformation
- Apply advanced data shaping techniques
- Create Calculated columns and measures using DAX

3. Data Visualization and Reporting in Power BI
- Craft interactive reports and dashboards
- Utilize Visualizations (bar, line, pie charts, maps)
- Publish and share reports, schedule data refreshes

Statistics Fundamentals:
- Mean, Median, Mode
- Standard Deviation, Variance
- Probability Distributions, Hypothesis Testing
- P-values, Confidence Intervals
- Correlation, Simple Linear Regression
- Normal Distribution, Binomial Distribution, Poisson Distribution.

Show some โค๏ธ if you're ready to elevate your data analytics journey! ๐Ÿ“Š

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
โค10๐Ÿ‘2
๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜€๐˜ ๐˜ƒ๐˜€ ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐˜๐—ถ๐˜€๐˜ ๐˜ƒ๐˜€ ๐—•๐˜‚๐˜€๐—ถ๐—ป๐—ฒ๐˜€๐˜€ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜€๐˜ โ€” ๐—ช๐—ต๐—ถ๐—ฐ๐—ต ๐—ฃ๐—ฎ๐˜๐—ต ๐—ถ๐˜€ ๐—ฅ๐—ถ๐—ด๐—ต๐˜ ๐—ณ๐—ผ๐—ฟ ๐—ฌ๐—ผ๐˜‚? ๐Ÿค”

In todayโ€™s data-driven world, career clarity can make all the difference. Whether youโ€™re starting out in analytics, pivoting into data science, or aligning business with data as an analyst โ€” understanding the core responsibilities, skills, and tools of each role is crucial.

๐Ÿ” Hereโ€™s a quick breakdown from a visual I often refer to when mentoring professionals:

๐Ÿ”น ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜€๐˜

๓ ฏโ€ข๓  Focus: Analyzing historical data to inform decisions.

๓ ฏโ€ข๓  Skills: SQL, basic stats, data visualization, reporting.

๓ ฏโ€ข๓  Tools: Excel, Tableau, Power BI, SQL.

๐Ÿ”น ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐˜๐—ถ๐˜€๐˜

๓ ฏโ€ข๓  Focus: Predictive modeling, ML, complex data analysis.

๓ ฏโ€ข๓  Skills: Programming, ML, deep learning, stats.

๓ ฏโ€ข๓  Tools: Python, R, TensorFlow, Scikit-Learn, Spark.

๐Ÿ”น ๐—•๐˜‚๐˜€๐—ถ๐—ป๐—ฒ๐˜€๐˜€ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜€๐˜

๓ ฏโ€ข๓  Focus: Bridging business needs with data insights.

๓ ฏโ€ข๓  Skills: Communication, stakeholder management, process modeling.

๓ ฏโ€ข๓  Tools: Microsoft Office, BI tools, business process frameworks.

๐Ÿ‘‰ ๐— ๐˜† ๐—”๐—ฑ๐˜ƒ๐—ถ๐—ฐ๐—ฒ:

Start with what interests you the most and aligns with your current strengths. Are you business-savvy? Start as a Business Analyst. Love solving puzzles with data?

Explore Data Analyst. Want to build models and uncover deep insights? Head into Data Science.

๐Ÿ”— ๐—ง๐—ฎ๐—ธ๐—ฒ ๐˜๐—ถ๐—บ๐—ฒ ๐˜๐—ผ ๐˜€๐—ฒ๐—น๐—ณ-๐—ฎ๐˜€๐˜€๐—ฒ๐˜€๐˜€ ๐—ฎ๐—ป๐—ฑ ๐—ฐ๐—ต๐—ผ๐—ผ๐˜€๐—ฒ ๐—ฎ ๐—ฝ๐—ฎ๐˜๐—ต ๐˜๐—ต๐—ฎ๐˜ ๐—ฒ๐—ป๐—ฒ๐—ฟ๐—ด๐—ถ๐˜‡๐—ฒ๐˜€ ๐˜†๐—ผ๐˜‚, not just one thatโ€™s trending.
โค10
Python for Data Analytics - Quick Cheatsheet with Cod e Example ๐Ÿš€

