Data Science & Machine Learning
73.2K subscribers
790 photos
2 videos
68 files
689 links
Join this channel to learn data science, artificial intelligence and machine learning with funny quizzes, interesting projects and amazing resources for free

For collaborations: @love_data
Download Telegram
This is a quick and easy guide to the four main categories: Supervised, Unsupervised, Semi-Supervised, and Reinforcement Learning.

1. Supervised Learning
In supervised learning, the model learns from examples that already have the answers (labeled data). The goal is for the model to predict the correct result when given new data.

Some common supervised learning algorithms include:

➡️ Linear Regression – For predicting continuous values, like house prices.
➡️ Logistic Regression – For predicting categories, like spam or not spam.
➡️ Decision Trees – For making decisions in a step-by-step way.
➡️ K-Nearest Neighbors (KNN) – For finding similar data points.
➡️ Random Forests – A collection of decision trees for better accuracy.
➡️ Neural Networks – The foundation of deep learning, mimicking the human brain.

2. Unsupervised Learning
With unsupervised learning, the model explores patterns in data that doesn’t have any labels. It finds hidden structures or groupings.

Some popular unsupervised learning algorithms include:

➡️ K-Means Clustering – For grouping data into clusters.
➡️ Hierarchical Clustering – For building a tree of clusters.
➡️ Principal Component Analysis (PCA) – For reducing data to its most important parts.
➡️ Autoencoders – For finding simpler representations of data.

3. Semi-Supervised Learning
This is a mix of supervised and unsupervised learning. It uses a small amount of labeled data with a large amount of unlabeled data to improve learning.

Common semi-supervised learning algorithms include:

➡️ Label Propagation – For spreading labels through connected data points.
➡️ Semi-Supervised SVM – For combining labeled and unlabeled data.
➡️ Graph-Based Methods – For using graph structures to improve learning.

4. Reinforcement Learning
In reinforcement learning, the model learns by trial and error. It interacts with its environment, receives feedback (rewards or penalties), and learns how to act to maximize rewards.

Popular reinforcement learning algorithms include:

➡️ Q-Learning – For learning the best actions over time.
➡️ Deep Q-Networks (DQN) – Combining Q-learning with deep learning.
➡️ Policy Gradient Methods – For learning policies directly.
➡️ Proximal Policy Optimization (PPO) – For stable and effective learning.

Join our WhatsApp channel: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D

Like if you need similar content 😄👍

Hope this helps you 😊
👍71
𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲 𝗿𝗼𝗮𝗱𝗺𝗮𝗽 𝘁𝗼 𝘀𝗵𝗮𝗽𝗲 𝘆𝗼𝘂𝗿 𝗰𝗮𝗿𝗲𝗲𝗿: 👇

-> 1. Learn the Language of Data
Start with Python or R. Learn how to write clean scripts, automate tasks, and manipulate data like a pro.

-> 2. Master Data Handling
Use Pandas, NumPy, and SQL. These are your weapons for data cleaning, transformation, and querying.
Garbage in = Garbage out. Always clean your data.

-> 3. Nail the Basics of Statistics & Probability
You can’t call yourself a data scientist if you don’t understand distributions, p-values, confidence intervals, and hypothesis testing.

-> 4. Exploratory Data Analysis (EDA)
Visualize the story behind the numbers with Matplotlib, Seaborn, and Plotly.
EDA is how you uncover hidden gold.

-> 5. Learn Machine Learning the Right Way

Start simple:

Linear Regression

Logistic Regression

Decision Trees
Then level up with Random Forest, XGBoost, and Neural Networks.


-> 6. Build Real Projects
Kaggle, personal projects, domain-specific problems—don’t just learn, apply.
Make a portfolio that speaks louder than your resume.

-> 7. Learn Deployment (Optional but Powerful)
Use Flask, Streamlit, or FastAPI to deploy your models.
Turn models into real-world applications.

-> 8. Sharpen Soft Skills
Storytelling, communication, and business acumen are just as important as technical skills.
Explain your insights like a leader.


𝗬𝗼𝘂 𝗱𝗼𝗻’𝘁 𝗵𝗮𝘃𝗲 𝘁𝗼 𝗯𝗲 𝗽𝗲𝗿𝗳𝗲𝗰𝘁.
𝗬𝗼𝘂 𝗷𝘂𝘀𝘁 𝗵𝗮𝘃𝗲 𝘁𝗼 𝗯𝗲 𝗰𝗼𝗻𝘀𝗶𝘀𝘁𝗲𝗻𝘁.

