SQL is one of the core languages used in data science, powering everything from quick data retrieval to complex deep dive analysis. Whether you're a seasoned data scientist or just starting out, mastering SQL can boost your ability to analyze data, create robust pipelines, and deliver actionable insights.
Letโs dive into a comprehensive guide on SQL for Data Science!
I have broken it down into three key sections to help you:
๐ญ. ๐ฆ๐ค๐ ๐๐ผ๐ป๐ฐ๐ฒ๐ฝ๐๐:
Get a handle on the essentials -> SELECT statements, filtering, aggregations, joins, window functions, and more.
๐ฎ. ๐ฆ๐ค๐ ๐ถ๐ป ๐๐ฎ๐-๐๐ผ-๐๐ฎ๐ ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ:
See how SQL fits into the daily data science workflow. From quick data queries and deep-dive analysis to building pipelines and dashboards, SQL is really useful for data scientists, especially for product data scientists.
๐ฏ. ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐ฆ๐ค๐ ๐๐ป๐๐ฒ๐ฟ๐๐ถ๐ฒ๐๐:
Learn what interviewers look for in terms of technical skills, design and engineering expertise, communication abilities, and the importance of speed and accuracy.
Letโs dive into a comprehensive guide on SQL for Data Science!
I have broken it down into three key sections to help you:
๐ญ. ๐ฆ๐ค๐ ๐๐ผ๐ป๐ฐ๐ฒ๐ฝ๐๐:
Get a handle on the essentials -> SELECT statements, filtering, aggregations, joins, window functions, and more.
๐ฎ. ๐ฆ๐ค๐ ๐ถ๐ป ๐๐ฎ๐-๐๐ผ-๐๐ฎ๐ ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ:
See how SQL fits into the daily data science workflow. From quick data queries and deep-dive analysis to building pipelines and dashboards, SQL is really useful for data scientists, especially for product data scientists.
๐ฏ. ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐ฆ๐ค๐ ๐๐ป๐๐ฒ๐ฟ๐๐ถ๐ฒ๐๐:
Learn what interviewers look for in terms of technical skills, design and engineering expertise, communication abilities, and the importance of speed and accuracy.
โค6๐3
Here are some essential data science concepts from A to Z:
A - Algorithm: A set of rules or instructions used to solve a problem or perform a task in data science.
B - Big Data: Large and complex datasets that cannot be easily processed using traditional data processing applications.
C - Clustering: A technique used to group similar data points together based on certain characteristics.
D - Data Cleaning: The process of identifying and correcting errors or inconsistencies in a dataset.
E - Exploratory Data Analysis (EDA): The process of analyzing and visualizing data to understand its underlying patterns and relationships.
F - Feature Engineering: The process of creating new features or variables from existing data to improve model performance.
G - Gradient Descent: An optimization algorithm used to minimize the error of a model by adjusting its parameters.
H - Hypothesis Testing: A statistical technique used to test the validity of a hypothesis or claim based on sample data.
I - Imputation: The process of filling in missing values in a dataset using statistical methods.
J - Joint Probability: The probability of two or more events occurring together.
K - K-Means Clustering: A popular clustering algorithm that partitions data into K clusters based on similarity.
L - Linear Regression: A statistical method used to model the relationship between a dependent variable and one or more independent variables.
M - Machine Learning: A subset of artificial intelligence that uses algorithms to learn patterns and make predictions from data.
N - Normal Distribution: A symmetrical bell-shaped distribution that is commonly used in statistical analysis.
O - Outlier Detection: The process of identifying and removing data points that are significantly different from the rest of the dataset.
P - Precision and Recall: Evaluation metrics used to assess the performance of classification models.
Q - Quantitative Analysis: The process of analyzing numerical data to draw conclusions and make decisions.
R - Random Forest: An ensemble learning algorithm that builds multiple decision trees to improve prediction accuracy.
S - Support Vector Machine (SVM): A supervised learning algorithm used for classification and regression tasks.
T - Time Series Analysis: A statistical technique used to analyze and forecast time-dependent data.
U - Unsupervised Learning: A type of machine learning where the model learns patterns and relationships in data without labeled outputs.
V - Validation Set: A subset of data used to evaluate the performance of a model during training.
W - Web Scraping: The process of extracting data from websites for analysis and visualization.
X - XGBoost: An optimized gradient boosting algorithm that is widely used in machine learning competitions.
Y - Yield Curve Analysis: The study of the relationship between interest rates and the maturity of fixed-income securities.
Z - Z-Score: A standardized score that represents the number of standard deviations a data point is from the mean.
Credits: https://t.iss.one/free4unow_backup
Like if you need similar content ๐๐
A - Algorithm: A set of rules or instructions used to solve a problem or perform a task in data science.
B - Big Data: Large and complex datasets that cannot be easily processed using traditional data processing applications.
C - Clustering: A technique used to group similar data points together based on certain characteristics.
D - Data Cleaning: The process of identifying and correcting errors or inconsistencies in a dataset.
E - Exploratory Data Analysis (EDA): The process of analyzing and visualizing data to understand its underlying patterns and relationships.
F - Feature Engineering: The process of creating new features or variables from existing data to improve model performance.
G - Gradient Descent: An optimization algorithm used to minimize the error of a model by adjusting its parameters.
H - Hypothesis Testing: A statistical technique used to test the validity of a hypothesis or claim based on sample data.
I - Imputation: The process of filling in missing values in a dataset using statistical methods.
J - Joint Probability: The probability of two or more events occurring together.
K - K-Means Clustering: A popular clustering algorithm that partitions data into K clusters based on similarity.
L - Linear Regression: A statistical method used to model the relationship between a dependent variable and one or more independent variables.
M - Machine Learning: A subset of artificial intelligence that uses algorithms to learn patterns and make predictions from data.
N - Normal Distribution: A symmetrical bell-shaped distribution that is commonly used in statistical analysis.
O - Outlier Detection: The process of identifying and removing data points that are significantly different from the rest of the dataset.
P - Precision and Recall: Evaluation metrics used to assess the performance of classification models.
Q - Quantitative Analysis: The process of analyzing numerical data to draw conclusions and make decisions.
R - Random Forest: An ensemble learning algorithm that builds multiple decision trees to improve prediction accuracy.