1๏ธโƒฃ Data Manipulation with Pandas

import pandas as pd  
df = pd.read_csv("data.csv")
df.to_excel("output.xlsx")
df.head()
df.info()
df.describe()
df[df["sales"] > 1000]
df[["name", "price"]]
df.fillna(0, inplace=True)
df.dropna(inplace=True)


2๏ธโƒฃ Numerical Operations with NumPy

import numpy as np  
arr = np.array([1, 2, 3, 4])
print(arr.shape)
np.mean(arr)
np.median(arr)
np.std(arr)


3๏ธโƒฃ Data Visualization with Matplotlib & Seaborn


import matplotlib.pyplot as plt  
plt.plot([1, 2, 3, 4], [10, 20, 30, 40])
plt.bar(["A", "B", "C"], [5, 15, 25])
plt.show()
import seaborn as sns
sns.heatmap(df.corr(), annot=True)
sns.boxplot(x="category", y="sales", data=df)
plt.show()


4๏ธโƒฃ Exploratory Data Analysis (EDA)

df.isnull().sum()  
df.corr()
sns.histplot(df["sales"], bins=30)
sns.boxplot(y=df["price"])


5๏ธโƒฃ Working with Databases (SQL + Python)

import sqlite3  
conn = sqlite3.connect("database.db")
df = pd.read_sql("SELECT * FROM sales", conn)
conn.close()
cursor = conn.cursor()
cursor.execute("SELECT AVG(price) FROM products")
result = cursor.fetchone()
print(result)


React with โค๏ธ for more
โค18๐Ÿ‘1๐Ÿค”1
Call for papers on AI to AI Journey* conference journal has started!
Prize for the best scientific paper - 1 million roubles!


Selected papers will be published in the scientific journal Doklady Mathematics.

๐Ÿ“– The journal:
โ€ข  Indexed in the largest bibliographic databases of scientific citations
โ€ข  Accessible to an international audience and published in the worldโ€™s digital libraries

Submit your article by August 20 and get the opportunity not only to publish your research the scientific journal, but also to present it at the AI Journey conference.
Prize for the best article - 1 million roubles!

More detailed information can be found in the Selection Rules -> AI Journey

*AI Journey - a major online conference in the field of AI technologies
๐Ÿ‘4โค2
ยฉHow fresher can get a job as a data scientist?ยฉ

Job market is highly resistant to hire data scientist as a fresher. Everyone out there asks for at least 2 years of experience, but then the question is where will we get the two years experience from?

The important thing here to build a portfolio. As you are a fresher I would assume you had learnt data science through online courses. They only teach you the basics, the analytical skills required to clean the data and apply machine learning algorithms to them comes only from practice.

Do some real-world data science projects, participate in Kaggle competition. kaggle provides data sets for practice as well. Whatever projects you do, create a GitHub repository for it. Place all your projects there so when a recruiter is looking at your profile they know you have hands-on practice and do know the basics. This will take you a long way.

All the major data science jobs for freshers will only be available through off-campus interviews.

Some companies that hires data scientists are:
Siemens
Accenture
IBM
Cerner

Creating a technical portfolio will showcase the knowledge you have already gained and that is essential while you got out there as a fresher and try to find a data scientist job.
โค6
If you want to Excel in Data Science and become an expert, master these essential concepts:

Core Data Science Skills:

โ€ข Python for Data Science โ€“ Pandas, NumPy, Matplotlib, Seaborn
โ€ข SQL for Data Extraction โ€“ SELECT, JOIN, GROUP BY, CTEs, Window Functions
โ€ข Data Cleaning & Preprocessing โ€“ Handling missing data, outliers, duplicates
โ€ข Exploratory Data Analysis (EDA) โ€“ Visualizing data trends

Machine Learning (ML):

โ€ข Supervised Learning โ€“ Linear Regression, Decision Trees, Random Forest
โ€ข Unsupervised Learning โ€“ Clustering, PCA, Anomaly Detection
โ€ข Model Evaluation โ€“ Cross-validation, Confusion Matrix, ROC-AUC
โ€ข Hyperparameter Tuning โ€“ Grid Search, Random Search

Deep Learning (DL):

