Data Science & Machine Learning
73.1K subscribers
779 photos
2 videos
68 files
686 links
Join this channel to learn data science, artificial intelligence and machine learning with funny quizzes, interesting projects and amazing resources for free

For collaborations: @love_data
Download Telegram
If you want to Excel in Data Science and become an expert, master these essential concepts:

Core Data Science Skills:

• Python for Data Science – Pandas, NumPy, Matplotlib, Seaborn
• SQL for Data Extraction – SELECT, JOIN, GROUP BY, CTEs, Window Functions
• Data Cleaning & Preprocessing – Handling missing data, outliers, duplicates
• Exploratory Data Analysis (EDA) – Visualizing data trends

Machine Learning (ML):

• Supervised Learning – Linear Regression, Decision Trees, Random Forest
• Unsupervised Learning – Clustering, PCA, Anomaly Detection
• Model Evaluation – Cross-validation, Confusion Matrix, ROC-AUC
• Hyperparameter Tuning – Grid Search, Random Search

Deep Learning (DL):

• Neural Networks – TensorFlow, PyTorch, Keras
• CNNs & RNNs – Image & sequential data processing
• Transformers & LLMs – GPT, BERT, Stable Diffusion

Big Data & Cloud Computing:

• Hadoop & Spark – Handling large datasets
• AWS, GCP, Azure – Cloud-based data science solutions
• MLOps – Deploy models using Flask, FastAPI, Docker

Statistics & Mathematics for Data Science:

• Probability & Hypothesis Testing – P-values, T-tests, Chi-square
• Linear Algebra & Calculus – Matrices, Vectors, Derivatives
• Time Series Analysis – ARIMA, Prophet, LSTMs

Real-World Applications:

• Recommendation Systems – Personalized AI suggestions
• NLP (Natural Language Processing) – Sentiment Analysis, Chatbots
• AI-Powered Business Insights – Data-driven decision-making

Like this post if you need a complete tutorial on essential data science topics! 👍❤️

Join our WhatsApp channel: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
5👍1
Please go through this top 5 SQL projects with Datasets that you can practice and can add in your resume

🚀1. Web Analytics:
(
https://www.kaggle.com/zynicide/wine-reviews)

🚀2. Healthcare Data Analysis:
(
https://www.kaggle.com/cdc/mortality)

📌3. E-commerce Analysis:
(
https://www.kaggle.com/olistbr/brazilian-ecommerce)

🚀4. Inventory Management:
(
https://www.kaggle.com/code/govindji/inventory-management)


🚀 5. Analysis of Sales Data:
(
https://www.kaggle.com/kyanyoga/sample-sales-data)

Small suggestion from my side for non tech students: kindly pick those datasets which you like the subject in general, that way you will be more excited to practice it, instead of just doing it for the sake of resume, you will learn SQL more passionately, since it’s a programming language try to make it more exciting for yourself.

Hope this piece of information helps you

Join for more ->
https://t.iss.one/addlist/4q2PYC0pH_VjZDk5

ENJOY LEARNING 👍👍
5👍1
Frequently asked Python practice questions and answers in Data Analytics Interview:

1.Temperature Conversion: Write a program that converts a given temperature from Celsius to Fahrenheit or from Fahrenheit to Celsius based on user input.
temp = float(input('Enter the temperature: '))
unit = input('Enter the unit (C/F): ').upper()
if unit == 'C':
converted = (temp * 9/5) + 32
print(f'Temperature in Fahrenheit: {converted}')
elif unit == 'F':
converted = (temp - 32) * 5/9
print(f'Temperature in Celsius: {converted}')
else:
print('Invalid unit')

2.Multiplication Table: Write a program that prints the multiplication table of a given number using a while loop.
num = int(input('Enter a number: '))
i = 1
while i <= 10:
print(f'{num} x {i} = {num * i}')
i += 1

