๐ ๐๐จ๐ฉ ๐ ๐๐๐๐ก๐ข๐ง๐ ๐๐๐๐ซ๐ง๐ข๐ง๐ ๐๐ฅ๐ ๐จ๐ซ๐ข๐ญ๐ก๐ฆ๐ฌ ๐๐จ๐ฎ ๐๐ก๐จ๐ฎ๐ฅ๐ ๐๐ง๐จ๐ฐ! ๐ค
1๏ธโฃ Support Vector Machines (SVMs) โ Best for classification tasks and separating data with a clear margin.
2๏ธโฃ Information Retrieval โ Crucial for search engines, recommendation systems, and organizing large datasets.
3๏ธโฃ K-Nearest Neighbors (KNN) โ Simple yet effective for classification and regression based on proximity.
4๏ธโฃ Learning to Rank (LTR) โ Optimizes search result relevance (used in Google, Bing, etc.).
5๏ธโฃ Decision Trees โ Intuitive, visual models for decision-making tasks.
6๏ธโฃ K-Means Clustering โ Unsupervised algorithm for grouping similar data points.
7๏ธโฃ Convolutional Neural Networks (CNNs) โ Specialized for image and video data analysis.
8๏ธโฃ Naive Bayes โ Probabilistic model great for text classification (like spam detection).
9๏ธโฃ Principal Component Analysis (PCA) โ Dimensionality reduction to simplify complex datasets.
React โค๏ธ for more
Join our WhatsApp channel: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
1๏ธโฃ Support Vector Machines (SVMs) โ Best for classification tasks and separating data with a clear margin.
2๏ธโฃ Information Retrieval โ Crucial for search engines, recommendation systems, and organizing large datasets.
3๏ธโฃ K-Nearest Neighbors (KNN) โ Simple yet effective for classification and regression based on proximity.
4๏ธโฃ Learning to Rank (LTR) โ Optimizes search result relevance (used in Google, Bing, etc.).
5๏ธโฃ Decision Trees โ Intuitive, visual models for decision-making tasks.
6๏ธโฃ K-Means Clustering โ Unsupervised algorithm for grouping similar data points.
7๏ธโฃ Convolutional Neural Networks (CNNs) โ Specialized for image and video data analysis.
8๏ธโฃ Naive Bayes โ Probabilistic model great for text classification (like spam detection).
9๏ธโฃ Principal Component Analysis (PCA) โ Dimensionality reduction to simplify complex datasets.
React โค๏ธ for more
Join our WhatsApp channel: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
โค5๐4
Importance of AI in Data Analytics
AI is transforming the way data is analyzed and insights are generated. Here's how AI adds value in data analytics:
1. Automated Data Cleaning
AI helps in detecting anomalies, missing values, and outliers automatically, improving data quality and saving analysts hours of manual work.
2. Faster & Smarter Decision Making
AI models can process massive datasets in seconds and suggest actionable insights, enabling real-time decision-making.
3. Predictive Analytics
AI enables forecasting future trends and behaviors using machine learning models (e.g., sales predictions, churn forecasting).
4. Natural Language Processing (NLP)
AI can analyze unstructured data like reviews, feedback, or comments using sentiment analysis, keyword extraction, and topic modeling.
5. Pattern Recognition
AI uncovers hidden patterns, correlations, and clusters in data that traditional analysis may miss.
6. Personalization & Recommendation
AI algorithms power recommendation systems (like on Netflix, Amazon) that personalize user experiences based on behavioral data.
7. Data Visualization Enhancement
AI auto-generates dashboards, chooses best chart types, and highlights key anomalies or insights without manual intervention.
8. Fraud Detection & Risk Analysis
AI models detect fraud and mitigate risks in real-time using anomaly detection and classification techniques.
9. Chatbots & Virtual Analysts
AI-powered tools like ChatGPT allow users to interact with data using natural language, removing the need for technical skills.
10. Operational Efficiency
AI automates repetitive tasks like report generation, data transformation, and alertsโfreeing analysts to focus on strategy.