โ€ข Neural Networks โ€“ TensorFlow, PyTorch, Keras
โ€ข CNNs & RNNs โ€“ Image & sequential data processing
โ€ข Transformers & LLMs โ€“ GPT, BERT, Stable Diffusion

Big Data & Cloud Computing:

โ€ข Hadoop & Spark โ€“ Handling large datasets
โ€ข AWS, GCP, Azure โ€“ Cloud-based data science solutions
โ€ข MLOps โ€“ Deploy models using Flask, FastAPI, Docker

Statistics & Mathematics for Data Science:

โ€ข Probability & Hypothesis Testing โ€“ P-values, T-tests, Chi-square
โ€ข Linear Algebra & Calculus โ€“ Matrices, Vectors, Derivatives
โ€ข Time Series Analysis โ€“ ARIMA, Prophet, LSTMs

Real-World Applications:

โ€ข Recommendation Systems โ€“ Personalized AI suggestions
โ€ข NLP (Natural Language Processing) โ€“ Sentiment Analysis, Chatbots
โ€ข AI-Powered Business Insights โ€“ Data-driven decision-making

React โค๏ธ for more
โค7
๐Ÿ“Œ Roadmap to Master Machine Learning in 6 Steps

Whether you're just starting or looking to go pro in ML, this roadmap will keep you on track:

1๏ธโƒฃ Learn the Fundamentals
Build a math foundation (algebra, calculus, stats) + Python + libraries like NumPy & Pandas

2๏ธโƒฃ Learn Essential ML Concepts
Start with supervised learning (regression, classification), then unsupervised learning (K-Means, PCA)

3๏ธโƒฃ Understand Data Handling
Clean, transform, and visualize data effectively using summary stats & feature engineering

4๏ธโƒฃ Explore Advanced Techniques
Delve into ensemble methods, CNNs, deep learning, and NLP fundamentals

5๏ธโƒฃ Learn Model Deployment
Use Flask, FastAPI, and cloud platforms (AWS, GCP) for scalable deployment

6๏ธโƒฃ Build Projects & Network
Participate in Kaggle, create portfolio projects, and connect with the ML community

React โค๏ธ for more
โค6
If you're serious about getting into Data Science with Python, follow this 5-step roadmap.

Each phase builds on the previous one, so donโ€™t rush.

Take your time, build projects, and keep moving forward.

Step 1: Python Fundamentals
Before anything else, get your hands dirty with core Python.
This is the language that powers everything else.

โœ… What to learn:
type(), int(), float(), str(), list(), dict()
if, elif, else, for, while, range()
def, return, function arguments
List comprehensions: [x for x in list if condition]
โ€“ Mini Checkpoint:
Build a mini console-based data calculator (inputs, basic operations, conditionals, loops).

Step 2: Data Cleaning with Pandas
Pandas is the tool you'll use to clean, reshape, and explore data in real-world scenarios.

โœ… What to learn:
Cleaning: df.dropna(), df.fillna(), df.replace(), df.drop_duplicates()
Merging & reshaping: pd.merge(), df.pivot(), df.melt()
Grouping & aggregation: df.groupby(), df.agg()
โ€“ Mini Checkpoint:
Build a data cleaning script for a messy CSV file. Add comments to explain every step.

Step 3: Data Visualization with Matplotlib
Nobody wants raw tables.
Learn to tell stories through charts.

โœ… What to learn:
Basic charts: plt.plot(), plt.scatter()
Advanced plots: plt.hist(), plt.kde(), plt.boxplot()
Subplots & customizations: plt.subplots(), fig.add_subplot(), plt.title(), plt.legend(), plt.xlabel()
โ€“ Mini Checkpoint:
Create a dashboard-style notebook visualizing a dataset, include at least 4 types of plots.

Step 4: Exploratory Data Analysis (EDA)
This is where your analytical skills kick in.
Youโ€™ll draw insights, detect trends, and prepare for modeling.

โœ… What to learn:
Descriptive stats: df.mean(), df.median(), df.mode(), df.std(), df.var(), df.min(), df.max(), df.quantile()
Correlation analysis: df.corr(), plt.imshow(), scipy.stats.pearsonr()
โ€” Mini Checkpoint:
Write an EDA report (Markdown or PDF) based on your findings from a public dataset.