S - Support Vector Machine (SVM): A supervised learning algorithm used for classification and regression tasks.
T - Time Series Analysis: A statistical technique used to analyze and forecast time-dependent data.
U - Unsupervised Learning: A type of machine learning where the model learns patterns and relationships in data without labeled outputs.
V - Validation Set: A subset of data used to evaluate the performance of a model during training.
W - Web Scraping: The process of extracting data from websites for analysis and visualization.
X - XGBoost: An optimized gradient boosting algorithm that is widely used in machine learning competitions.
Y - Yield Curve Analysis: The study of the relationship between interest rates and the maturity of fixed-income securities.
Z - Z-Score: A standardized score that represents the number of standard deviations a data point is from the mean.
Credits: https://t.iss.one/free4unow_backup
Like if you need similar content ๐๐
โค7๐2
Advanced Skills to Elevate Your Data Analytics Career
1๏ธโฃ SQL Optimization & Performance Tuning
๐ Learn indexing, query optimization, and execution plans to handle large datasets efficiently.
2๏ธโฃ Machine Learning Basics
๐ค Understand supervised and unsupervised learning, feature engineering, and model evaluation to enhance analytical capabilities.
3๏ธโฃ Big Data Technologies
๐๏ธ Explore Spark, Hadoop, and cloud platforms like AWS, Azure, or Google Cloud for large-scale data processing.
4๏ธโฃ Data Engineering Skills
โ๏ธ Learn ETL pipelines, data warehousing, and workflow automation to streamline data processing.
5๏ธโฃ Advanced Python for Analytics
๐ Master libraries like Scikit-Learn, TensorFlow, and Statsmodels for predictive analytics and automation.
6๏ธโฃ A/B Testing & Experimentation
๐ฏ Design and analyze controlled experiments to drive data-driven decision-making.
7๏ธโฃ Dashboard Design & UX
๐จ Build interactive dashboards with Power BI, Tableau, or Looker that enhance user experience.
8๏ธโฃ Cloud Data Analytics
โ๏ธ Work with cloud databases like BigQuery, Snowflake, and Redshift for scalable analytics.
9๏ธโฃ Domain Expertise
๐ผ Gain industry-specific knowledge (e.g., finance, healthcare, e-commerce) to provide more relevant insights.
๐ Soft Skills & Leadership
๐ก Develop stakeholder management, storytelling, and mentorship skills to advance in your career.
Hope it helps :)
#dataanalytics
1๏ธโฃ SQL Optimization & Performance Tuning
๐ Learn indexing, query optimization, and execution plans to handle large datasets efficiently.
2๏ธโฃ Machine Learning Basics
๐ค Understand supervised and unsupervised learning, feature engineering, and model evaluation to enhance analytical capabilities.
3๏ธโฃ Big Data Technologies
๐๏ธ Explore Spark, Hadoop, and cloud platforms like AWS, Azure, or Google Cloud for large-scale data processing.
4๏ธโฃ Data Engineering Skills
โ๏ธ Learn ETL pipelines, data warehousing, and workflow automation to streamline data processing.
5๏ธโฃ Advanced Python for Analytics
๐ Master libraries like Scikit-Learn, TensorFlow, and Statsmodels for predictive analytics and automation.
6๏ธโฃ A/B Testing & Experimentation
๐ฏ Design and analyze controlled experiments to drive data-driven decision-making.
7๏ธโฃ Dashboard Design & UX
๐จ Build interactive dashboards with Power BI, Tableau, or Looker that enhance user experience.
8๏ธโฃ Cloud Data Analytics
โ๏ธ Work with cloud databases like BigQuery, Snowflake, and Redshift for scalable analytics.
9๏ธโฃ Domain Expertise
๐ผ Gain industry-specific knowledge (e.g., finance, healthcare, e-commerce) to provide more relevant insights.
๐ Soft Skills & Leadership
๐ก Develop stakeholder management, storytelling, and mentorship skills to advance in your career.
Hope it helps :)
#dataanalytics
โค4๐1๐1
If you're serious about getting into Data Science with Python, follow this 5-step roadmap.
Each phase builds on the previous one, so donโt rush.
Take your time, build projects, and keep moving forward.
Step 1: Python Fundamentals
Before anything else, get your hands dirty with core Python.
This is the language that powers everything else.
โ What to learn:
type(), int(), float(), str(), list(), dict()
if, elif, else, for, while, range()
def, return, function arguments
List comprehensions: [x for x in list if condition]
โ Mini Checkpoint:
Build a mini console-based data calculator (inputs, basic operations, conditionals, loops).
Step 2: Data Cleaning with Pandas
Pandas is the tool you'll use to clean, reshape, and explore data in real-world scenarios.
โ What to learn:
Cleaning: df.dropna(), df.fillna(), df.replace(), df.drop_duplicates()
Merging & reshaping: pd.merge(), df.pivot(), df.melt()
Grouping & aggregation: df.groupby(), df.agg()
โ Mini Checkpoint:
Build a data cleaning script for a messy CSV file. Add comments to explain every step.
Step 3: Data Visualization with Matplotlib
Nobody wants raw tables.
Learn to tell stories through charts.
โ What to learn:
Basic charts: plt.plot(), plt.scatter()
Advanced plots: plt.hist(), plt.kde(), plt.boxplot()
Subplots & customizations: plt.subplots(), fig.add_subplot(), plt.title(), plt.legend(), plt.xlabel()
โ Mini Checkpoint:
Create a dashboard-style notebook visualizing a dataset, include at least 4 types of plots.
Step 4: Exploratory Data Analysis (EDA)
This is where your analytical skills kick in.
Youโll draw insights, detect trends, and prepare for modeling.
โ What to learn:
Descriptive stats: df.mean(), df.median(), df.mode(), df.std(), df.var(), df.min(), df.max(), df.quantile()
Correlation analysis: df.corr(), plt.imshow(), scipy.stats.pearsonr()
โ Mini Checkpoint:
Write an EDA report (Markdown or PDF) based on your findings from a public dataset.
Step 5: Intro to Machine Learning with Scikit-Learn
Now that your data skills are sharp, it's time to model and predict.