Share with credits: https://t.iss.one/sqlspecialist
Hope it helps :)
#dataanalytics
AI is transforming the way data is analyzed and insights are generated. Here's how AI adds value in data analytics:
1. Automated Data Cleaning
AI helps in detecting anomalies, missing values, and outliers automatically, improving data quality and saving analysts hours of manual work.
2. Faster & Smarter Decision Making
AI models can process massive datasets in seconds and suggest actionable insights, enabling real-time decision-making.
3. Predictive Analytics
AI enables forecasting future trends and behaviors using machine learning models (e.g., sales predictions, churn forecasting).
4. Natural Language Processing (NLP)
AI can analyze unstructured data like reviews, feedback, or comments using sentiment analysis, keyword extraction, and topic modeling.
5. Pattern Recognition
AI uncovers hidden patterns, correlations, and clusters in data that traditional analysis may miss.
6. Personalization & Recommendation
AI algorithms power recommendation systems (like on Netflix, Amazon) that personalize user experiences based on behavioral data.
7. Data Visualization Enhancement
AI auto-generates dashboards, chooses best chart types, and highlights key anomalies or insights without manual intervention.
8. Fraud Detection & Risk Analysis
AI models detect fraud and mitigate risks in real-time using anomaly detection and classification techniques.
9. Chatbots & Virtual Analysts
AI-powered tools like ChatGPT allow users to interact with data using natural language, removing the need for technical skills.
10. Operational Efficiency
AI automates repetitive tasks like report generation, data transformation, and alertsโfreeing analysts to focus on strategy.
Share with credits: https://t.iss.one/sqlspecialist
Hope it helps :)
#dataanalytics
โค4๐4
Python libraries for data science and Machine Learning ๐๐
1. NumPy: NumPy is a fundamental package for scientific computing in Python. It provides support for large multidimensional arrays and matrices, along with a collection of mathematical functions to operate on these arrays.
2. Pandas: Pandas is a powerful data manipulation and analysis library that provides data structures like DataFrames and Series, making it easy to work with structured data.
3. Matplotlib: Matplotlib is a plotting library that enables the creation of various types of visualizations, such as line plots, bar charts, histograms, scatter plots, etc., to explore and communicate data effectively.
4. Scikit-learn: Scikit-learn is a machine learning library that offers a wide range of algorithms for classification, regression, clustering, dimensionality reduction, and more. It also provides tools for model selection and evaluation.
5. TensorFlow: TensorFlow is an open-source machine learning framework developed by Google that is widely used for building deep learning models. It provides a comprehensive ecosystem of tools and libraries for developing and deploying machine learning applications.
6. Keras: Keras is a high-level neural networks API that runs on top of TensorFlow, Theano, or Microsoft Cognitive Toolkit. It simplifies the process of building and training deep learning models by providing a user-friendly interface.
7. SciPy: SciPy is a scientific computing library that builds on top of NumPy and provides additional functionality for optimization, integration, interpolation, linear algebra, signal processing, and more.
8. Seaborn: Seaborn is a data visualization library based on Matplotlib that provides a higher-level interface for creating attractive and informative statistical graphics.
Channel credits: https://t.iss.one/datasciencefun
ENJOY LEARNING ๐๐
1. NumPy: NumPy is a fundamental package for scientific computing in Python. It provides support for large multidimensional arrays and matrices, along with a collection of mathematical functions to operate on these arrays.
2. Pandas: Pandas is a powerful data manipulation and analysis library that provides data structures like DataFrames and Series, making it easy to work with structured data.
3. Matplotlib: Matplotlib is a plotting library that enables the creation of various types of visualizations, such as line plots, bar charts, histograms, scatter plots, etc., to explore and communicate data effectively.
4. Scikit-learn: Scikit-learn is a machine learning library that offers a wide range of algorithms for classification, regression, clustering, dimensionality reduction, and more. It also provides tools for model selection and evaluation.
5. TensorFlow: TensorFlow is an open-source machine learning framework developed by Google that is widely used for building deep learning models. It provides a comprehensive ecosystem of tools and libraries for developing and deploying machine learning applications.
6. Keras: Keras is a high-level neural networks API that runs on top of TensorFlow, Theano, or Microsoft Cognitive Toolkit. It simplifies the process of building and training deep learning models by providing a user-friendly interface.
