Data Science & Machine Learning
73.1K subscribers
779 photos
2 videos
68 files
686 links
Join this channel to learn data science, artificial intelligence and machine learning with funny quizzes, interesting projects and amazing resources for free

For collaborations: @love_data
Download Telegram
Let's now understand Data Science Roadmap in detail:

1. Math & Statistics (Foundation Layer)
This is the backbone of data science. Strong intuition here helps with algorithms, ML, and interpreting results.

Key Topics:

Linear Algebra: Vectors, matrices, matrix operations

Calculus: Derivatives, gradients (for optimization)

Probability: Bayes theorem, probability distributions

Statistics: Mean, median, mode, standard deviation, hypothesis testing, confidence intervals

Inferential Statistics: p-values, t-tests, ANOVA


Resources:

Khan Academy (Math & Stats)

"Think Stats" book

YouTube (StatQuest with Josh Starmer)


2. Python or R (Pick One for Analysis)
These are your main tools. Python is more popular in industry; R is strong in academia.

For Python Learn:

Variables, loops, functions, list comprehension

Libraries: NumPy, Pandas, Matplotlib, Seaborn


For R Learn:

Vectors, data frames, ggplot2, dplyr, tidyr


Goal: Be comfortable working with data, writing clean code, and doing basic analysis.

3. Data Wrangling (Data Cleaning & Manipulation)
Real-world data is messy. Cleaning and structuring it is essential.

What to Learn:

Handling missing values

Removing duplicates

String operations

Date and time operations

Merging and joining datasets

Reshaping data (pivot, melt)


Tools:

Python: Pandas

R: dplyr, tidyr


Mini Projects: Clean a messy CSV or scrape and structure web data.

4. Data Visualization (Telling the Story)
This is about showing insights visually for business users or stakeholders.

In Python:

Matplotlib, Seaborn, Plotly


In R:

ggplot2, plotly


Learn To:

Create bar plots, histograms, scatter plots, box plots

Design dashboards (can explore Power BI or Tableau)

Use color and layout to enhance clarity


5. Machine Learning (ML)
Now the real fun begins! Automate predictions and classifications.

Topics:

Supervised Learning: Linear Regression, Logistic Regression, Decision Trees, Random Forests, SVM

Unsupervised Learning: Clustering (K-means), PCA

Model Evaluation: Accuracy, Precision, Recall, F1-score, ROC-AUC

Cross-validation, Hyperparameter tuning


Libraries:

scikit-learn, xgboost


Practice On:

Kaggle datasets, Titanic survival, House price prediction


6. Deep Learning & NLP (Advanced Level)
Push your skills to the next level. Essential for AI, image, and text-based tasks.

Deep Learning:

Neural Networks, CNNs, RNNs

Frameworks: TensorFlow, Keras, PyTorch


NLP (Natural Language Processing):

Text preprocessing (tokenization, stemming, lemmatization)

TF-IDF, Word Embeddings

Sentiment Analysis, Topic Modeling

Transformers (BERT, GPT, etc.)


Projects:

Sentiment analysis from Twitter data

Image classifier using CNN


7. Projects (Build Your Portfolio)
Apply everything you've learned to real-world datasets.

Types of Projects:

EDA + ML project on a domain (finance, health, sports)

End-to-end ML pipeline

Deep Learning project (image or text)

Build a dashboard with your insights

Collaborate on GitHub, contribute to open-source


Tips:

Host projects on GitHub

Write about them on Medium, LinkedIn, or personal blog


8. โœ… Apply for Jobs (You're Ready!)
Now, you're prepared to apply with confidence.

Steps:

Prepare your resume tailored for DS roles

Sharpen interview skills (SQL, Python, case studies)

Practice on LeetCode, InterviewBit

Network on LinkedIn, attend meetups

Apply for internships or entry-level DS/DA roles


Keep learning and adapting. Data Science is vast and fast-movingโ€”stay updated via newsletters, GitHub, and communities like Kaggle or Reddit.

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Credits: https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y

Like if you need similar content ๐Ÿ˜„๐Ÿ‘

Hope this helps you ๐Ÿ˜Š
โค13๐Ÿ‘2
Machine Learning isn't easy!

Itโ€™s the field that powers intelligent systems and predictive models.

To truly master Machine Learning, focus on these key areas:

0. Understanding the Basics of Algorithms: Learn about linear regression, decision trees, and k-nearest neighbors to build a solid foundation.