โ What to learn:
Training & evaluation: train_test_split(), .fit(), .predict(), cross_val_score()
Regression: LinearRegression(), mean_squared_error(), r2_score()
Classification: LogisticRegression(), accuracy_score(), confusion_matrix()
Clustering: KMeans(), silhouette_score()
โ Final Checkpoint:
Build your first ML project end-to-end
โ Load data
โ Clean it
โ Visualize it
โ Run EDA
โ Train & test a model
โ Share the project with visuals and explanations on GitHub
Donโt just complete tutorialsm create things.
Explain your work.
Build your GitHub.
Write a blog.
Thatโs how you go from โlearningโ to โlanding a job
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
All the best ๐๐
Each phase builds on the previous one, so donโt rush.
Take your time, build projects, and keep moving forward.
Step 1: Python Fundamentals
Before anything else, get your hands dirty with core Python.
This is the language that powers everything else.
โ What to learn:
type(), int(), float(), str(), list(), dict()
if, elif, else, for, while, range()
def, return, function arguments
List comprehensions: [x for x in list if condition]
โ Mini Checkpoint:
Build a mini console-based data calculator (inputs, basic operations, conditionals, loops).
Step 2: Data Cleaning with Pandas
Pandas is the tool you'll use to clean, reshape, and explore data in real-world scenarios.
โ What to learn:
Cleaning: df.dropna(), df.fillna(), df.replace(), df.drop_duplicates()
Merging & reshaping: pd.merge(), df.pivot(), df.melt()
Grouping & aggregation: df.groupby(), df.agg()
โ Mini Checkpoint:
Build a data cleaning script for a messy CSV file. Add comments to explain every step.
Step 3: Data Visualization with Matplotlib
Nobody wants raw tables.
Learn to tell stories through charts.
โ What to learn:
Basic charts: plt.plot(), plt.scatter()
Advanced plots: plt.hist(), plt.kde(), plt.boxplot()
Subplots & customizations: plt.subplots(), fig.add_subplot(), plt.title(), plt.legend(), plt.xlabel()
โ Mini Checkpoint:
Create a dashboard-style notebook visualizing a dataset, include at least 4 types of plots.
Step 4: Exploratory Data Analysis (EDA)
This is where your analytical skills kick in.
Youโll draw insights, detect trends, and prepare for modeling.
โ What to learn:
Descriptive stats: df.mean(), df.median(), df.mode(), df.std(), df.var(), df.min(), df.max(), df.quantile()
Correlation analysis: df.corr(), plt.imshow(), scipy.stats.pearsonr()
โ Mini Checkpoint:
Write an EDA report (Markdown or PDF) based on your findings from a public dataset.
Step 5: Intro to Machine Learning with Scikit-Learn
Now that your data skills are sharp, it's time to model and predict.
โ What to learn:
Training & evaluation: train_test_split(), .fit(), .predict(), cross_val_score()
Regression: LinearRegression(), mean_squared_error(), r2_score()
Classification: LogisticRegression(), accuracy_score(), confusion_matrix()
Clustering: KMeans(), silhouette_score()
โ Final Checkpoint:
Build your first ML project end-to-end
โ Load data
โ Clean it
โ Visualize it
โ Run EDA
โ Train & test a model
โ Share the project with visuals and explanations on GitHub
Donโt just complete tutorialsm create things.
Explain your work.
Build your GitHub.
Write a blog.
Thatโs how you go from โlearningโ to โlanding a job
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
All the best ๐๐
๐5โค2
๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐ฅ๐ผ๐ฎ๐ฑ๐บ๐ฎ๐ฝ
๐ญ. ๐ฃ๐ฟ๐ผ๐ด๐ฟ๐ฎ๐บ๐บ๐ถ๐ป๐ด ๐๐ฎ๐ป๐ด๐๐ฎ๐ด๐ฒ๐: Master Python, SQL, and R for data manipulation and analysis.
๐ฎ. ๐๐ฎ๐๐ฎ ๐ ๐ฎ๐ป๐ถ๐ฝ๐๐น๐ฎ๐๐ถ๐ผ๐ป ๐ฎ๐ป๐ฑ ๐ฃ๐ฟ๐ผ๐ฐ๐ฒ๐๐๐ถ๐ป๐ด: Use Excel, Pandas, and ETL tools like Alteryx and Talend for data processing.
๐ฏ. ๐๐ฎ๐๐ฎ ๐ฉ๐ถ๐๐๐ฎ๐น๐ถ๐๐ฎ๐๐ถ๐ผ๐ป: Learn Tableau, Power BI, and Matplotlib/Seaborn for creating insightful visualizations.
๐ฐ. ๐ฆ๐๐ฎ๐๐ถ๐๐๐ถ๐ฐ๐ ๐ฎ๐ป๐ฑ ๐ ๐ฎ๐๐ต๐ฒ๐บ๐ฎ๐๐ถ๐ฐ๐: Understand Descriptive and Inferential Statistics, Probability, Regression, and Time Series Analysis.
๐ฑ. ๐ ๐ฎ๐ฐ๐ต๐ถ๐ป๐ฒ ๐๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด: Get proficient in Supervised and Unsupervised Learning, along with Time Series Forecasting.
๐ฒ. ๐๐ถ๐ด ๐๐ฎ๐๐ฎ ๐ง๐ผ๐ผ๐น๐: Utilize Google BigQuery, AWS Redshift, and NoSQL databases like MongoDB for large-scale data management.
๐ณ. ๐ ๐ผ๐ป๐ถ๐๐ผ๐ฟ๐ถ๐ป๐ด ๐ฎ๐ป๐ฑ ๐ฅ๐ฒ๐ฝ๐ผ๐ฟ๐๐ถ๐ป๐ด: Implement Data Quality Monitoring (Great Expectations) and Performance Tracking (Prometheus, Grafana).
๐ด. ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐ง๐ผ๐ผ๐น๐: Work with Data Orchestration tools (Airflow, Prefect) and visualization tools like D3.js and Plotly.
๐ต. ๐ฅ๐ฒ๐๐ผ๐๐ฟ๐ฐ๐ฒ ๐ ๐ฎ๐ป๐ฎ๐ด๐ฒ๐ฟ: Manage resources using Jupyter Notebooks and Power BI.