7. SciPy: SciPy is a scientific computing library that builds on top of NumPy and provides additional functionality for optimization, integration, interpolation, linear algebra, signal processing, and more.
8. Seaborn: Seaborn is a data visualization library based on Matplotlib that provides a higher-level interface for creating attractive and informative statistical graphics.
Channel credits: https://t.iss.one/datasciencefun
ENJOY LEARNING ๐๐
๐4๐2
If you want to get a job as a machine learning engineer, donโt start by diving into the hottest libraries like PyTorch,TensorFlow, Langchain, etc.
Yes, you might hear a lot about them or some other trending technology of the year...but guess what!
Technologies evolve rapidly, especially in the age of AI, but core concepts are always seen as more valuable than expertise in any particular tool. Stop trying to perform a brain surgery without knowing anything about human anatomy.
Instead, here are basic skills that will get you further than mastering any framework:
๐๐๐ญ๐ก๐๐ฆ๐๐ญ๐ข๐๐ฌ ๐๐ง๐ ๐๐ญ๐๐ญ๐ข๐ฌ๐ญ๐ข๐๐ฌ - My first exposure to probability and statistics was in college, and it felt abstract at the time, but these concepts are the backbone of ML.
You can start here: Khan Academy Statistics and Probability - https://www.khanacademy.org/math/statistics-probability
๐๐ข๐ง๐๐๐ซ ๐๐ฅ๐ ๐๐๐ซ๐ ๐๐ง๐ ๐๐๐ฅ๐๐ฎ๐ฅ๐ฎ๐ฌ - Concepts like matrices, vectors, eigenvalues, and derivatives are fundamental to understanding how ml algorithms work. These are used in everything from simple regression to deep learning.
๐๐ซ๐จ๐ ๐ซ๐๐ฆ๐ฆ๐ข๐ง๐ - Should you learn Python, Rust, R, Julia, JavaScript, etc.? The best advice is to pick the language that is most frequently used for the type of work you want to do. I started with Python due to its simplicity and extensive library support, and it remains my go-to language for machine learning tasks.
You can start here: Automate the Boring Stuff with Python - https://automatetheboringstuff.com/
๐๐ฅ๐ ๐จ๐ซ๐ข๐ญ๐ก๐ฆ ๐๐ง๐๐๐ซ๐ฌ๐ญ๐๐ง๐๐ข๐ง๐ - Understand the fundamental algorithms before jumping to deep learning. This includes linear regression, decision trees, SVMs, and clustering algorithms.
๐๐๐ฉ๐ฅ๐จ๐ฒ๐ฆ๐๐ง๐ญ ๐๐ง๐ ๐๐ซ๐จ๐๐ฎ๐๐ญ๐ข๐จ๐ง:
Knowing how to take a model from development to production is invaluable. This includes understanding APIs, model optimization, and monitoring. Tools like Docker and Flask are often used in this process.
๐๐ฅ๐จ๐ฎ๐ ๐๐จ๐ฆ๐ฉ๐ฎ๐ญ๐ข๐ง๐ ๐๐ง๐ ๐๐ข๐ ๐๐๐ญ๐:
Familiarity with cloud platforms (AWS, Google Cloud, Azure) and big data tools (Spark) is increasingly important as datasets grow larger. These skills help you manage and process large-scale data efficiently.
You can start here: Google Cloud Machine Learning - https://cloud.google.com/learn/training/machinelearning-ai
I love frameworks and libraries, and they can make anyone's job easier.
But the more solid your foundation, the easier it will be to pick up any new technologies and actually validate whether they solve your problems.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
All the best ๐๐
Yes, you might hear a lot about them or some other trending technology of the year...but guess what!
Technologies evolve rapidly, especially in the age of AI, but core concepts are always seen as more valuable than expertise in any particular tool. Stop trying to perform a brain surgery without knowing anything about human anatomy.