3.Greatest of Three Numbers: Write a program that takes three numbers as input and prints the greatest of the three.
num1 = float(input('Enter first number: '))
num2 = float(input('Enter second number: '))
num3 = float(input('Enter third number: '))
if num1 >= num2 and num1 >= num3:
print(f'The greatest number is {num1}')
elif num2 >= num1 and num2 >= num3:
print(f'The greatest number is {num2}')
else:
print(f'The greatest number is {num3}')

4.Sum of Even Numbers: Write a program that calculates the sum of all even numbers between 1 and a given number using a while loop.
num = int(input('Enter a number: '))
total = 0
i = 2
while i <= num:
total += i
i += 2
print(f'The sum of even numbers up to {num} is {total}')

5.Check Armstrong Number: Write a program that checks if a given number is an Armstrong number.
num = int(input('Enter a number: '))
sum_of_digits = 0
original_num = num
while num > 0:
digit = num % 10
sum_of_digits += digit ** 3
num //= 10
if sum_of_digits == original_num:
print(f'{original_num} is an Armstrong number')
else:
print(f'{original_num} is not an Armstrong number')

6.Reverse a Number: Write a program that reverses the digits of a given number using a while loop.
num = int(input('Enter a number: '))
reversed_num = 0
while num > 0:
digit = num % 10
reversed_num = reversed_num * 10 + digit
num //= 10
print(f'The reversed number is {reversed_num}')

7.Count Vowels and Consonants: Write a program that counts the number of vowels and consonants in a given string.
string = input('Enter a string: ').lower()
vowels = 'aeiou'
vowel_count = 0
consonant_count = 0
for char in string:
if char.isalpha():
if char in vowels:
vowel_count += 1
else:
consonant_count += 1
print(f'Number of vowels: {vowel_count}')
print(f'Number of consonants: {consonant_count}')

Python Interview Q&A: https://topmate.io/coding/898340

Like for more ❤️

ENJOY LEARNING 👍👍
7👍4
7 Most Popular Programming Languages in 2025

1. Python

The Jack of All Trades

Why it's loved: Simple syntax, huge community, beginner-friendly.

Used for: Data Science, Machine Learning, Web Development, Automation.

Who uses it: Data analysts, backend developers, researchers, even kids learning to code.


2. JavaScript

The Language of the Web

Why it's everywhere: Runs in every browser, now also on servers (Node.js).

Used for: Frontend & backend web apps, interactive UI, full-stack apps.

Who uses it: Web developers, app developers, UI/UX enthusiasts.


3. Java

The Enterprise Backbone

Why it stands strong: Portable, secure, scalable — runs on everything from desktops to Android devices.

Used for: Android apps, enterprise software, backend systems.

Who uses it: Large corporations, Android developers, system architects.


4. C/C++

The Power Players

Why they matter: Super fast, close to the hardware, great for performance-critical apps.

Used for: Game engines, operating systems, embedded systems.

Who uses it: System programmers, game developers, performance-focused engineers.


5. C#

Microsoft’s Darling

Why it's growing: Built into the .NET ecosystem, great for Windows apps and games.

Used for: Desktop applications, Unity game development, enterprise tools.

Who uses it: Game developers, enterprise app developers, Windows lovers.


6. SQL

The Language of Data

Why it’s essential: Every application needs a database — SQL helps you talk to it.

Used for: Querying databases, reporting, analytics.

Who uses it: Data analysts, backend devs, business intelligence professionals.


7. Go (Golang)

The Modern Minimalist

Why it’s rising: Simple, fast, and built for scale — ideal for cloud-native apps.

Used for: Web servers, microservices, distributed systems.

Who uses it: Backend engineers, DevOps, cloud developers.

Free Coding Resources: https://whatsapp.com/channel/0029VahiFZQ4o7qN54LTzB17
10
Let's now understand Data Science Roadmap in detail:

1. Math & Statistics (Foundation Layer)
This is the backbone of data science. Strong intuition here helps with algorithms, ML, and interpreting results.