๐ญ๐ฌ. ๐๐ฎ๐๐ฎ ๐๐ผ๐๐ฒ๐ฟ๐ป๐ฎ๐ป๐ฐ๐ฒ ๐ฎ๐ป๐ฑ ๐๐๐ต๐ถ๐ฐ๐: Ensure compliance with GDPR, Data Privacy, and Data Quality standards.
๐ญ๐ญ. ๐๐น๐ผ๐๐ฑ ๐๐ผ๐บ๐ฝ๐๐๐ถ๐ป๐ด: Leverage AWS, Google Cloud, and Azure for scalable data solutions.
๐ญ๐ฎ. ๐๐ฎ๐๐ฎ ๐ช๐ฟ๐ฎ๐ป๐ด๐น๐ถ๐ป๐ด ๐ฎ๐ป๐ฑ ๐๐น๐ฒ๐ฎ๐ป๐ถ๐ป๐ด: Master data cleaning (OpenRefine, Trifacta) and transformation techniques.
Data Analytics Resources
๐๐
https://t.iss.one/sqlspecialist
Hope this helps you ๐
๐ญ. ๐ฃ๐ฟ๐ผ๐ด๐ฟ๐ฎ๐บ๐บ๐ถ๐ป๐ด ๐๐ฎ๐ป๐ด๐๐ฎ๐ด๐ฒ๐: Master Python, SQL, and R for data manipulation and analysis.
๐ฎ. ๐๐ฎ๐๐ฎ ๐ ๐ฎ๐ป๐ถ๐ฝ๐๐น๐ฎ๐๐ถ๐ผ๐ป ๐ฎ๐ป๐ฑ ๐ฃ๐ฟ๐ผ๐ฐ๐ฒ๐๐๐ถ๐ป๐ด: Use Excel, Pandas, and ETL tools like Alteryx and Talend for data processing.
๐ฏ. ๐๐ฎ๐๐ฎ ๐ฉ๐ถ๐๐๐ฎ๐น๐ถ๐๐ฎ๐๐ถ๐ผ๐ป: Learn Tableau, Power BI, and Matplotlib/Seaborn for creating insightful visualizations.
๐ฐ. ๐ฆ๐๐ฎ๐๐ถ๐๐๐ถ๐ฐ๐ ๐ฎ๐ป๐ฑ ๐ ๐ฎ๐๐ต๐ฒ๐บ๐ฎ๐๐ถ๐ฐ๐: Understand Descriptive and Inferential Statistics, Probability, Regression, and Time Series Analysis.
๐ฑ. ๐ ๐ฎ๐ฐ๐ต๐ถ๐ป๐ฒ ๐๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด: Get proficient in Supervised and Unsupervised Learning, along with Time Series Forecasting.
๐ฒ. ๐๐ถ๐ด ๐๐ฎ๐๐ฎ ๐ง๐ผ๐ผ๐น๐: Utilize Google BigQuery, AWS Redshift, and NoSQL databases like MongoDB for large-scale data management.
๐ณ. ๐ ๐ผ๐ป๐ถ๐๐ผ๐ฟ๐ถ๐ป๐ด ๐ฎ๐ป๐ฑ ๐ฅ๐ฒ๐ฝ๐ผ๐ฟ๐๐ถ๐ป๐ด: Implement Data Quality Monitoring (Great Expectations) and Performance Tracking (Prometheus, Grafana).
๐ด. ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐ง๐ผ๐ผ๐น๐: Work with Data Orchestration tools (Airflow, Prefect) and visualization tools like D3.js and Plotly.
๐ต. ๐ฅ๐ฒ๐๐ผ๐๐ฟ๐ฐ๐ฒ ๐ ๐ฎ๐ป๐ฎ๐ด๐ฒ๐ฟ: Manage resources using Jupyter Notebooks and Power BI.
๐ญ๐ฌ. ๐๐ฎ๐๐ฎ ๐๐ผ๐๐ฒ๐ฟ๐ป๐ฎ๐ป๐ฐ๐ฒ ๐ฎ๐ป๐ฑ ๐๐๐ต๐ถ๐ฐ๐: Ensure compliance with GDPR, Data Privacy, and Data Quality standards.
๐ญ๐ญ. ๐๐น๐ผ๐๐ฑ ๐๐ผ๐บ๐ฝ๐๐๐ถ๐ป๐ด: Leverage AWS, Google Cloud, and Azure for scalable data solutions.
๐ญ๐ฎ. ๐๐ฎ๐๐ฎ ๐ช๐ฟ๐ฎ๐ป๐ด๐น๐ถ๐ป๐ด ๐ฎ๐ป๐ฑ ๐๐น๐ฒ๐ฎ๐ป๐ถ๐ป๐ด: Master data cleaning (OpenRefine, Trifacta) and transformation techniques.
Data Analytics Resources
๐๐
https://t.iss.one/sqlspecialist
Hope this helps you ๐
โค9
Artificial Intelligence (AI) is the simulation of human intelligence in machines that are designed to think, learn, and make decisions. From virtual assistants to self-driving cars, AI is transforming how we interact with technology.
Hers is the brief A-Z overview of the terms used in Artificial Intelligence World
A - Algorithm: A set of rules or instructions that an AI system follows to solve problems or make decisions.
B - Bias: Prejudice in AI systems due to skewed training data, leading to unfair outcomes.
C - Chatbot: AI software that can hold conversations with users via text or voice.
D - Deep Learning: A type of machine learning using layered neural networks to analyze data and make decisions.
E - Expert System: An AI that replicates the decision-making ability of a human expert in a specific domain.
F - Fine-Tuning: The process of refining a pre-trained model on a specific task or dataset.
G - Generative AI: AI that can create new content like text, images, audio, or code.
H - Heuristic: A rule-of-thumb or shortcut used by AI to make decisions efficiently.
I - Image Recognition: The ability of AI to detect and classify objects or features in an image.
J - Jupyter Notebook: A tool widely used in AI for interactive coding, data visualization, and documentation.
K - Knowledge Representation: How AI systems store, organize, and use information for reasoning.
L - LLM (Large Language Model): An AI trained on large text datasets to understand and generate human language (e.g., GPT-4).