Instead, here are basic skills that will get you further than mastering any framework:
๐๐๐ญ๐ก๐๐ฆ๐๐ญ๐ข๐๐ฌ ๐๐ง๐ ๐๐ญ๐๐ญ๐ข๐ฌ๐ญ๐ข๐๐ฌ - My first exposure to probability and statistics was in college, and it felt abstract at the time, but these concepts are the backbone of ML.
You can start here: Khan Academy Statistics and Probability - https://www.khanacademy.org/math/statistics-probability
๐๐ข๐ง๐๐๐ซ ๐๐ฅ๐ ๐๐๐ซ๐ ๐๐ง๐ ๐๐๐ฅ๐๐ฎ๐ฅ๐ฎ๐ฌ - Concepts like matrices, vectors, eigenvalues, and derivatives are fundamental to understanding how ml algorithms work. These are used in everything from simple regression to deep learning.
๐๐ซ๐จ๐ ๐ซ๐๐ฆ๐ฆ๐ข๐ง๐ - Should you learn Python, Rust, R, Julia, JavaScript, etc.? The best advice is to pick the language that is most frequently used for the type of work you want to do. I started with Python due to its simplicity and extensive library support, and it remains my go-to language for machine learning tasks.
You can start here: Automate the Boring Stuff with Python - https://automatetheboringstuff.com/
๐๐ฅ๐ ๐จ๐ซ๐ข๐ญ๐ก๐ฆ ๐๐ง๐๐๐ซ๐ฌ๐ญ๐๐ง๐๐ข๐ง๐ - Understand the fundamental algorithms before jumping to deep learning. This includes linear regression, decision trees, SVMs, and clustering algorithms.
๐๐๐ฉ๐ฅ๐จ๐ฒ๐ฆ๐๐ง๐ญ ๐๐ง๐ ๐๐ซ๐จ๐๐ฎ๐๐ญ๐ข๐จ๐ง:
Knowing how to take a model from development to production is invaluable. This includes understanding APIs, model optimization, and monitoring. Tools like Docker and Flask are often used in this process.
๐๐ฅ๐จ๐ฎ๐ ๐๐จ๐ฆ๐ฉ๐ฎ๐ญ๐ข๐ง๐ ๐๐ง๐ ๐๐ข๐ ๐๐๐ญ๐:
Familiarity with cloud platforms (AWS, Google Cloud, Azure) and big data tools (Spark) is increasingly important as datasets grow larger. These skills help you manage and process large-scale data efficiently.
You can start here: Google Cloud Machine Learning - https://cloud.google.com/learn/training/machinelearning-ai
I love frameworks and libraries, and they can make anyone's job easier.
But the more solid your foundation, the easier it will be to pick up any new technologies and actually validate whether they solve your problems.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
All the best ๐๐
๐2โค1
Top Platforms for Building Data Science Portfolio
Build an irresistible portfolio that hooks recruiters with these free platforms.
Landing a job as a data scientist begins with building your portfolio with a comprehensive list of all your projects. To help you get started with building your portfolio, here is the list of top data science platforms. Remember the stronger your portfolio, the better chances you have of landing your dream job.
1. GitHub
2. Kaggle
3. LinkedIn
4. Medium
5. MachineHack
6. DagsHub
7. HuggingFace
#datascienceprojects
Build an irresistible portfolio that hooks recruiters with these free platforms.
Landing a job as a data scientist begins with building your portfolio with a comprehensive list of all your projects. To help you get started with building your portfolio, here is the list of top data science platforms. Remember the stronger your portfolio, the better chances you have of landing your dream job.
1. GitHub
2. Kaggle
3. LinkedIn
4. Medium
5. MachineHack
6. DagsHub
7. HuggingFace
#datascienceprojects
๐13โค1
Popular Python packages for data science:
1. NumPy: For numerical operations and working with arrays.
2. Pandas: For data manipulation and analysis, especially with data frames.
3. Matplotlib and Seaborn: For data visualization.
4. Scikit-learn: For machine learning algorithms and tools.
5. TensorFlow and PyTorch: Deep learning frameworks.
6. SciPy: For scientific and technical computing.
7. Statsmodels: For statistical modeling and hypothesis testing.
8. NLTK and SpaCy: Natural Language Processing libraries.
9. Jupyter Notebooks: Interactive computing and data visualization.
10. Bokeh and Plotly: Additional libraries for interactive visualizations.
Join our WhatsApp channel: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
1. NumPy: For numerical operations and working with arrays.
2. Pandas: For data manipulation and analysis, especially with data frames.
3. Matplotlib and Seaborn: For data visualization.
4. Scikit-learn: For machine learning algorithms and tools.
5. TensorFlow and PyTorch: Deep learning frameworks.
6. SciPy: For scientific and technical computing.
7. Statsmodels: For statistical modeling and hypothesis testing.
8. NLTK and SpaCy: Natural Language Processing libraries.
9. Jupyter Notebooks: Interactive computing and data visualization.
10. Bokeh and Plotly: Additional libraries for interactive visualizations.
Join our WhatsApp channel: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
๐2
๐ Required Skills for a data scientist
๐ฏStatistics and Probability
๐ฏMathematics
๐ฏPython, R, SAS and Scala or other.
๐ฏData visualisation
๐ฏBig data
๐ฏData inquisitiveness
๐ฏBusiness expertise
๐ฏCritical thinking
๐ฏMachine learning, deep learning and AI
๐ฏCommunication skills
๐ฏTeamwork
๐ฏStatistics and Probability
๐ฏMathematics
๐ฏPython, R, SAS and Scala or other.
๐ฏData visualisation
๐ฏBig data
๐ฏData inquisitiveness
๐ฏBusiness expertise
๐ฏCritical thinking
๐ฏMachine learning, deep learning and AI
๐ฏCommunication skills
๐ฏTeamwork
โค5
Essential Programming Languages to Learn Data Science ๐๐
1. Python: Python is one of the most popular programming languages for data science due to its simplicity, versatility, and extensive library support (such as NumPy, Pandas, and Scikit-learn).
2. R: R is another popular language for data science, particularly in academia and research settings. It has powerful statistical analysis capabilities and a wide range of packages for data manipulation and visualization.
3. SQL: SQL (Structured Query Language) is essential for working with databases, which are a critical component of data science projects. Knowledge of SQL is necessary for querying and manipulating data stored in relational databases.
4. Java: Java is a versatile language that is widely used in enterprise applications and big data processing frameworks like Apache Hadoop and Apache Spark. Knowledge of Java can be beneficial for working with large-scale data processing systems.
5. Scala: Scala is a functional programming language that is often used in conjunction with Apache Spark for distributed data processing. Knowledge of Scala can be valuable for building high-performance data processing applications.
6. Julia: Julia is a high-performance language specifically designed for scientific computing and data analysis. It is gaining popularity in the data science community due to its speed and ease of use for numerical computations.
7. MATLAB: MATLAB is a proprietary programming language commonly used in engineering and scientific research for data analysis, visualization, and modeling. It is particularly useful for signal processing and image analysis tasks.
Free Resources to master data analytics concepts ๐๐
Data Analysis with R
Intro to Data Science
Practical Python Programming
SQL for Data Analysis
Java Essential Concepts
Machine Learning with Python
Data Science Project Ideas
Join @free4unow_backup for more free resources.
ENJOY LEARNING๐๐
1. Python: Python is one of the most popular programming languages for data science due to its simplicity, versatility, and extensive library support (such as NumPy, Pandas, and Scikit-learn).
2. R: R is another popular language for data science, particularly in academia and research settings. It has powerful statistical analysis capabilities and a wide range of packages for data manipulation and visualization.
3. SQL: SQL (Structured Query Language) is essential for working with databases, which are a critical component of data science projects. Knowledge of SQL is necessary for querying and manipulating data stored in relational databases.
4. Java: Java is a versatile language that is widely used in enterprise applications and big data processing frameworks like Apache Hadoop and Apache Spark. Knowledge of Java can be beneficial for working with large-scale data processing systems.
5. Scala: Scala is a functional programming language that is often used in conjunction with Apache Spark for distributed data processing. Knowledge of Scala can be valuable for building high-performance data processing applications.
6. Julia: Julia is a high-performance language specifically designed for scientific computing and data analysis. It is gaining popularity in the data science community due to its speed and ease of use for numerical computations.