Join our WhatsApp channel: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D

Like if you need similar content 😄👍

Hope this helps you 😊
5👍2
🔰 Data Science Roadmap for Beginners 2025
├── 📘 What is Data Science?
├── 🧠 Data Science vs Data Analytics vs Machine Learning
├── 🛠 Tools of the Trade (Python, R, Excel, SQL)
├── 🐍 Python for Data Science (NumPy, Pandas, Matplotlib)
├── 🔢 Statistics & Probability Basics
├── 📊 Data Visualization (Matplotlib, Seaborn, Plotly)
├── 🧼 Data Cleaning & Preprocessing
├── 🧮 Exploratory Data Analysis (EDA)
├── 🧠 Introduction to Machine Learning
├── 📦 Supervised vs Unsupervised Learning
├── 🤖 Popular ML Algorithms (Linear Reg, KNN, Decision Trees)
├── 🧪 Model Evaluation (Accuracy, Precision, Recall, F1 Score)
├── 🧰 Model Tuning (Cross Validation, Grid Search)
├── ⚙️ Feature Engineering
├── 🏗 Real-world Projects (Kaggle, UCI Datasets)
├── 📈 Basic Deployment (Streamlit, Flask, Heroku)
├── 🔁 Continuous Learning: Blogs, Research Papers, Competitions

Join our WhatsApp channel: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D

Like for more ❤️
2👍2👏1
10 Machine Learning Concepts You Must Know

1. Supervised vs Unsupervised Learning

Supervised Learning involves training a model on labeled data (input-output pairs). Examples: Linear Regression, Classification.

Unsupervised Learning deals with unlabeled data. The model tries to find hidden patterns or groupings. Examples: Clustering (K-Means), Dimensionality Reduction (PCA).


2. Bias-Variance Tradeoff

Bias is the error due to overly simplistic assumptions in the learning algorithm.

Variance is the error due to excessive sensitivity to small fluctuations in the training data.

Goal: Minimize both for optimal model performance. High bias → underfitting; High variance → overfitting.


3. Feature Engineering

The process of selecting, transforming, and creating variables (features) to improve model performance.

Examples: Normalization, encoding categorical variables, creating interaction terms, handling missing data.


4. Train-Test Split & Cross-Validation

Train-Test Split divides the dataset into training and testing subsets to evaluate model generalization.

Cross-Validation (e.g., k-fold) provides a more reliable evaluation by splitting data into k subsets and training/testing on each.


5. Confusion Matrix

A performance evaluation tool for classification models showing TP, TN, FP, FN.

From it, we derive:

Accuracy = (TP + TN) / Total

Precision = TP / (TP + FP)

Recall = TP / (TP + FN)

F1 Score = 2 * (Precision * Recall) / (Precision + Recall)



6. Gradient Descent

An optimization algorithm used to minimize the cost/loss function by iteratively updating model parameters in the direction of the negative gradient.

Variants: Batch GD, Stochastic GD (SGD), Mini-batch GD.


7. Regularization (L1/L2)

Techniques to prevent overfitting by adding a penalty term to the loss function.

L1 (Lasso): Adds absolute value of coefficients, can shrink some to zero (feature selection).

L2 (Ridge): Adds square of coefficients, tends to shrink but not eliminate coefficients.


8. Decision Trees & Random Forests

Decision Tree: A tree-structured model that splits data based on features. Easy to interpret.

Random Forest: An ensemble of decision trees; reduces overfitting and improves accuracy.


9. Support Vector Machines (SVM)

A supervised learning algorithm used for classification. It finds the optimal hyperplane that separates classes.

Uses kernels (linear, polynomial, RBF) to handle non-linearly separable data.


10. Neural Networks

Inspired by the human brain, these consist of layers of interconnected neurons.

Deep Neural Networks (DNNs) can model complex patterns.

The backbone of deep learning applications like image recognition, NLP, etc.

Join our WhatsApp channel: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D

ENJOY LEARNING 👍👍
5👍2
We have the Key to unlock AI-Powered Data Skills!

We have got some news for College grads & pros:

Level up with PW Skills' Data Analytics & Data Science with Gen AI course!