M - Machine Learning: A branch of AI where systems learn from data instead of being explicitly programmed.
N - NLP (Natural Language Processing): AI's ability to understand, interpret, and generate human language.
O - Overfitting: When a model performs well on training data but poorly on unseen data due to memorizing instead of generalizing.
P - Prompt Engineering: Crafting effective inputs to steer generative AI toward desired responses.
Q - Q-Learning: A reinforcement learning algorithm that helps agents learn the best actions to take.
R - Reinforcement Learning: A type of learning where AI agents learn by interacting with environments and receiving rewards.
S - Supervised Learning: Machine learning where models are trained on labeled datasets.
T - Transformer: A neural network architecture powering models like GPT and BERT, crucial in NLP tasks.
U - Unsupervised Learning: A method where AI finds patterns in data without labeled outcomes.
V - Vision (Computer Vision): The field of AI that enables machines to interpret and process visual data.
W - Weak AI: AI designed to handle narrow tasks without consciousness or general intelligence.
X - Explainable AI (XAI): Techniques that make AI decision-making transparent and understandable to humans.
Y - YOLO (You Only Look Once): A popular real-time object detection algorithm in computer vision.
Z - Zero-shot Learning: The ability of AI to perform tasks it hasnโt been explicitly trained on.
Credits: https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
Hers is the brief A-Z overview of the terms used in Artificial Intelligence World
A - Algorithm: A set of rules or instructions that an AI system follows to solve problems or make decisions.
B - Bias: Prejudice in AI systems due to skewed training data, leading to unfair outcomes.
C - Chatbot: AI software that can hold conversations with users via text or voice.
D - Deep Learning: A type of machine learning using layered neural networks to analyze data and make decisions.
E - Expert System: An AI that replicates the decision-making ability of a human expert in a specific domain.
F - Fine-Tuning: The process of refining a pre-trained model on a specific task or dataset.
G - Generative AI: AI that can create new content like text, images, audio, or code.
H - Heuristic: A rule-of-thumb or shortcut used by AI to make decisions efficiently.
I - Image Recognition: The ability of AI to detect and classify objects or features in an image.
J - Jupyter Notebook: A tool widely used in AI for interactive coding, data visualization, and documentation.
K - Knowledge Representation: How AI systems store, organize, and use information for reasoning.
L - LLM (Large Language Model): An AI trained on large text datasets to understand and generate human language (e.g., GPT-4).
M - Machine Learning: A branch of AI where systems learn from data instead of being explicitly programmed.
N - NLP (Natural Language Processing): AI's ability to understand, interpret, and generate human language.
O - Overfitting: When a model performs well on training data but poorly on unseen data due to memorizing instead of generalizing.
P - Prompt Engineering: Crafting effective inputs to steer generative AI toward desired responses.
Q - Q-Learning: A reinforcement learning algorithm that helps agents learn the best actions to take.
R - Reinforcement Learning: A type of learning where AI agents learn by interacting with environments and receiving rewards.
S - Supervised Learning: Machine learning where models are trained on labeled datasets.
T - Transformer: A neural network architecture powering models like GPT and BERT, crucial in NLP tasks.
U - Unsupervised Learning: A method where AI finds patterns in data without labeled outcomes.
V - Vision (Computer Vision): The field of AI that enables machines to interpret and process visual data.
W - Weak AI: AI designed to handle narrow tasks without consciousness or general intelligence.
X - Explainable AI (XAI): Techniques that make AI decision-making transparent and understandable to humans.
Y - YOLO (You Only Look Once): A popular real-time object detection algorithm in computer vision.
Z - Zero-shot Learning: The ability of AI to perform tasks it hasnโt been explicitly trained on.
Credits: https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
โค10
Various types of test used in statistics for data science
T-test: used to test whether the means of two groups are significantly different from each other.
ANOVA: used to test whether the means of three or more groups are significantly different from each other.
Chi-squared test: used to test whether two categorical variables are independent or associated with each other.
Pearson correlation test: used to test whether there is a significant linear relationship between two continuous variables.
Wilcoxon signed-rank test: used to test whether the median of two related samples is significantly different from each other.
Mann-Whitney U test: used to test whether the median of two independent samples is significantly different from each other.
Kruskal-Wallis test: used to test whether the medians of three or more independent samples are significantly different from each other.
Friedman test: used to test whether the medians of three or more related samples are significantly different from each other.
T-test: used to test whether the means of two groups are significantly different from each other.
ANOVA: used to test whether the means of three or more groups are significantly different from each other.
Chi-squared test: used to test whether two categorical variables are independent or associated with each other.
Pearson correlation test: used to test whether there is a significant linear relationship between two continuous variables.
Wilcoxon signed-rank test: used to test whether the median of two related samples is significantly different from each other.
Mann-Whitney U test: used to test whether the median of two independent samples is significantly different from each other.
Kruskal-Wallis test: used to test whether the medians of three or more independent samples are significantly different from each other.
Friedman test: used to test whether the medians of three or more related samples are significantly different from each other.
โค8๐ฅ2
Essential Topics to Master Data Analytics Interviews: ๐
SQL:
1. Foundations
- SELECT statements with WHERE, ORDER BY, GROUP BY, HAVING
- Basic JOINS (INNER, LEFT, RIGHT, FULL)
- Navigate through simple databases and tables
2. Intermediate SQL
- Utilize Aggregate functions (COUNT, SUM, AVG, MAX, MIN)
- Embrace Subqueries and nested queries
- Master Common Table Expressions (WITH clause)
- Implement CASE statements for logical queries
3. Advanced SQL
- Explore Advanced JOIN techniques (self-join, non-equi join)
- Dive into Window functions (OVER, PARTITION BY, ROW_NUMBER, RANK, DENSE_RANK, lead, lag)
- Optimize queries with indexing
- Execute Data manipulation (INSERT, UPDATE, DELETE)
Python:
1. Python Basics
- Grasp Syntax, variables, and data types
- Command Control structures (if-else, for and while loops)
- Understand Basic data structures (lists, dictionaries, sets, tuples)
- Master Functions, lambda functions, and error handling (try-except)
- Explore Modules and packages
2. Pandas & Numpy
- Create and manipulate DataFrames and Series
- Perfect Indexing, selecting, and filtering data
- Handle missing data (fillna, dropna)
- Aggregate data with groupby, summarizing data
- Merge, join, and concatenate datasets
3. Data Visualization with Python
- Plot with Matplotlib (line plots, bar plots, histograms)
- Visualize with Seaborn (scatter plots, box plots, pair plots)
- Customize plots (sizes, labels, legends, color palettes)
- Introduction to interactive visualizations (e.g., Plotly)
Excel:
1. Excel Essentials
- Conduct Cell operations, basic formulas (SUMIFS, COUNTIFS, AVERAGEIFS, IF, AND, OR, NOT & Nested Functions etc.)