Key Topics:

Linear Algebra: Vectors, matrices, matrix operations

Calculus: Derivatives, gradients (for optimization)

Probability: Bayes theorem, probability distributions

Statistics: Mean, median, mode, standard deviation, hypothesis testing, confidence intervals

Inferential Statistics: p-values, t-tests, ANOVA


Resources:

Khan Academy (Math & Stats)

"Think Stats" book

YouTube (StatQuest with Josh Starmer)


2. Python or R (Pick One for Analysis)
These are your main tools. Python is more popular in industry; R is strong in academia.

For Python Learn:

Variables, loops, functions, list comprehension

Libraries: NumPy, Pandas, Matplotlib, Seaborn


For R Learn:

Vectors, data frames, ggplot2, dplyr, tidyr


Goal: Be comfortable working with data, writing clean code, and doing basic analysis.

3. Data Wrangling (Data Cleaning & Manipulation)
Real-world data is messy. Cleaning and structuring it is essential.

What to Learn:

Handling missing values

Removing duplicates

String operations

Date and time operations

Merging and joining datasets

Reshaping data (pivot, melt)


Tools:

Python: Pandas

R: dplyr, tidyr


Mini Projects: Clean a messy CSV or scrape and structure web data.

4. Data Visualization (Telling the Story)
This is about showing insights visually for business users or stakeholders.

In Python:

Matplotlib, Seaborn, Plotly


In R:

ggplot2, plotly


Learn To:

Create bar plots, histograms, scatter plots, box plots

Design dashboards (can explore Power BI or Tableau)

Use color and layout to enhance clarity


5. Machine Learning (ML)
Now the real fun begins! Automate predictions and classifications.

Topics:

Supervised Learning: Linear Regression, Logistic Regression, Decision Trees, Random Forests, SVM

Unsupervised Learning: Clustering (K-means), PCA

Model Evaluation: Accuracy, Precision, Recall, F1-score, ROC-AUC

Cross-validation, Hyperparameter tuning


Libraries:

scikit-learn, xgboost


Practice On:

Kaggle datasets, Titanic survival, House price prediction


6. Deep Learning & NLP (Advanced Level)
Push your skills to the next level. Essential for AI, image, and text-based tasks.

Deep Learning:

Neural Networks, CNNs, RNNs

Frameworks: TensorFlow, Keras, PyTorch


NLP (Natural Language Processing):

Text preprocessing (tokenization, stemming, lemmatization)

TF-IDF, Word Embeddings

Sentiment Analysis, Topic Modeling

Transformers (BERT, GPT, etc.)


Projects:

Sentiment analysis from Twitter data

Image classifier using CNN


7. Projects (Build Your Portfolio)
Apply everything you've learned to real-world datasets.

Types of Projects:

EDA + ML project on a domain (finance, health, sports)

End-to-end ML pipeline

Deep Learning project (image or text)

Build a dashboard with your insights

Collaborate on GitHub, contribute to open-source


Tips:

Host projects on GitHub

Write about them on Medium, LinkedIn, or personal blog


8. Apply for Jobs (You're Ready!)
Now, you're prepared to apply with confidence.

Steps:

Prepare your resume tailored for DS roles

Sharpen interview skills (SQL, Python, case studies)

Practice on LeetCode, InterviewBit

Network on LinkedIn, attend meetups

Apply for internships or entry-level DS/DA roles


Keep learning and adapting. Data Science is vast and fast-moving—stay updated via newsletters, GitHub, and communities like Kaggle or Reddit.

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Credits: https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y

Like if you need similar content 😄👍

Hope this helps you 😊
13👍2
Machine Learning isn't easy!

It’s the field that powers intelligent systems and predictive models.

To truly master Machine Learning, focus on these key areas:

0. Understanding the Basics of Algorithms: Learn about linear regression, decision trees, and k-nearest neighbors to build a solid foundation.


1. Mastering Data Preprocessing: Clean, normalize, and handle missing data to prepare your datasets for training.


2. Learning Supervised Learning Techniques: Dive deep into classification and regression models, such as SVMs, random forests, and logistic regression.


3. Exploring Unsupervised Learning: Understand clustering techniques (K-means, hierarchical) and dimensionality reduction (PCA, t-SNE).