7. MATLAB: MATLAB is a proprietary programming language commonly used in engineering and scientific research for data analysis, visualization, and modeling. It is particularly useful for signal processing and image analysis tasks.
Free Resources to master data analytics concepts ๐๐
Data Analysis with R
Intro to Data Science
Practical Python Programming
SQL for Data Analysis
Java Essential Concepts
Machine Learning with Python
Data Science Project Ideas
Join @free4unow_backup for more free resources.
ENJOY LEARNING๐๐
๐7
๐"Key Python Libraries for Data Science:
Numpy: Core for numerical operations and array handling.
SciPy: Complements Numpy with scientific computing features like optimization.
Pandas: Crucial for data manipulation, offering powerful DataFrames.
Matplotlib: Versatile plotting library for creating various visualizations.
Keras: High-level neural networks API for quick deep learning prototyping.
TensorFlow: Popular open-source ML framework for building and training models.
Scikit-learn: Efficient tools for data mining and statistical modeling.
Seaborn: Enhances data visualization with appealing statistical graphics.
Statsmodels: Focuses on estimating and testing statistical models.
NLTK: Library for working with human language data.
These libraries empower data scientists across tasks, from preprocessing to advanced machine learning."
Join our WhatsApp channel: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
Numpy: Core for numerical operations and array handling.
SciPy: Complements Numpy with scientific computing features like optimization.
Pandas: Crucial for data manipulation, offering powerful DataFrames.
Matplotlib: Versatile plotting library for creating various visualizations.
Keras: High-level neural networks API for quick deep learning prototyping.
TensorFlow: Popular open-source ML framework for building and training models.
Scikit-learn: Efficient tools for data mining and statistical modeling.
Seaborn: Enhances data visualization with appealing statistical graphics.
Statsmodels: Focuses on estimating and testing statistical models.
NLTK: Library for working with human language data.
These libraries empower data scientists across tasks, from preprocessing to advanced machine learning."
Join our WhatsApp channel: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
๐5โค1
One day or Day one. You decide.
Data Science edition.
๐ข๐ป๐ฒ ๐๐ฎ๐ : I will learn SQL.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Download mySQL Workbench.
๐ข๐ป๐ฒ ๐๐ฎ๐: I will build my projects for my portfolio.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Look on Kaggle for a dataset to work on.
๐ข๐ป๐ฒ ๐๐ฎ๐: I will master statistics.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Start the free Khan Academy Statistics and Probability course.
๐ข๐ป๐ฒ ๐๐ฎ๐: I will learn to tell stories with data.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Install Tableau Public and create my first chart.
๐ข๐ป๐ฒ ๐๐ฎ๐: I will become a Data Scientist.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Update my resume and apply to some Data Science job postings.
Data Science edition.
๐ข๐ป๐ฒ ๐๐ฎ๐ : I will learn SQL.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Download mySQL Workbench.
๐ข๐ป๐ฒ ๐๐ฎ๐: I will build my projects for my portfolio.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Look on Kaggle for a dataset to work on.
๐ข๐ป๐ฒ ๐๐ฎ๐: I will master statistics.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Start the free Khan Academy Statistics and Probability course.
๐ข๐ป๐ฒ ๐๐ฎ๐: I will learn to tell stories with data.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Install Tableau Public and create my first chart.
๐ข๐ป๐ฒ ๐๐ฎ๐: I will become a Data Scientist.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Update my resume and apply to some Data Science job postings.
โค8๐4๐2๐ข1
Let's now understand Data Science Roadmap in detail:
1. Math & Statistics (Foundation Layer)
This is the backbone of data science. Strong intuition here helps with algorithms, ML, and interpreting results.
Key Topics:
Linear Algebra: Vectors, matrices, matrix operations
Calculus: Derivatives, gradients (for optimization)
Probability: Bayes theorem, probability distributions
Statistics: Mean, median, mode, standard deviation, hypothesis testing, confidence intervals
Inferential Statistics: p-values, t-tests, ANOVA
Resources:
Khan Academy (Math & Stats)
"Think Stats" book
YouTube (StatQuest with Josh Starmer)
2. Python or R (Pick One for Analysis)
These are your main tools. Python is more popular in industry; R is strong in academia.