- Dive into charts and basic data visualization
- Sort and filter data, use Conditional formatting
2. Intermediate Excel
- Master Advanced formulas (V/XLOOKUP, INDEX-MATCH, nested IF)
- Leverage PivotTables and PivotCharts for summarizing data
- Utilize data validation tools
- Employ What-if analysis tools (Data Tables, Goal Seek)
3. Advanced Excel
- Harness Array formulas and advanced functions
- Dive into Data Model & Power Pivot
- Explore Advanced Filter, Slicers, and Timelines in Pivot Tables
- Create dynamic charts and interactive dashboards
Power BI:
1. Data Modeling in Power BI
- Import data from various sources
- Establish and manage relationships between datasets
- Grasp Data modeling basics (star schema, snowflake schema)
2. Data Transformation in Power BI
- Use Power Query for data cleaning and transformation
- Apply advanced data shaping techniques
- Create Calculated columns and measures using DAX
3. Data Visualization and Reporting in Power BI
- Craft interactive reports and dashboards
- Utilize Visualizations (bar, line, pie charts, maps)
- Publish and share reports, schedule data refreshes
Statistics Fundamentals:
- Mean, Median, Mode
- Standard Deviation, Variance
- Probability Distributions, Hypothesis Testing
- P-values, Confidence Intervals
- Correlation, Simple Linear Regression
- Normal Distribution, Binomial Distribution, Poisson Distribution.
Show some โค๏ธ if you're ready to elevate your data analytics journey! ๐
ENJOY LEARNING ๐๐
SQL:
1. Foundations
- SELECT statements with WHERE, ORDER BY, GROUP BY, HAVING
- Basic JOINS (INNER, LEFT, RIGHT, FULL)
- Navigate through simple databases and tables
2. Intermediate SQL
- Utilize Aggregate functions (COUNT, SUM, AVG, MAX, MIN)
- Embrace Subqueries and nested queries
- Master Common Table Expressions (WITH clause)
- Implement CASE statements for logical queries
3. Advanced SQL
- Explore Advanced JOIN techniques (self-join, non-equi join)
- Dive into Window functions (OVER, PARTITION BY, ROW_NUMBER, RANK, DENSE_RANK, lead, lag)
- Optimize queries with indexing
- Execute Data manipulation (INSERT, UPDATE, DELETE)
Python:
1. Python Basics
- Grasp Syntax, variables, and data types
- Command Control structures (if-else, for and while loops)
- Understand Basic data structures (lists, dictionaries, sets, tuples)
- Master Functions, lambda functions, and error handling (try-except)
- Explore Modules and packages
2. Pandas & Numpy
- Create and manipulate DataFrames and Series
- Perfect Indexing, selecting, and filtering data
- Handle missing data (fillna, dropna)
- Aggregate data with groupby, summarizing data
- Merge, join, and concatenate datasets
3. Data Visualization with Python
- Plot with Matplotlib (line plots, bar plots, histograms)
- Visualize with Seaborn (scatter plots, box plots, pair plots)
- Customize plots (sizes, labels, legends, color palettes)
- Introduction to interactive visualizations (e.g., Plotly)
Excel:
1. Excel Essentials
- Conduct Cell operations, basic formulas (SUMIFS, COUNTIFS, AVERAGEIFS, IF, AND, OR, NOT & Nested Functions etc.)
- Dive into charts and basic data visualization
- Sort and filter data, use Conditional formatting
2. Intermediate Excel
- Master Advanced formulas (V/XLOOKUP, INDEX-MATCH, nested IF)
- Leverage PivotTables and PivotCharts for summarizing data
- Utilize data validation tools
- Employ What-if analysis tools (Data Tables, Goal Seek)
3. Advanced Excel
- Harness Array formulas and advanced functions
- Dive into Data Model & Power Pivot
- Explore Advanced Filter, Slicers, and Timelines in Pivot Tables
- Create dynamic charts and interactive dashboards
Power BI:
1. Data Modeling in Power BI
- Import data from various sources
- Establish and manage relationships between datasets
- Grasp Data modeling basics (star schema, snowflake schema)
2. Data Transformation in Power BI
- Use Power Query for data cleaning and transformation
- Apply advanced data shaping techniques
- Create Calculated columns and measures using DAX
3. Data Visualization and Reporting in Power BI
- Craft interactive reports and dashboards
- Utilize Visualizations (bar, line, pie charts, maps)
- Publish and share reports, schedule data refreshes
Statistics Fundamentals:
- Mean, Median, Mode
- Standard Deviation, Variance
- Probability Distributions, Hypothesis Testing
- P-values, Confidence Intervals
- Correlation, Simple Linear Regression
- Normal Distribution, Binomial Distribution, Poisson Distribution.
Show some โค๏ธ if you're ready to elevate your data analytics journey! ๐
ENJOY LEARNING ๐๐
โค10๐2
๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ ๐๐ ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐๐ถ๐๐ ๐๐ ๐๐๐๐ถ๐ป๐ฒ๐๐ ๐๐ป๐ฎ๐น๐๐๐ โ ๐ช๐ต๐ถ๐ฐ๐ต ๐ฃ๐ฎ๐๐ต ๐ถ๐ ๐ฅ๐ถ๐ด๐ต๐ ๐ณ๐ผ๐ฟ ๐ฌ๐ผ๐? ๐ค
In todayโs data-driven world, career clarity can make all the difference. Whether youโre starting out in analytics, pivoting into data science, or aligning business with data as an analyst โ understanding the core responsibilities, skills, and tools of each role is crucial.