Real-world projects
Professional instructors
Flexible learning
Job Assistance

Ready for a data career boost? ➡️
Click Here for Data Science with Generative AI Course:

https://shorturl.at/j4lTD

Click Here for Data Analytics Course:
https://shorturl.at/7nrE5
3👍2
👍4🤔1
Python Detailed Roadmap 🚀

📌 1. Basics
Data Types & Variables
Operators & Expressions
Control Flow (if, loops)

📌 2. Functions & Modules
Defining Functions
Lambda Functions
Importing & Creating Modules

📌 3. File Handling
Reading & Writing Files
Working with CSV & JSON

📌 4. Object-Oriented Programming (OOP)
Classes & Objects
Inheritance & Polymorphism
Encapsulation

📌 5. Exception Handling
Try-Except Blocks
Custom Exceptions

📌 6. Advanced Python Concepts
List & Dictionary Comprehensions
Generators & Iterators
Decorators

📌 7. Essential Libraries
NumPy (Arrays & Computations)
Pandas (Data Analysis)
Matplotlib & Seaborn (Visualization)

📌 8. Web Development & APIs
Web Scraping (BeautifulSoup, Scrapy)
API Integration (Requests)
Flask & Django (Backend Development)

📌 9. Automation & Scripting
Automating Tasks with Python
Working with Selenium & PyAutoGUI

📌 10. Data Science & Machine Learning
Data Cleaning & Preprocessing
Scikit-Learn (ML Algorithms)
TensorFlow & PyTorch (Deep Learning)

📌 11. Projects
Build Real-World Applications
Showcase on GitHub

📌 12. Apply for Jobs
Strengthen Resume & Portfolio
Prepare for Technical Interviews

Like for more ❤️💪
👍11🤔2
3 Data Science Free courses by Microsoft🔥🔥

1. AI For Beginners - https://microsoft.github.io/AI-For-Beginners/

2. ML For Beginners - https://microsoft.github.io/ML-For-Beginners/#/

3. Data Science For Beginners - https://github.com/microsoft/Data-Science-For-Beginners

Join for more: https://t.iss.one/udacityfreecourse
Bayesian Data Analysis
🔥2
Basics of Machine Learning 👇👇

Machine learning is a branch of artificial intelligence where computers learn from data to make decisions without explicit programming. There are three main types:

1. Supervised Learning: The algorithm is trained on a labeled dataset, learning to map input to output. For example, it can predict housing prices based on features like size and location.

2. Unsupervised Learning: The algorithm explores data patterns without explicit labels. Clustering is a common task, grouping similar data points. An example is customer segmentation for targeted marketing.

3. Reinforcement Learning: The algorithm learns by interacting with an environment. It receives feedback in the form of rewards or penalties, improving its actions over time. Gaming AI and robotic control are applications.

Key concepts include:

- Features and Labels: Features are input variables, and labels are the desired output. The model learns to map features to labels during training.

- Training and Testing: The model is trained on a subset of data and then tested on unseen data to evaluate its performance.

- Overfitting and Underfitting: Overfitting occurs when a model is too complex and fits the training data too closely, performing poorly on new data. Underfitting happens when the model is too simple and fails to capture the underlying patterns.

- Algorithms: Different algorithms suit various tasks. Common ones include linear regression for predicting numerical values, and decision trees for classification tasks.

In summary, machine learning involves training models on data to make predictions or decisions. Supervised learning uses labeled data, unsupervised learning finds patterns in unlabeled data, and reinforcement learning learns through interaction with an environment. Key considerations include features, labels, overfitting, underfitting, and choosing the right algorithm for the task.

Free Resources to learn Machine Learning: https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y

ENJOY LEARNING 👍👍
2👍1
The Data Science Sandwich
👍21
𝗛𝗼𝘄 𝘁𝗼 𝗟𝗲𝗮𝗿𝗻 𝗣𝘆𝘁𝗵𝗼𝗻 𝗙𝗮𝘀𝘁 (𝗘𝘃𝗲𝗻 𝗜𝗳 𝗬𝗼𝘂'𝘃𝗲 𝗡𝗲𝘃𝗲𝗿 𝗖𝗼𝗱𝗲𝗱 𝗕𝗲𝗳𝗼𝗿𝗲!)🐍🚀

Python is everywhere—web dev, data science, automation, AI…
But where should YOU start if you're a beginner?

Don’t worry. Here’s a 6-step roadmap to master Python the smart way (no fluff, just action)👇

🔹 𝗦𝘁𝗲𝗽 𝟭: Learn the Basics (Don’t Skip This!)
Variables, data types (int, float, string, bool)
Loops (for, while), conditionals (if/else)
Functions and user input
Start with:
Python.org Docs
YouTube: Programming with Mosh / CodeWithHarry
Platforms: W3Schools / SoloLearn / FreeCodeCamp
Spend a week here.

Practice > Theory.

🔹 𝗦𝘁𝗲𝗽 𝟮: Automate Boring Stuff (It’s Fun + Useful!)
Rename files in bulk
Auto-fill forms
Web scraping with BeautifulSoup or Selenium
Read: “Automate the Boring Stuff with Python”
It’s beginner-friendly and practical!

🔹 𝗦𝘁𝗲𝗽 𝟯: Build Mini Projects (Your Confidence Booster)
Calculator app
Dice roll simulator
Password generator
Number guessing game

These small projects teach logic, problem-solving, and syntax in action.