1. Mastering Data Preprocessing: Clean, normalize, and handle missing data to prepare your datasets for training.


2. Learning Supervised Learning Techniques: Dive deep into classification and regression models, such as SVMs, random forests, and logistic regression.


3. Exploring Unsupervised Learning: Understand clustering techniques (K-means, hierarchical) and dimensionality reduction (PCA, t-SNE).


4. Mastering Model Evaluation: Use techniques like cross-validation, confusion matrices, ROC curves, and F1 scores to assess model performance.


5. Understanding Overfitting and Underfitting: Learn how to balance bias and variance to build robust models.


6. Optimizing Hyperparameters: Use grid search, random search, and Bayesian optimization to fine-tune your models for better performance.


7. Diving into Neural Networks and Deep Learning: Explore deep learning with frameworks like TensorFlow and PyTorch to create advanced models like CNNs and RNNs.


8. Working with Natural Language Processing (NLP): Master text data, sentiment analysis, and techniques like word embeddings and transformers.


9. Staying Updated with New Techniques: Machine learning evolves rapidlyโ€”keep up with emerging models, techniques, and research.



Machine learning is about learning from data and improving models over time.

๐Ÿ’ก Embrace the challenges of building algorithms, experimenting with data, and solving complex problems.

โณ With time, practice, and persistence, youโ€™ll develop the expertise to create systems that learn, predict, and adapt.

Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Credits: https://t.iss.one/datasciencefun

Like if you need similar content ๐Ÿ˜„๐Ÿ‘

Hope this helps you ๐Ÿ˜Š

#datascience
โค4๐Ÿ‘4
If you want to get a job as a machine learning engineer, donโ€™t start by diving into the hottest libraries like PyTorch,TensorFlow, Langchain, etc.

Yes, you might hear a lot about them or some other trending technology of the year...but guess what!

Technologies evolve rapidly, especially in the age of AI, but core concepts are always seen as more valuable than expertise in any particular tool. Stop trying to perform a brain surgery without knowing anything about human anatomy.

Instead, here are basic skills that will get you further than mastering any framework:


๐Œ๐š๐ญ๐ก๐ž๐ฆ๐š๐ญ๐ข๐œ๐ฌ ๐š๐ง๐ ๐’๐ญ๐š๐ญ๐ข๐ฌ๐ญ๐ข๐œ๐ฌ - My first exposure to probability and statistics was in college, and it felt abstract at the time, but these concepts are the backbone of ML.

You can start here: Khan Academy Statistics and Probability - https://www.khanacademy.org/math/statistics-probability

๐‹๐ข๐ง๐ž๐š๐ซ ๐€๐ฅ๐ ๐ž๐›๐ซ๐š ๐š๐ง๐ ๐‚๐š๐ฅ๐œ๐ฎ๐ฅ๐ฎ๐ฌ - Concepts like matrices, vectors, eigenvalues, and derivatives are fundamental to understanding how ml algorithms work. These are used in everything from simple regression to deep learning.

๐๐ซ๐จ๐ ๐ซ๐š๐ฆ๐ฆ๐ข๐ง๐  - Should you learn Python, Rust, R, Julia, JavaScript, etc.? The best advice is to pick the language that is most frequently used for the type of work you want to do. I started with Python due to its simplicity and extensive library support, and it remains my go-to language for machine learning tasks.

You can start here: Automate the Boring Stuff with Python - https://automatetheboringstuff.com/

๐€๐ฅ๐ ๐จ๐ซ๐ข๐ญ๐ก๐ฆ ๐”๐ง๐๐ž๐ซ๐ฌ๐ญ๐š๐ง๐๐ข๐ง๐  - Understand the fundamental algorithms before jumping to deep learning. This includes linear regression, decision trees, SVMs, and clustering algorithms.

๐ƒ๐ž๐ฉ๐ฅ๐จ๐ฒ๐ฆ๐ž๐ง๐ญ ๐š๐ง๐ ๐๐ซ๐จ๐๐ฎ๐œ๐ญ๐ข๐จ๐ง:
Knowing how to take a model from development to production is invaluable. This includes understanding APIs, model optimization, and monitoring. Tools like Docker and Flask are often used in this process.