Step 5: Intro to Machine Learning with Scikit-Learn
Now that your data skills are sharp, it's time to model and predict.

โœ… What to learn:
Training & evaluation: train_test_split(), .fit(), .predict(), cross_val_score()
Regression: LinearRegression(), mean_squared_error(), r2_score()
Classification: LogisticRegression(), accuracy_score(), confusion_matrix()
Clustering: KMeans(), silhouette_score()

โ€“ Final Checkpoint:

Build your first ML project end-to-end
โœ… Load data
โœ… Clean it
โœ… Visualize it
โœ… Run EDA
โœ… Train & test a model
โœ… Share the project with visuals and explanations on GitHub

Donโ€™t just complete tutorialsm create things.

Explain your work.
Build your GitHub.
Write a blog.

Thatโ€™s how you go from โ€œlearningโ€ to โ€œlanding a job

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

All the best ๐Ÿ‘๐Ÿ‘
๐Ÿ‘3โค2
What is the difference between data scientist, data engineer, data analyst and business intelligence?

๐Ÿง‘๐Ÿ”ฌ Data Scientist
Focus: Using data to build models, make predictions, and solve complex problems.
Cleans and analyzes data
Builds machine learning models
Answers โ€œWhy is this happening?โ€ and โ€œWhat will happen next?โ€
Works with statistics, algorithms, and coding (Python, R)
Example: Predict which customers are likely to cancel next month

๐Ÿ› ๏ธ Data Engineer
Focus: Building and maintaining the systems that move and store data.
Designs and builds data pipelines (ETL/ELT)
Manages databases, data lakes, and warehouses
Ensures data is clean, reliable, and ready for others to use
Uses tools like SQL, Airflow, Spark, and cloud platforms (AWS, Azure, GCP)
Example: Create a system that collects app data every hour and stores it in a warehouse

๐Ÿ“Š Data Analyst
Focus: Exploring data and finding insights to answer business questions.
Pulls and visualizes data (dashboards, reports)
Answers โ€œWhat happened?โ€ or โ€œWhatโ€™s going on right now?โ€
Works with SQL, Excel, and tools like Tableau or Power BI
Less coding and modeling than a data scientist
Example: Analyze monthly sales and show trends by region

๐Ÿ“ˆ Business Intelligence (BI) Professional
Focus: Helping teams and leadership understand data through reports and dashboards.
Designs dashboards and KPIs (key performance indicators)
Translates data into stories for non-technical users
Often overlaps with data analyst role but more focused on reporting
Tools: Power BI, Looker, Tableau, Qlik
Example: Build a dashboard showing company performance by department

๐Ÿงฉ Summary Table
Data Scientist - What will happen? Tools: Python, R, ML tools, predictions & models
Data Engineer - How does the data move and get stored? Tools: SQL, Spark, cloud tools, infrastructure & pipelines
Data Analyst - What happened? Tools: SQL, Excel, BI tools, reports & exploration
BI Professional - How can we see business performance clearly? Tools: Power BI, Tableau, dashboards & insights for decision-makers

๐ŸŽฏ In short:
Data Engineers build the roads.
Data Scientists drive smart cars to predict traffic.
Data Analysts look at traffic data to see patterns.
BI Professionals show everyone the traffic report on a screen.
โค5๐Ÿ‘1
Data Analytics isn't rocket science. It's just a different language.

Here's a beginner's guide to the world of data analytics:

1) Understand the fundamentals:
- Mathematics
- Statistics
- Technology

2) Learn the tools:
- SQL
- Python
- Excel (yes, it's still relevant!)

3) Understand the data:
- What do you want to measure?
- How are you measuring it?
- What metrics are important to you?

4) Data Visualization:
- A picture is worth a thousand words

5) Practice:
- There's no better way to learn than to do it yourself.

Data Analytics is a valuable skill that can help you make better decisions, understand your audience better, and ultimately grow your business.

It's never too late to start learning!
โค11
Boost your python speed by 300% ๐Ÿ‘†
โค9๐Ÿ‘2๐Ÿฅฐ1