4. Mastering Model Evaluation: Use techniques like cross-validation, confusion matrices, ROC curves, and F1 scores to assess model performance.


5. Understanding Overfitting and Underfitting: Learn how to balance bias and variance to build robust models.


6. Optimizing Hyperparameters: Use grid search, random search, and Bayesian optimization to fine-tune your models for better performance.


7. Diving into Neural Networks and Deep Learning: Explore deep learning with frameworks like TensorFlow and PyTorch to create advanced models like CNNs and RNNs.


8. Working with Natural Language Processing (NLP): Master text data, sentiment analysis, and techniques like word embeddings and transformers.


9. Staying Updated with New Techniques: Machine learning evolves rapidly—keep up with emerging models, techniques, and research.



Machine learning is about learning from data and improving models over time.

💡 Embrace the challenges of building algorithms, experimenting with data, and solving complex problems.

With time, practice, and persistence, you’ll develop the expertise to create systems that learn, predict, and adapt.

Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Credits: https://t.iss.one/datasciencefun

Like if you need similar content 😄👍

Hope this helps you 😊

#datascience
4👍4
If you want to get a job as a machine learning engineer, don’t start by diving into the hottest libraries like PyTorch,TensorFlow, Langchain, etc.

Yes, you might hear a lot about them or some other trending technology of the year...but guess what!

Technologies evolve rapidly, especially in the age of AI, but core concepts are always seen as more valuable than expertise in any particular tool. Stop trying to perform a brain surgery without knowing anything about human anatomy.

Instead, here are basic skills that will get you further than mastering any framework:


𝐌𝐚𝐭𝐡𝐞𝐦𝐚𝐭𝐢𝐜𝐬 𝐚𝐧𝐝 𝐒𝐭𝐚𝐭𝐢𝐬𝐭𝐢𝐜𝐬 - My first exposure to probability and statistics was in college, and it felt abstract at the time, but these concepts are the backbone of ML.

You can start here: Khan Academy Statistics and Probability - https://www.khanacademy.org/math/statistics-probability

𝐋𝐢𝐧𝐞𝐚𝐫 𝐀𝐥𝐠𝐞𝐛𝐫𝐚 𝐚𝐧𝐝 𝐂𝐚𝐥𝐜𝐮𝐥𝐮𝐬 - Concepts like matrices, vectors, eigenvalues, and derivatives are fundamental to understanding how ml algorithms work. These are used in everything from simple regression to deep learning.

𝐏𝐫𝐨𝐠𝐫𝐚𝐦𝐦𝐢𝐧𝐠 - Should you learn Python, Rust, R, Julia, JavaScript, etc.? The best advice is to pick the language that is most frequently used for the type of work you want to do. I started with Python due to its simplicity and extensive library support, and it remains my go-to language for machine learning tasks.

You can start here: Automate the Boring Stuff with Python - https://automatetheboringstuff.com/

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝐔𝐧𝐝𝐞𝐫𝐬𝐭𝐚𝐧𝐝𝐢𝐧𝐠 - Understand the fundamental algorithms before jumping to deep learning. This includes linear regression, decision trees, SVMs, and clustering algorithms.

𝐃𝐞𝐩𝐥𝐨𝐲𝐦𝐞𝐧𝐭 𝐚𝐧𝐝 𝐏𝐫𝐨𝐝𝐮𝐜𝐭𝐢𝐨𝐧:
Knowing how to take a model from development to production is invaluable. This includes understanding APIs, model optimization, and monitoring. Tools like Docker and Flask are often used in this process.

𝐂𝐥𝐨𝐮𝐝 𝐂𝐨𝐦𝐩𝐮𝐭𝐢𝐧𝐠 𝐚𝐧𝐝 𝐁𝐢𝐠 𝐃𝐚𝐭𝐚:
Familiarity with cloud platforms (AWS, Google Cloud, Azure) and big data tools (Spark) is increasingly important as datasets grow larger. These skills help you manage and process large-scale data efficiently.