๐‚๐ฅ๐จ๐ฎ๐ ๐‚๐จ๐ฆ๐ฉ๐ฎ๐ญ๐ข๐ง๐  ๐š๐ง๐ ๐๐ข๐  ๐ƒ๐š๐ญ๐š:
Familiarity with cloud platforms (AWS, Google Cloud, Azure) and big data tools (Spark) is increasingly important as datasets grow larger. These skills help you manage and process large-scale data efficiently.

You can start here: Google Cloud Machine Learning - https://cloud.google.com/learn/training/machinelearning-ai

I love frameworks and libraries, and they can make anyone's job easier.

But the more solid your foundation, the easier it will be to pick up any new technologies and actually validate whether they solve your problems.

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

All the best ๐Ÿ‘๐Ÿ‘
โค5๐Ÿ‘1
SQL CHEAT SHEET๐Ÿ‘ฉโ€๐Ÿ’ป

Here is a quick cheat sheet of some of the most essential SQL commands:

SELECT - Retrieves data from a database

UPDATE - Updates existing data in a database

DELETE - Removes data from a database

INSERT - Adds data to a database

CREATE - Creates an object such as a database or table

ALTER - Modifies an existing object in a database

DROP -Deletes an entire table or database

ORDER BY - Sorts the selected data in an ascending or descending order

WHERE โ€“ Condition used to filter a specific set of records from the database

GROUP BY - Groups a set of data by a common parameter

HAVING - Allows the use of aggregate functions within the query

JOIN - Joins two or more tables together to retrieve data

INDEX - Creates an index on a table, to speed up search times.
โค2๐Ÿ‘2
SQL is one of the core languages used in data science, powering everything from quick data retrieval to complex deep dive analysis. Whether you're a seasoned data scientist or just starting out, mastering SQL can boost your ability to analyze data, create robust pipelines, and deliver actionable insights.

Letโ€™s dive into a comprehensive guide on SQL for Data Science!

I have broken it down into three key sections to help you:

๐Ÿญ. ๐—ฆ๐—ค๐—Ÿ ๐—–๐—ผ๐—ป๐—ฐ๐—ฒ๐—ฝ๐˜๐˜€:
Get a handle on the essentials -> SELECT statements, filtering, aggregations, joins, window functions, and more.

๐Ÿฎ. ๐—ฆ๐—ค๐—Ÿ ๐—ถ๐—ป ๐——๐—ฎ๐˜†-๐˜๐—ผ-๐——๐—ฎ๐˜† ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ:
See how SQL fits into the daily data science workflow. From quick data queries and deep-dive analysis to building pipelines and dashboards, SQL is really useful for data scientists, especially for product data scientists.

๐Ÿฏ. ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฆ๐—ค๐—Ÿ ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐—ฒ๐˜„๐˜€:
Learn what interviewers look for in terms of technical skills, design and engineering expertise, communication abilities, and the importance of speed and accuracy.
โค6๐Ÿ‘3
Here are some essential data science concepts from A to Z:

A - Algorithm: A set of rules or instructions used to solve a problem or perform a task in data science.

B - Big Data: Large and complex datasets that cannot be easily processed using traditional data processing applications.

C - Clustering: A technique used to group similar data points together based on certain characteristics.

D - Data Cleaning: The process of identifying and correcting errors or inconsistencies in a dataset.

E - Exploratory Data Analysis (EDA): The process of analyzing and visualizing data to understand its underlying patterns and relationships.

F - Feature Engineering: The process of creating new features or variables from existing data to improve model performance.

G - Gradient Descent: An optimization algorithm used to minimize the error of a model by adjusting its parameters.

H - Hypothesis Testing: A statistical technique used to test the validity of a hypothesis or claim based on sample data.

I - Imputation: The process of filling in missing values in a dataset using statistical methods.

J - Joint Probability: The probability of two or more events occurring together.

K - K-Means Clustering: A popular clustering algorithm that partitions data into K clusters based on similarity.

L - Linear Regression: A statistical method used to model the relationship between a dependent variable and one or more independent variables.

M - Machine Learning: A subset of artificial intelligence that uses algorithms to learn patterns and make predictions from data.

N - Normal Distribution: A symmetrical bell-shaped distribution that is commonly used in statistical analysis.

O - Outlier Detection: The process of identifying and removing data points that are significantly different from the rest of the dataset.

P - Precision and Recall: Evaluation metrics used to assess the performance of classification models.

Q - Quantitative Analysis: The process of analyzing numerical data to draw conclusions and make decisions.