For Python Learn:
Variables, loops, functions, list comprehension
Libraries: NumPy, Pandas, Matplotlib, Seaborn
For R Learn:
Vectors, data frames, ggplot2, dplyr, tidyr
Goal: Be comfortable working with data, writing clean code, and doing basic analysis.
3. Data Wrangling (Data Cleaning & Manipulation)
Real-world data is messy. Cleaning and structuring it is essential.
What to Learn:
Handling missing values
Removing duplicates
String operations
Date and time operations
Merging and joining datasets
Reshaping data (pivot, melt)
Tools:
Python: Pandas
R: dplyr, tidyr
Mini Projects: Clean a messy CSV or scrape and structure web data.
4. Data Visualization (Telling the Story)
This is about showing insights visually for business users or stakeholders.
In Python:
Matplotlib, Seaborn, Plotly
In R:
ggplot2, plotly
Learn To:
Create bar plots, histograms, scatter plots, box plots
Design dashboards (can explore Power BI or Tableau)
Use color and layout to enhance clarity
5. Machine Learning (ML)
Now the real fun begins! Automate predictions and classifications.
Topics:
Supervised Learning: Linear Regression, Logistic Regression, Decision Trees, Random Forests, SVM
Unsupervised Learning: Clustering (K-means), PCA
Model Evaluation: Accuracy, Precision, Recall, F1-score, ROC-AUC
Cross-validation, Hyperparameter tuning
Libraries:
scikit-learn, xgboost
Practice On:
Kaggle datasets, Titanic survival, House price prediction
6. Deep Learning & NLP (Advanced Level)
Push your skills to the next level. Essential for AI, image, and text-based tasks.
Deep Learning:
Neural Networks, CNNs, RNNs
Frameworks: TensorFlow, Keras, PyTorch
NLP (Natural Language Processing):
Text preprocessing (tokenization, stemming, lemmatization)
TF-IDF, Word Embeddings
Sentiment Analysis, Topic Modeling
Transformers (BERT, GPT, etc.)
Projects:
Sentiment analysis from Twitter data
Image classifier using CNN
7. Projects (Build Your Portfolio)
Apply everything you've learned to real-world datasets.
Types of Projects:
EDA + ML project on a domain (finance, health, sports)
End-to-end ML pipeline
Deep Learning project (image or text)
Build a dashboard with your insights
Collaborate on GitHub, contribute to open-source
Tips:
Host projects on GitHub
Write about them on Medium, LinkedIn, or personal blog
8. โ Apply for Jobs (You're Ready!)
Now, you're prepared to apply with confidence.
Steps:
Prepare your resume tailored for DS roles
Sharpen interview skills (SQL, Python, case studies)
Practice on LeetCode, InterviewBit
Network on LinkedIn, attend meetups
Apply for internships or entry-level DS/DA roles
Keep learning and adapting. Data Science is vast and fast-movingโstay updated via newsletters, GitHub, and communities like Kaggle or Reddit.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
Like if you need similar content ๐๐
Hope this helps you ๐
1. Math & Statistics (Foundation Layer)
This is the backbone of data science. Strong intuition here helps with algorithms, ML, and interpreting results.
Key Topics:
Linear Algebra: Vectors, matrices, matrix operations
Calculus: Derivatives, gradients (for optimization)
Probability: Bayes theorem, probability distributions
Statistics: Mean, median, mode, standard deviation, hypothesis testing, confidence intervals
Inferential Statistics: p-values, t-tests, ANOVA
Resources:
Khan Academy (Math & Stats)
"Think Stats" book
YouTube (StatQuest with Josh Starmer)
2. Python or R (Pick One for Analysis)
These are your main tools. Python is more popular in industry; R is strong in academia.
For Python Learn:
Variables, loops, functions, list comprehension
Libraries: NumPy, Pandas, Matplotlib, Seaborn
For R Learn:
Vectors, data frames, ggplot2, dplyr, tidyr
Goal: Be comfortable working with data, writing clean code, and doing basic analysis.