You can start here: Google Cloud Machine Learning - https://cloud.google.com/learn/training/machinelearning-ai

I love frameworks and libraries, and they can make anyone's job easier.

But the more solid your foundation, the easier it will be to pick up any new technologies and actually validate whether they solve your problems.

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

All the best 👍👍
5👍1
SQL CHEAT SHEET👩‍💻

Here is a quick cheat sheet of some of the most essential SQL commands:

SELECT - Retrieves data from a database

UPDATE - Updates existing data in a database

DELETE - Removes data from a database

INSERT - Adds data to a database

CREATE - Creates an object such as a database or table

ALTER - Modifies an existing object in a database

DROP -Deletes an entire table or database

ORDER BY - Sorts the selected data in an ascending or descending order

WHERE – Condition used to filter a specific set of records from the database

GROUP BY - Groups a set of data by a common parameter

HAVING - Allows the use of aggregate functions within the query

JOIN - Joins two or more tables together to retrieve data

INDEX - Creates an index on a table, to speed up search times.
2👍2
SQL is one of the core languages used in data science, powering everything from quick data retrieval to complex deep dive analysis. Whether you're a seasoned data scientist or just starting out, mastering SQL can boost your ability to analyze data, create robust pipelines, and deliver actionable insights.

Let’s dive into a comprehensive guide on SQL for Data Science!

I have broken it down into three key sections to help you:

𝟭. 𝗦𝗤𝗟 𝗖𝗼𝗻𝗰𝗲𝗽𝘁𝘀:
Get a handle on the essentials -> SELECT statements, filtering, aggregations, joins, window functions, and more.

𝟮. 𝗦𝗤𝗟 𝗶𝗻 𝗗𝗮𝘆-𝘁𝗼-𝗗𝗮𝘆 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲:
See how SQL fits into the daily data science workflow. From quick data queries and deep-dive analysis to building pipelines and dashboards, SQL is really useful for data scientists, especially for product data scientists.

𝟯. 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲 𝗦𝗤𝗟 𝗜𝗻𝘁𝗲𝗿𝘃𝗶𝗲𝘄𝘀:
Learn what interviewers look for in terms of technical skills, design and engineering expertise, communication abilities, and the importance of speed and accuracy.
6👍3
Here are some essential data science concepts from A to Z:

A - Algorithm: A set of rules or instructions used to solve a problem or perform a task in data science.

B - Big Data: Large and complex datasets that cannot be easily processed using traditional data processing applications.

C - Clustering: A technique used to group similar data points together based on certain characteristics.

D - Data Cleaning: The process of identifying and correcting errors or inconsistencies in a dataset.

E - Exploratory Data Analysis (EDA): The process of analyzing and visualizing data to understand its underlying patterns and relationships.

F - Feature Engineering: The process of creating new features or variables from existing data to improve model performance.

G - Gradient Descent: An optimization algorithm used to minimize the error of a model by adjusting its parameters.

H - Hypothesis Testing: A statistical technique used to test the validity of a hypothesis or claim based on sample data.

I - Imputation: The process of filling in missing values in a dataset using statistical methods.

J - Joint Probability: The probability of two or more events occurring together.

K - K-Means Clustering: A popular clustering algorithm that partitions data into K clusters based on similarity.

L - Linear Regression: A statistical method used to model the relationship between a dependent variable and one or more independent variables.

M - Machine Learning: A subset of artificial intelligence that uses algorithms to learn patterns and make predictions from data.

N - Normal Distribution: A symmetrical bell-shaped distribution that is commonly used in statistical analysis.

O - Outlier Detection: The process of identifying and removing data points that are significantly different from the rest of the dataset.

P - Precision and Recall: Evaluation metrics used to assess the performance of classification models.

Q - Quantitative Analysis: The process of analyzing numerical data to draw conclusions and make decisions.

R - Random Forest: An ensemble learning algorithm that builds multiple decision trees to improve prediction accuracy.

S - Support Vector Machine (SVM): A supervised learning algorithm used for classification and regression tasks.