R - Random Forest: An ensemble learning algorithm that builds multiple decision trees to improve prediction accuracy.

S - Support Vector Machine (SVM): A supervised learning algorithm used for classification and regression tasks.

T - Time Series Analysis: A statistical technique used to analyze and forecast time-dependent data.

U - Unsupervised Learning: A type of machine learning where the model learns patterns and relationships in data without labeled outputs.

V - Validation Set: A subset of data used to evaluate the performance of a model during training.

W - Web Scraping: The process of extracting data from websites for analysis and visualization.

X - XGBoost: An optimized gradient boosting algorithm that is widely used in machine learning competitions.

Y - Yield Curve Analysis: The study of the relationship between interest rates and the maturity of fixed-income securities.

Z - Z-Score: A standardized score that represents the number of standard deviations a data point is from the mean.

Credits: https://t.iss.one/free4unow_backup

Like if you need similar content ๐Ÿ˜„๐Ÿ‘
โค7๐Ÿ‘2
Advanced Skills to Elevate Your Data Analytics Career

1๏ธโƒฃ SQL Optimization & Performance Tuning

๐Ÿš€ Learn indexing, query optimization, and execution plans to handle large datasets efficiently.

2๏ธโƒฃ Machine Learning Basics

๐Ÿค– Understand supervised and unsupervised learning, feature engineering, and model evaluation to enhance analytical capabilities.

3๏ธโƒฃ Big Data Technologies

๐Ÿ—๏ธ Explore Spark, Hadoop, and cloud platforms like AWS, Azure, or Google Cloud for large-scale data processing.

4๏ธโƒฃ Data Engineering Skills

โš™๏ธ Learn ETL pipelines, data warehousing, and workflow automation to streamline data processing.

5๏ธโƒฃ Advanced Python for Analytics

๐Ÿ Master libraries like Scikit-Learn, TensorFlow, and Statsmodels for predictive analytics and automation.

6๏ธโƒฃ A/B Testing & Experimentation

๐ŸŽฏ Design and analyze controlled experiments to drive data-driven decision-making.

7๏ธโƒฃ Dashboard Design & UX

๐ŸŽจ Build interactive dashboards with Power BI, Tableau, or Looker that enhance user experience.

8๏ธโƒฃ Cloud Data Analytics

โ˜๏ธ Work with cloud databases like BigQuery, Snowflake, and Redshift for scalable analytics.

9๏ธโƒฃ Domain Expertise

๐Ÿ’ผ Gain industry-specific knowledge (e.g., finance, healthcare, e-commerce) to provide more relevant insights.

๐Ÿ”Ÿ Soft Skills & Leadership

๐Ÿ’ก Develop stakeholder management, storytelling, and mentorship skills to advance in your career.

Hope it helps :)

#dataanalytics
โค4๐Ÿ‘1๐Ÿ˜1
If you're serious about getting into Data Science with Python, follow this 5-step roadmap.

Each phase builds on the previous one, so donโ€™t rush.

Take your time, build projects, and keep moving forward.

Step 1: Python Fundamentals
Before anything else, get your hands dirty with core Python.
This is the language that powers everything else.

โœ… What to learn:
type(), int(), float(), str(), list(), dict()
if, elif, else, for, while, range()
def, return, function arguments
List comprehensions: [x for x in list if condition]
โ€“ Mini Checkpoint:
Build a mini console-based data calculator (inputs, basic operations, conditionals, loops).

Step 2: Data Cleaning with Pandas
Pandas is the tool you'll use to clean, reshape, and explore data in real-world scenarios.

โœ… What to learn:
Cleaning: df.dropna(), df.fillna(), df.replace(), df.drop_duplicates()
Merging & reshaping: pd.merge(), df.pivot(), df.melt()
Grouping & aggregation: df.groupby(), df.agg()
โ€“ Mini Checkpoint:
Build a data cleaning script for a messy CSV file. Add comments to explain every step.

Step 3: Data Visualization with Matplotlib
Nobody wants raw tables.
Learn to tell stories through charts.

โœ… What to learn:
Basic charts: plt.plot(), plt.scatter()
Advanced plots: plt.hist(), plt.kde(), plt.boxplot()
Subplots & customizations: plt.subplots(), fig.add_subplot(), plt.title(), plt.legend(), plt.xlabel()
โ€“ Mini Checkpoint:
Create a dashboard-style notebook visualizing a dataset, include at least 4 types of plots.