๐ Hereโs a quick breakdown from a visual I often refer to when mentoring professionals:
๐น ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐
๓ ฏโข๓ Focus: Analyzing historical data to inform decisions.
๓ ฏโข๓ Skills: SQL, basic stats, data visualization, reporting.
๓ ฏโข๓ Tools: Excel, Tableau, Power BI, SQL.
๐น ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐๐ถ๐๐
๓ ฏโข๓ Focus: Predictive modeling, ML, complex data analysis.
๓ ฏโข๓ Skills: Programming, ML, deep learning, stats.
๓ ฏโข๓ Tools: Python, R, TensorFlow, Scikit-Learn, Spark.
๐น ๐๐๐๐ถ๐ป๐ฒ๐๐ ๐๐ป๐ฎ๐น๐๐๐
๓ ฏโข๓ Focus: Bridging business needs with data insights.
๓ ฏโข๓ Skills: Communication, stakeholder management, process modeling.
๓ ฏโข๓ Tools: Microsoft Office, BI tools, business process frameworks.
๐ ๐ ๐ ๐๐ฑ๐๐ถ๐ฐ๐ฒ:
Start with what interests you the most and aligns with your current strengths. Are you business-savvy? Start as a Business Analyst. Love solving puzzles with data?
Explore Data Analyst. Want to build models and uncover deep insights? Head into Data Science.
๐ ๐ง๐ฎ๐ธ๐ฒ ๐๐ถ๐บ๐ฒ ๐๐ผ ๐๐ฒ๐น๐ณ-๐ฎ๐๐๐ฒ๐๐ ๐ฎ๐ป๐ฑ ๐ฐ๐ต๐ผ๐ผ๐๐ฒ ๐ฎ ๐ฝ๐ฎ๐๐ต ๐๐ต๐ฎ๐ ๐ฒ๐ป๐ฒ๐ฟ๐ด๐ถ๐๐ฒ๐ ๐๐ผ๐, not just one thatโs trending.
In todayโs data-driven world, career clarity can make all the difference. Whether youโre starting out in analytics, pivoting into data science, or aligning business with data as an analyst โ understanding the core responsibilities, skills, and tools of each role is crucial.
๐ Hereโs a quick breakdown from a visual I often refer to when mentoring professionals:
๐น ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐
๓ ฏโข๓ Focus: Analyzing historical data to inform decisions.
๓ ฏโข๓ Skills: SQL, basic stats, data visualization, reporting.
๓ ฏโข๓ Tools: Excel, Tableau, Power BI, SQL.
๐น ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐๐ถ๐๐
๓ ฏโข๓ Focus: Predictive modeling, ML, complex data analysis.
๓ ฏโข๓ Skills: Programming, ML, deep learning, stats.
๓ ฏโข๓ Tools: Python, R, TensorFlow, Scikit-Learn, Spark.
๐น ๐๐๐๐ถ๐ป๐ฒ๐๐ ๐๐ป๐ฎ๐น๐๐๐
๓ ฏโข๓ Focus: Bridging business needs with data insights.
๓ ฏโข๓ Skills: Communication, stakeholder management, process modeling.
๓ ฏโข๓ Tools: Microsoft Office, BI tools, business process frameworks.
๐ ๐ ๐ ๐๐ฑ๐๐ถ๐ฐ๐ฒ:
Start with what interests you the most and aligns with your current strengths. Are you business-savvy? Start as a Business Analyst. Love solving puzzles with data?
Explore Data Analyst. Want to build models and uncover deep insights? Head into Data Science.
๐ ๐ง๐ฎ๐ธ๐ฒ ๐๐ถ๐บ๐ฒ ๐๐ผ ๐๐ฒ๐น๐ณ-๐ฎ๐๐๐ฒ๐๐ ๐ฎ๐ป๐ฑ ๐ฐ๐ต๐ผ๐ผ๐๐ฒ ๐ฎ ๐ฝ๐ฎ๐๐ต ๐๐ต๐ฎ๐ ๐ฒ๐ป๐ฒ๐ฟ๐ด๐ถ๐๐ฒ๐ ๐๐ผ๐, not just one thatโs trending.
โค10
Python for Data Analytics - Quick Cheatsheet with Cod e Example ๐
1๏ธโฃ Data Manipulation with Pandas
2๏ธโฃ Numerical Operations with NumPy
3๏ธโฃ Data Visualization with Matplotlib & Seaborn
4๏ธโฃ Exploratory Data Analysis (EDA)
5๏ธโฃ Working with Databases (SQL + Python)
React with โค๏ธ for more
1๏ธโฃ Data Manipulation with Pandas
import pandas as pd
df = pd.read_csv("data.csv")
df.to_excel("output.xlsx")
df.head()
df.info()
df.describe()
df[df["sales"] > 1000]
df[["name", "price"]]
df.fillna(0, inplace=True)
df.dropna(inplace=True)
2๏ธโฃ Numerical Operations with NumPy
import numpy as np
arr = np.array([1, 2, 3, 4])
print(arr.shape)
np.mean(arr)
np.median(arr)
np.std(arr)
3๏ธโฃ Data Visualization with Matplotlib & Seaborn
import matplotlib.pyplot as plt
plt.plot([1, 2, 3, 4], [10, 20, 30, 40])
plt.bar(["A", "B", "C"], [5, 15, 25])
plt.show()
import seaborn as sns
sns.heatmap(df.corr(), annot=True)
sns.boxplot(x="category", y="sales", data=df)
plt.show()
4๏ธโฃ Exploratory Data Analysis (EDA)
df.isnull().sum()
df.corr()
sns.histplot(df["sales"], bins=30)
sns.boxplot(y=df["price"])
5๏ธโฃ Working with Databases (SQL + Python)
import sqlite3
conn = sqlite3.connect("database.db")
df = pd.read_sql("SELECT * FROM sales", conn)
conn.close()
cursor = conn.cursor()
cursor.execute("SELECT AVG(price) FROM products")
result = cursor.fetchone()
print(result)
React with โค๏ธ for more
โค18๐1๐ค1
Call for papers on AI to AI Journey* conference journal has started!
Prize for the best scientific paper - 1 million roubles!
Selected papers will be published in the scientific journal Doklady Mathematics.