T - Time Series Analysis: A statistical technique used to analyze and forecast time-dependent data.

U - Unsupervised Learning: A type of machine learning where the model learns patterns and relationships in data without labeled outputs.

V - Validation Set: A subset of data used to evaluate the performance of a model during training.

W - Web Scraping: The process of extracting data from websites for analysis and visualization.

X - XGBoost: An optimized gradient boosting algorithm that is widely used in machine learning competitions.

Y - Yield Curve Analysis: The study of the relationship between interest rates and the maturity of fixed-income securities.

Z - Z-Score: A standardized score that represents the number of standard deviations a data point is from the mean.

Credits: https://t.iss.one/free4unow_backup

Like if you need similar content 😄👍
7👍2
Advanced Skills to Elevate Your Data Analytics Career

1️⃣ SQL Optimization & Performance Tuning

🚀 Learn indexing, query optimization, and execution plans to handle large datasets efficiently.

2️⃣ Machine Learning Basics

🤖 Understand supervised and unsupervised learning, feature engineering, and model evaluation to enhance analytical capabilities.

3️⃣ Big Data Technologies

🏗️ Explore Spark, Hadoop, and cloud platforms like AWS, Azure, or Google Cloud for large-scale data processing.

4️⃣ Data Engineering Skills

⚙️ Learn ETL pipelines, data warehousing, and workflow automation to streamline data processing.

5️⃣ Advanced Python for Analytics

🐍 Master libraries like Scikit-Learn, TensorFlow, and Statsmodels for predictive analytics and automation.

6️⃣ A/B Testing & Experimentation

🎯 Design and analyze controlled experiments to drive data-driven decision-making.

7️⃣ Dashboard Design & UX

🎨 Build interactive dashboards with Power BI, Tableau, or Looker that enhance user experience.

8️⃣ Cloud Data Analytics

☁️ Work with cloud databases like BigQuery, Snowflake, and Redshift for scalable analytics.

9️⃣ Domain Expertise

💼 Gain industry-specific knowledge (e.g., finance, healthcare, e-commerce) to provide more relevant insights.

🔟 Soft Skills & Leadership

💡 Develop stakeholder management, storytelling, and mentorship skills to advance in your career.

Hope it helps :)

#dataanalytics
4👍1😁1
If you're serious about getting into Data Science with Python, follow this 5-step roadmap.

Each phase builds on the previous one, so don’t rush.

Take your time, build projects, and keep moving forward.

Step 1: Python Fundamentals
Before anything else, get your hands dirty with core Python.
This is the language that powers everything else.

What to learn:
type(), int(), float(), str(), list(), dict()
if, elif, else, for, while, range()
def, return, function arguments
List comprehensions: [x for x in list if condition]
– Mini Checkpoint:
Build a mini console-based data calculator (inputs, basic operations, conditionals, loops).

Step 2: Data Cleaning with Pandas
Pandas is the tool you'll use to clean, reshape, and explore data in real-world scenarios.

What to learn:
Cleaning: df.dropna(), df.fillna(), df.replace(), df.drop_duplicates()
Merging & reshaping: pd.merge(), df.pivot(), df.melt()
Grouping & aggregation: df.groupby(), df.agg()
– Mini Checkpoint:
Build a data cleaning script for a messy CSV file. Add comments to explain every step.

Step 3: Data Visualization with Matplotlib
Nobody wants raw tables.
Learn to tell stories through charts.

What to learn:
Basic charts: plt.plot(), plt.scatter()
Advanced plots: plt.hist(), plt.kde(), plt.boxplot()
Subplots & customizations: plt.subplots(), fig.add_subplot(), plt.title(), plt.legend(), plt.xlabel()
– Mini Checkpoint:
Create a dashboard-style notebook visualizing a dataset, include at least 4 types of plots.

Step 4: Exploratory Data Analysis (EDA)
This is where your analytical skills kick in.
You’ll draw insights, detect trends, and prepare for modeling.