3. Data Wrangling (Data Cleaning & Manipulation)
Real-world data is messy. Cleaning and structuring it is essential.
What to Learn:
Handling missing values
Removing duplicates
String operations
Date and time operations
Merging and joining datasets
Reshaping data (pivot, melt)
Tools:
Python: Pandas
R: dplyr, tidyr
Mini Projects: Clean a messy CSV or scrape and structure web data.
4. Data Visualization (Telling the Story)
This is about showing insights visually for business users or stakeholders.
In Python:
Matplotlib, Seaborn, Plotly
In R:
ggplot2, plotly
Learn To:
Create bar plots, histograms, scatter plots, box plots
Design dashboards (can explore Power BI or Tableau)
Use color and layout to enhance clarity
5. Machine Learning (ML)
Now the real fun begins! Automate predictions and classifications.
Topics:
Supervised Learning: Linear Regression, Logistic Regression, Decision Trees, Random Forests, SVM
Unsupervised Learning: Clustering (K-means), PCA
Model Evaluation: Accuracy, Precision, Recall, F1-score, ROC-AUC
Cross-validation, Hyperparameter tuning
Libraries:
scikit-learn, xgboost
Practice On:
Kaggle datasets, Titanic survival, House price prediction
6. Deep Learning & NLP (Advanced Level)
Push your skills to the next level. Essential for AI, image, and text-based tasks.
Deep Learning:
Neural Networks, CNNs, RNNs
Frameworks: TensorFlow, Keras, PyTorch
NLP (Natural Language Processing):
Text preprocessing (tokenization, stemming, lemmatization)
TF-IDF, Word Embeddings
Sentiment Analysis, Topic Modeling
Transformers (BERT, GPT, etc.)
Projects:
Sentiment analysis from Twitter data
Image classifier using CNN
7. Projects (Build Your Portfolio)
Apply everything you've learned to real-world datasets.
Types of Projects:
EDA + ML project on a domain (finance, health, sports)
End-to-end ML pipeline
Deep Learning project (image or text)
Build a dashboard with your insights
Collaborate on GitHub, contribute to open-source
Tips:
Host projects on GitHub
Write about them on Medium, LinkedIn, or personal blog
8. โ Apply for Jobs (You're Ready!)
Now, you're prepared to apply with confidence.
Steps:
Prepare your resume tailored for DS roles
Sharpen interview skills (SQL, Python, case studies)
Practice on LeetCode, InterviewBit
Network on LinkedIn, attend meetups
Apply for internships or entry-level DS/DA roles
Keep learning and adapting. Data Science is vast and fast-movingโstay updated via newsletters, GitHub, and communities like Kaggle or Reddit.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
Like if you need similar content ๐๐
Hope this helps you ๐
๐11โค6
Roadmap to become a Data Scientist:
๐ Learn Python & R
โ๐ Learn Statistics & Probability
โ๐ Learn SQL & Data Handling
โ๐ Learn Data Cleaning & Preprocessing
โ๐ Learn Data Visualization (Matplotlib, Seaborn, Power BI/Tableau)
โ๐ Learn Machine Learning (Supervised, Unsupervised)
โ๐ Learn Deep Learning (Neural Nets, CNNs, RNNs)
โ๐ Learn Model Deployment (Flask, Streamlit, FastAPI)
โ๐ Build Real-world Projects & Case Studies
โโ Apply for Jobs & Internships
React โค๏ธ for more
๐ Learn Python & R
โ๐ Learn Statistics & Probability
โ๐ Learn SQL & Data Handling
โ๐ Learn Data Cleaning & Preprocessing
โ๐ Learn Data Visualization (Matplotlib, Seaborn, Power BI/Tableau)
โ๐ Learn Machine Learning (Supervised, Unsupervised)
โ๐ Learn Deep Learning (Neural Nets, CNNs, RNNs)
โ๐ Learn Model Deployment (Flask, Streamlit, FastAPI)
โ๐ Build Real-world Projects & Case Studies
โโ Apply for Jobs & Internships
React โค๏ธ for more
๐10โค8๐ฅ2