๐ The journal:
โข Indexed in the largest bibliographic databases of scientific citations
โข Accessible to an international audience and published in the worldโs digital libraries
Submit your article by August 20 and get the opportunity not only to publish your research the scientific journal, but also to present it at the AI Journey conference.
Prize for the best article - 1 million roubles!
More detailed information can be found in the Selection Rules -> AI Journey
*AI Journey - a major online conference in the field of AI technologies
Prize for the best scientific paper - 1 million roubles!
Selected papers will be published in the scientific journal Doklady Mathematics.
๐ The journal:
โข Indexed in the largest bibliographic databases of scientific citations
โข Accessible to an international audience and published in the worldโs digital libraries
Submit your article by August 20 and get the opportunity not only to publish your research the scientific journal, but also to present it at the AI Journey conference.
Prize for the best article - 1 million roubles!
More detailed information can be found in the Selection Rules -> AI Journey
*AI Journey - a major online conference in the field of AI technologies
๐4โค2
ยฉHow fresher can get a job as a data scientist?ยฉ
Job market is highly resistant to hire data scientist as a fresher. Everyone out there asks for at least 2 years of experience, but then the question is where will we get the two years experience from?
The important thing here to build a portfolio. As you are a fresher I would assume you had learnt data science through online courses. They only teach you the basics, the analytical skills required to clean the data and apply machine learning algorithms to them comes only from practice.
Do some real-world data science projects, participate in Kaggle competition. kaggle provides data sets for practice as well. Whatever projects you do, create a GitHub repository for it. Place all your projects there so when a recruiter is looking at your profile they know you have hands-on practice and do know the basics. This will take you a long way.
All the major data science jobs for freshers will only be available through off-campus interviews.
Some companies that hires data scientists are:
Siemens
Accenture
IBM
Cerner
Creating a technical portfolio will showcase the knowledge you have already gained and that is essential while you got out there as a fresher and try to find a data scientist job.
Job market is highly resistant to hire data scientist as a fresher. Everyone out there asks for at least 2 years of experience, but then the question is where will we get the two years experience from?
The important thing here to build a portfolio. As you are a fresher I would assume you had learnt data science through online courses. They only teach you the basics, the analytical skills required to clean the data and apply machine learning algorithms to them comes only from practice.
Do some real-world data science projects, participate in Kaggle competition. kaggle provides data sets for practice as well. Whatever projects you do, create a GitHub repository for it. Place all your projects there so when a recruiter is looking at your profile they know you have hands-on practice and do know the basics. This will take you a long way.
All the major data science jobs for freshers will only be available through off-campus interviews.
Some companies that hires data scientists are:
Siemens
Accenture
IBM
Cerner
Creating a technical portfolio will showcase the knowledge you have already gained and that is essential while you got out there as a fresher and try to find a data scientist job.
โค6
If you want to Excel in Data Science and become an expert, master these essential concepts:
Core Data Science Skills:
โข Python for Data Science โ Pandas, NumPy, Matplotlib, Seaborn
โข SQL for Data Extraction โ SELECT, JOIN, GROUP BY, CTEs, Window Functions
โข Data Cleaning & Preprocessing โ Handling missing data, outliers, duplicates
โข Exploratory Data Analysis (EDA) โ Visualizing data trends
Machine Learning (ML):
โข Supervised Learning โ Linear Regression, Decision Trees, Random Forest
โข Unsupervised Learning โ Clustering, PCA, Anomaly Detection
โข Model Evaluation โ Cross-validation, Confusion Matrix, ROC-AUC
โข Hyperparameter Tuning โ Grid Search, Random Search
Deep Learning (DL):
โข Neural Networks โ TensorFlow, PyTorch, Keras
โข CNNs & RNNs โ Image & sequential data processing
โข Transformers & LLMs โ GPT, BERT, Stable Diffusion
Big Data & Cloud Computing:
โข Hadoop & Spark โ Handling large datasets
โข AWS, GCP, Azure โ Cloud-based data science solutions
โข MLOps โ Deploy models using Flask, FastAPI, Docker
Statistics & Mathematics for Data Science:
โข Probability & Hypothesis Testing โ P-values, T-tests, Chi-square
โข Linear Algebra & Calculus โ Matrices, Vectors, Derivatives
โข Time Series Analysis โ ARIMA, Prophet, LSTMs
Real-World Applications:
โข Recommendation Systems โ Personalized AI suggestions
โข NLP (Natural Language Processing) โ Sentiment Analysis, Chatbots
โข AI-Powered Business Insights โ Data-driven decision-making
React โค๏ธ for more
Core Data Science Skills:
โข Python for Data Science โ Pandas, NumPy, Matplotlib, Seaborn
โข SQL for Data Extraction โ SELECT, JOIN, GROUP BY, CTEs, Window Functions
โข Data Cleaning & Preprocessing โ Handling missing data, outliers, duplicates
โข Exploratory Data Analysis (EDA) โ Visualizing data trends
Machine Learning (ML):
โข Supervised Learning โ Linear Regression, Decision Trees, Random Forest
โข Unsupervised Learning โ Clustering, PCA, Anomaly Detection
โข Model Evaluation โ Cross-validation, Confusion Matrix, ROC-AUC
โข Hyperparameter Tuning โ Grid Search, Random Search
Deep Learning (DL):
โข Neural Networks โ TensorFlow, PyTorch, Keras
โข CNNs & RNNs โ Image & sequential data processing
โข Transformers & LLMs โ GPT, BERT, Stable Diffusion
Big Data & Cloud Computing:
โข Hadoop & Spark โ Handling large datasets
โข AWS, GCP, Azure โ Cloud-based data science solutions
โข MLOps โ Deploy models using Flask, FastAPI, Docker
Statistics & Mathematics for Data Science:
โข Probability & Hypothesis Testing โ P-values, T-tests, Chi-square
โข Linear Algebra & Calculus โ Matrices, Vectors, Derivatives
โข Time Series Analysis โ ARIMA, Prophet, LSTMs
Real-World Applications:
โข Recommendation Systems โ Personalized AI suggestions
โข NLP (Natural Language Processing) โ Sentiment Analysis, Chatbots
โข AI-Powered Business Insights โ Data-driven decision-making
React โค๏ธ for more
โค7