What to learn:
Descriptive stats: df.mean(), df.median(), df.mode(), df.std(), df.var(), df.min(), df.max(), df.quantile()
Correlation analysis: df.corr(), plt.imshow(), scipy.stats.pearsonr()
— Mini Checkpoint:
Write an EDA report (Markdown or PDF) based on your findings from a public dataset.

Step 5: Intro to Machine Learning with Scikit-Learn
Now that your data skills are sharp, it's time to model and predict.

What to learn:
Training & evaluation: train_test_split(), .fit(), .predict(), cross_val_score()
Regression: LinearRegression(), mean_squared_error(), r2_score()
Classification: LogisticRegression(), accuracy_score(), confusion_matrix()
Clustering: KMeans(), silhouette_score()

– Final Checkpoint:

Build your first ML project end-to-end
Load data
Clean it
Visualize it
Run EDA
Train & test a model
Share the project with visuals and explanations on GitHub

Don’t just complete tutorialsm create things.

Explain your work.
Build your GitHub.
Write a blog.

That’s how you go from “learning” to “landing a job

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

All the best 👍👍
👍52
𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗥𝗼𝗮𝗱𝗺𝗮𝗽

𝟭. 𝗣𝗿𝗼𝗴𝗿𝗮𝗺𝗺𝗶𝗻𝗴 𝗟𝗮𝗻𝗴𝘂𝗮𝗴𝗲𝘀: Master Python, SQL, and R for data manipulation and analysis.

𝟮. 𝗗𝗮𝘁𝗮 𝗠𝗮𝗻𝗶𝗽𝘂𝗹𝗮𝘁𝗶𝗼𝗻 𝗮𝗻𝗱 𝗣𝗿𝗼𝗰𝗲𝘀𝘀𝗶𝗻𝗴: Use Excel, Pandas, and ETL tools like Alteryx and Talend for data processing.

𝟯. 𝗗𝗮𝘁𝗮 𝗩𝗶𝘀𝘂𝗮𝗹𝗶𝘇𝗮𝘁𝗶𝗼𝗻: Learn Tableau, Power BI, and Matplotlib/Seaborn for creating insightful visualizations.

𝟰. 𝗦𝘁𝗮𝘁𝗶𝘀𝘁𝗶𝗰𝘀 𝗮𝗻𝗱 𝗠𝗮𝘁𝗵𝗲𝗺𝗮𝘁𝗶𝗰𝘀: Understand Descriptive and Inferential Statistics, Probability, Regression, and Time Series Analysis.

𝟱. 𝗠𝗮𝗰𝗵𝗶𝗻𝗲 𝗟𝗲𝗮𝗿𝗻𝗶𝗻𝗴: Get proficient in Supervised and Unsupervised Learning, along with Time Series Forecasting.

𝟲. 𝗕𝗶𝗴 𝗗𝗮𝘁𝗮 𝗧𝗼𝗼𝗹𝘀: Utilize Google BigQuery, AWS Redshift, and NoSQL databases like MongoDB for large-scale data management.

𝟳. 𝗠𝗼𝗻𝗶𝘁𝗼𝗿𝗶𝗻𝗴 𝗮𝗻𝗱 𝗥𝗲𝗽𝗼𝗿𝘁𝗶𝗻𝗴: Implement Data Quality Monitoring (Great Expectations) and Performance Tracking (Prometheus, Grafana).

𝟴. 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗧𝗼𝗼𝗹𝘀: Work with Data Orchestration tools (Airflow, Prefect) and visualization tools like D3.js and Plotly.

𝟵. 𝗥𝗲𝘀𝗼𝘂𝗿𝗰𝗲 𝗠𝗮𝗻𝗮𝗴𝗲𝗿: Manage resources using Jupyter Notebooks and Power BI.

𝟭𝟬. 𝗗𝗮𝘁𝗮 𝗚𝗼𝘃𝗲𝗿𝗻𝗮𝗻𝗰𝗲 𝗮𝗻𝗱 𝗘𝘁𝗵𝗶𝗰𝘀: Ensure compliance with GDPR, Data Privacy, and Data Quality standards.