Step 4: Exploratory Data Analysis (EDA)
This is where your analytical skills kick in.
Youโ€™ll draw insights, detect trends, and prepare for modeling.

โœ… What to learn:
Descriptive stats: df.mean(), df.median(), df.mode(), df.std(), df.var(), df.min(), df.max(), df.quantile()
Correlation analysis: df.corr(), plt.imshow(), scipy.stats.pearsonr()
โ€” Mini Checkpoint:
Write an EDA report (Markdown or PDF) based on your findings from a public dataset.

Step 5: Intro to Machine Learning with Scikit-Learn
Now that your data skills are sharp, it's time to model and predict.

โœ… What to learn:
Training & evaluation: train_test_split(), .fit(), .predict(), cross_val_score()
Regression: LinearRegression(), mean_squared_error(), r2_score()
Classification: LogisticRegression(), accuracy_score(), confusion_matrix()
Clustering: KMeans(), silhouette_score()

โ€“ Final Checkpoint:

Build your first ML project end-to-end
โœ… Load data
โœ… Clean it
โœ… Visualize it
โœ… Run EDA
โœ… Train & test a model
โœ… Share the project with visuals and explanations on GitHub

Donโ€™t just complete tutorialsm create things.

Explain your work.
Build your GitHub.
Write a blog.

Thatโ€™s how you go from โ€œlearningโ€ to โ€œlanding a job

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

All the best ๐Ÿ‘๐Ÿ‘
๐Ÿ‘5โค2
๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—ฅ๐—ผ๐—ฎ๐—ฑ๐—บ๐—ฎ๐—ฝ

๐Ÿญ. ๐—ฃ๐—ฟ๐—ผ๐—ด๐—ฟ๐—ฎ๐—บ๐—บ๐—ถ๐—ป๐—ด ๐—Ÿ๐—ฎ๐—ป๐—ด๐˜‚๐—ฎ๐—ด๐—ฒ๐˜€: Master Python, SQL, and R for data manipulation and analysis.

๐Ÿฎ. ๐——๐—ฎ๐˜๐—ฎ ๐— ๐—ฎ๐—ป๐—ถ๐—ฝ๐˜‚๐—น๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—ฎ๐—ป๐—ฑ ๐—ฃ๐—ฟ๐—ผ๐—ฐ๐—ฒ๐˜€๐˜€๐—ถ๐—ป๐—ด: Use Excel, Pandas, and ETL tools like Alteryx and Talend for data processing.

๐Ÿฏ. ๐——๐—ฎ๐˜๐—ฎ ๐—ฉ๐—ถ๐˜€๐˜‚๐—ฎ๐—น๐—ถ๐˜‡๐—ฎ๐˜๐—ถ๐—ผ๐—ป: Learn Tableau, Power BI, and Matplotlib/Seaborn for creating insightful visualizations.

๐Ÿฐ. ๐—ฆ๐˜๐—ฎ๐˜๐—ถ๐˜€๐˜๐—ถ๐—ฐ๐˜€ ๐—ฎ๐—ป๐—ฑ ๐— ๐—ฎ๐˜๐—ต๐—ฒ๐—บ๐—ฎ๐˜๐—ถ๐—ฐ๐˜€: Understand Descriptive and Inferential Statistics, Probability, Regression, and Time Series Analysis.

๐Ÿฑ. ๐— ๐—ฎ๐—ฐ๐—ต๐—ถ๐—ป๐—ฒ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด: Get proficient in Supervised and Unsupervised Learning, along with Time Series Forecasting.

๐Ÿฒ. ๐—•๐—ถ๐—ด ๐——๐—ฎ๐˜๐—ฎ ๐—ง๐—ผ๐—ผ๐—น๐˜€: Utilize Google BigQuery, AWS Redshift, and NoSQL databases like MongoDB for large-scale data management.

๐Ÿณ. ๐— ๐—ผ๐—ป๐—ถ๐˜๐—ผ๐—ฟ๐—ถ๐—ป๐—ด ๐—ฎ๐—ป๐—ฑ ๐—ฅ๐—ฒ๐—ฝ๐—ผ๐—ฟ๐˜๐—ถ๐—ป๐—ด: Implement Data Quality Monitoring (Great Expectations) and Performance Tracking (Prometheus, Grafana).