𝟭𝟭. 𝗖𝗹𝗼𝘂𝗱 𝗖𝗼𝗺𝗽𝘂𝘁𝗶𝗻𝗴: Leverage AWS, Google Cloud, and Azure for scalable data solutions.

𝟭𝟮. 𝗗𝗮𝘁𝗮 𝗪𝗿𝗮𝗻𝗴𝗹𝗶𝗻𝗴 𝗮𝗻𝗱 𝗖𝗹𝗲𝗮𝗻𝗶𝗻𝗴: Master data cleaning (OpenRefine, Trifacta) and transformation techniques.

Data Analytics Resources
👇👇
https://t.iss.one/sqlspecialist

Hope this helps you 😊
9
Artificial Intelligence (AI) is the simulation of human intelligence in machines that are designed to think, learn, and make decisions. From virtual assistants to self-driving cars, AI is transforming how we interact with technology.

Hers is the brief A-Z overview of the terms used in Artificial Intelligence World

A - Algorithm: A set of rules or instructions that an AI system follows to solve problems or make decisions.

B - Bias: Prejudice in AI systems due to skewed training data, leading to unfair outcomes.

C - Chatbot: AI software that can hold conversations with users via text or voice.

D - Deep Learning: A type of machine learning using layered neural networks to analyze data and make decisions.

E - Expert System: An AI that replicates the decision-making ability of a human expert in a specific domain.

F - Fine-Tuning: The process of refining a pre-trained model on a specific task or dataset.

G - Generative AI: AI that can create new content like text, images, audio, or code.

H - Heuristic: A rule-of-thumb or shortcut used by AI to make decisions efficiently.

I - Image Recognition: The ability of AI to detect and classify objects or features in an image.

J - Jupyter Notebook: A tool widely used in AI for interactive coding, data visualization, and documentation.

K - Knowledge Representation: How AI systems store, organize, and use information for reasoning.

L - LLM (Large Language Model): An AI trained on large text datasets to understand and generate human language (e.g., GPT-4).

M - Machine Learning: A branch of AI where systems learn from data instead of being explicitly programmed.

N - NLP (Natural Language Processing): AI's ability to understand, interpret, and generate human language.

O - Overfitting: When a model performs well on training data but poorly on unseen data due to memorizing instead of generalizing.

P - Prompt Engineering: Crafting effective inputs to steer generative AI toward desired responses.

Q - Q-Learning: A reinforcement learning algorithm that helps agents learn the best actions to take.

R - Reinforcement Learning: A type of learning where AI agents learn by interacting with environments and receiving rewards.

S - Supervised Learning: Machine learning where models are trained on labeled datasets.

T - Transformer: A neural network architecture powering models like GPT and BERT, crucial in NLP tasks.

U - Unsupervised Learning: A method where AI finds patterns in data without labeled outcomes.

V - Vision (Computer Vision): The field of AI that enables machines to interpret and process visual data.

W - Weak AI: AI designed to handle narrow tasks without consciousness or general intelligence.

X - Explainable AI (XAI): Techniques that make AI decision-making transparent and understandable to humans.

Y - YOLO (You Only Look Once): A popular real-time object detection algorithm in computer vision.

Z - Zero-shot Learning: The ability of AI to perform tasks it hasn’t been explicitly trained on.

Credits: https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
10
Various types of test used in statistics for data science

T-test: used to test whether the means of two groups are significantly different from each other.

ANOVA: used to test whether the means of three or more groups are significantly different from each other.

Chi-squared test: used to test whether two categorical variables are independent or associated with each other.

Pearson correlation test: used to test whether there is a significant linear relationship between two continuous variables.

Wilcoxon signed-rank test: used to test whether the median of two related samples is significantly different from each other.

Mann-Whitney U test: used to test whether the median of two independent samples is significantly different from each other.

Kruskal-Wallis test: used to test whether the medians of three or more independent samples are significantly different from each other.

Friedman test: used to test whether the medians of three or more related samples are significantly different from each other.
8🔥2
Seaborn Cheatsheet
8🔥1