๐Ÿด. ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—ง๐—ผ๐—ผ๐—น๐˜€: Work with Data Orchestration tools (Airflow, Prefect) and visualization tools like D3.js and Plotly.

๐Ÿต. ๐—ฅ๐—ฒ๐˜€๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ ๐— ๐—ฎ๐—ป๐—ฎ๐—ด๐—ฒ๐—ฟ: Manage resources using Jupyter Notebooks and Power BI.

๐Ÿญ๐Ÿฌ. ๐——๐—ฎ๐˜๐—ฎ ๐—š๐—ผ๐˜ƒ๐—ฒ๐—ฟ๐—ป๐—ฎ๐—ป๐—ฐ๐—ฒ ๐—ฎ๐—ป๐—ฑ ๐—˜๐˜๐—ต๐—ถ๐—ฐ๐˜€: Ensure compliance with GDPR, Data Privacy, and Data Quality standards.

๐Ÿญ๐Ÿญ. ๐—–๐—น๐—ผ๐˜‚๐—ฑ ๐—–๐—ผ๐—บ๐—ฝ๐˜‚๐˜๐—ถ๐—ป๐—ด: Leverage AWS, Google Cloud, and Azure for scalable data solutions.

๐Ÿญ๐Ÿฎ. ๐——๐—ฎ๐˜๐—ฎ ๐—ช๐—ฟ๐—ฎ๐—ป๐—ด๐—น๐—ถ๐—ป๐—ด ๐—ฎ๐—ป๐—ฑ ๐—–๐—น๐—ฒ๐—ฎ๐—ป๐—ถ๐—ป๐—ด: Master data cleaning (OpenRefine, Trifacta) and transformation techniques.

Data Analytics Resources
๐Ÿ‘‡๐Ÿ‘‡
https://t.iss.one/sqlspecialist

Hope this helps you ๐Ÿ˜Š
โค9
Artificial Intelligence (AI) is the simulation of human intelligence in machines that are designed to think, learn, and make decisions. From virtual assistants to self-driving cars, AI is transforming how we interact with technology.

Hers is the brief A-Z overview of the terms used in Artificial Intelligence World

A - Algorithm: A set of rules or instructions that an AI system follows to solve problems or make decisions.

B - Bias: Prejudice in AI systems due to skewed training data, leading to unfair outcomes.

C - Chatbot: AI software that can hold conversations with users via text or voice.

D - Deep Learning: A type of machine learning using layered neural networks to analyze data and make decisions.

E - Expert System: An AI that replicates the decision-making ability of a human expert in a specific domain.

F - Fine-Tuning: The process of refining a pre-trained model on a specific task or dataset.

G - Generative AI: AI that can create new content like text, images, audio, or code.

H - Heuristic: A rule-of-thumb or shortcut used by AI to make decisions efficiently.

I - Image Recognition: The ability of AI to detect and classify objects or features in an image.

J - Jupyter Notebook: A tool widely used in AI for interactive coding, data visualization, and documentation.

K - Knowledge Representation: How AI systems store, organize, and use information for reasoning.

L - LLM (Large Language Model): An AI trained on large text datasets to understand and generate human language (e.g., GPT-4).

M - Machine Learning: A branch of AI where systems learn from data instead of being explicitly programmed.

N - NLP (Natural Language Processing): AI's ability to understand, interpret, and generate human language.

O - Overfitting: When a model performs well on training data but poorly on unseen data due to memorizing instead of generalizing.

P - Prompt Engineering: Crafting effective inputs to steer generative AI toward desired responses.

Q - Q-Learning: A reinforcement learning algorithm that helps agents learn the best actions to take.

R - Reinforcement Learning: A type of learning where AI agents learn by interacting with environments and receiving rewards.

S - Supervised Learning: Machine learning where models are trained on labeled datasets.

T - Transformer: A neural network architecture powering models like GPT and BERT, crucial in NLP tasks.

U - Unsupervised Learning: A method where AI finds patterns in data without labeled outcomes.

V - Vision (Computer Vision): The field of AI that enables machines to interpret and process visual data.

W - Weak AI: AI designed to handle narrow tasks without consciousness or general intelligence.

X - Explainable AI (XAI): Techniques that make AI decision-making transparent and understandable to humans.

Y - YOLO (You Only Look Once): A popular real-time object detection algorithm in computer vision.

Z - Zero-shot Learning: The ability of AI to perform tasks it hasnโ€™t been explicitly trained on.

Credits: https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
โค10
Various types of test used in statistics for data science

T-test: used to test whether the means of two groups are significantly different from each other.

ANOVA: used to test whether the means of three or more groups are significantly different from each other.

Chi-squared test: used to test whether two categorical variables are independent or associated with each other.

Pearson correlation test: used to test whether there is a significant linear relationship between two continuous variables.

Wilcoxon signed-rank test: used to test whether the median of two related samples is significantly different from each other.

Mann-Whitney U test: used to test whether the median of two independent samples is significantly different from each other.

Kruskal-Wallis test: used to test whether the medians of three or more independent samples are significantly different from each other.

Friedman test: used to test whether the medians of three or more related samples are significantly different from each other.
โค8๐Ÿ”ฅ2
Seaborn Cheatsheet โœ…
โค8๐Ÿ”ฅ1
Essential Topics to Master Data Analytics Interviews: ๐Ÿš€

SQL:
1. Foundations
- SELECT statements with WHERE, ORDER BY, GROUP BY, HAVING
- Basic JOINS (INNER, LEFT, RIGHT, FULL)
- Navigate through simple databases and tables

2. Intermediate SQL
- Utilize Aggregate functions (COUNT, SUM, AVG, MAX, MIN)
- Embrace Subqueries and nested queries
- Master Common Table Expressions (WITH clause)
- Implement CASE statements for logical queries

3. Advanced SQL
- Explore Advanced JOIN techniques (self-join, non-equi join)
- Dive into Window functions (OVER, PARTITION BY, ROW_NUMBER, RANK, DENSE_RANK, lead, lag)
- Optimize queries with indexing
- Execute Data manipulation (INSERT, UPDATE, DELETE)

Python:
1. Python Basics
- Grasp Syntax, variables, and data types
- Command Control structures (if-else, for and while loops)
- Understand Basic data structures (lists, dictionaries, sets, tuples)
- Master Functions, lambda functions, and error handling (try-except)
- Explore Modules and packages

2. Pandas & Numpy
- Create and manipulate DataFrames and Series
- Perfect Indexing, selecting, and filtering data
- Handle missing data (fillna, dropna)
- Aggregate data with groupby, summarizing data
- Merge, join, and concatenate datasets

3. Data Visualization with Python
- Plot with Matplotlib (line plots, bar plots, histograms)
- Visualize with Seaborn (scatter plots, box plots, pair plots)
- Customize plots (sizes, labels, legends, color palettes)
- Introduction to interactive visualizations (e.g., Plotly)

Excel:
1. Excel Essentials
- Conduct Cell operations, basic formulas (SUMIFS, COUNTIFS, AVERAGEIFS, IF, AND, OR, NOT & Nested Functions etc.)
- Dive into charts and basic data visualization
- Sort and filter data, use Conditional formatting

2. Intermediate Excel
- Master Advanced formulas (V/XLOOKUP, INDEX-MATCH, nested IF)
- Leverage PivotTables and PivotCharts for summarizing data
- Utilize data validation tools
- Employ What-if analysis tools (Data Tables, Goal Seek)

3. Advanced Excel
- Harness Array formulas and advanced functions
- Dive into Data Model & Power Pivot
- Explore Advanced Filter, Slicers, and Timelines in Pivot Tables
- Create dynamic charts and interactive dashboards

Power BI:
1. Data Modeling in Power BI
- Import data from various sources
- Establish and manage relationships between datasets
- Grasp Data modeling basics (star schema, snowflake schema)

2. Data Transformation in Power BI
- Use Power Query for data cleaning and transformation
- Apply advanced data shaping techniques
- Create Calculated columns and measures using DAX

3. Data Visualization and Reporting in Power BI
- Craft interactive reports and dashboards
- Utilize Visualizations (bar, line, pie charts, maps)
- Publish and share reports, schedule data refreshes

Statistics Fundamentals:
- Mean, Median, Mode
- Standard Deviation, Variance
- Probability Distributions, Hypothesis Testing
- P-values, Confidence Intervals
- Correlation, Simple Linear Regression
- Normal Distribution, Binomial Distribution, Poisson Distribution.

Show some โค๏ธ if you're ready to elevate your data analytics journey! ๐Ÿ“Š

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
โค10๐Ÿ‘2