🔹 𝗦𝘁𝗲𝗽 𝟰: Dive Into Libraries (Python’s Superpower)
Pandas and NumPy – for data
Matplotlib – for visualizations
Requests – for APIs
Tkinter – for GUI apps
Flask – for web apps

Libraries are what make Python powerful. Learn one at a time with a mini project.

🔹 𝗦𝘁𝗲𝗽 𝟱: Use Git + GitHub (Be a Real Dev)
Track your code with Git
Upload projects to GitHub
Write clear README files
Contribute to open source repos

Your GitHub profile = Your online CV. Keep it active!

🔹 𝗦𝘁𝗲𝗽 𝟲: Build a Capstone Project (Level-Up!)
A weather dashboard (API + Flask)
A personal expense tracker
A web scraper that sends email alerts
A basic portfolio website in Python + Flask

Pick something that solves a real problem—bonus if it helps you in daily life!

🎯 𝗟𝗲𝗮𝗿𝗻𝗶𝗻𝗴 𝗣𝘆𝘁𝗵𝗼𝗻 = 𝗟𝗲𝗮𝗿𝗻𝗶𝗻𝗴 𝗣𝗼𝘄𝗲𝗿𝗳𝘂𝗹 𝗣𝗿𝗼𝗯𝗹𝗲𝗺 𝗦𝗼𝗹𝘃𝗶𝗻𝗴

You don’t need to memorize code. Understand the logic.
Google is your best friend. Practice is your real teacher.

Python Resources: https://whatsapp.com/channel/0029Vau5fZECsU9HJFLacm2a

ENJOY LEARNING 👍👍
👍76
Data Science – Essential Topics 🚀

1️⃣ Data Collection & Processing
Web scraping, APIs, and databases
Handling missing data, duplicates, and outliers
Data transformation and normalization

2️⃣ Exploratory Data Analysis (EDA)
Descriptive statistics (mean, median, variance, correlation)
Data visualization (bar charts, scatter plots, heatmaps)
Identifying patterns and trends

3️⃣ Feature Engineering & Selection
Encoding categorical variables
Scaling and normalization techniques
Handling multicollinearity and dimensionality reduction

4️⃣ Machine Learning Model Building
Supervised learning (classification, regression)
Unsupervised learning (clustering, anomaly detection)
Model selection and hyperparameter tuning

5️⃣ Model Evaluation & Performance Metrics
Accuracy, precision, recall, F1-score, ROC-AUC
Cross-validation and bias-variance tradeoff
Confusion matrix and error analysis

6️⃣ Deep Learning & Neural Networks
Basics of artificial neural networks (ANNs)
Convolutional neural networks (CNNs) for image processing
Recurrent neural networks (RNNs) for sequential data

7️⃣ Big Data & Cloud Computing
Working with large datasets (Hadoop, Spark)
Cloud platforms (AWS, Google Cloud, Azure)
Scalable data pipelines and automation

8️⃣ Model Deployment & Automation
Model deployment with Flask, FastAPI, or Streamlit
Monitoring and maintaining machine learning models
Automating data workflows with Airflow

Free Data Science Resources
👇👇
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D

ENJOY LEARNING 👍👍
👍52
Kaggle Datasets are often too perfect for real-world scenarios.

I'm about to share a method for real-life data analysis.

You see …

… most of the time, a data analyst cleans and transforms data.

So … let’s practice that.

How?

Well … you can use ChatGPT.

Just write this prompt:

Create a downloadable CSV dataset of 10,000 rows of financial credit card transactions with 10 columns of customer data so I can perform some data analysis to segment customers.

Now…

Download the dataset and start your analysis.

You'll see that, most of the time…

… numbers don’t match.

There are no patterns.

Data is incorrect and doesn’t make sense.

And that’s good.

Now you know what a data analyst deals with.

Your job is to make sense of that dataset.

To create a story that justifies the numbers.

This is how you can mimic real-life work using A.I.
14👍5
10 Machine Learning Concepts You Must Know

Supervised vs Unsupervised Learning – Understand the foundation of ML tasks
Bias-Variance Tradeoff – Balance underfitting and overfitting
Feature Engineering – The secret sauce to boost model performance
Train-Test Split & Cross-Validation – Evaluate models the right way
Confusion Matrix – Measure model accuracy, precision, recall, and F1
Gradient Descent – The algorithm behind learning in most models
Regularization (L1/L2) – Prevent overfitting by penalizing complexity
Decision Trees & Random Forests – Interpretable and powerful models
Support Vector Machines – Great for classification with clear boundaries
Neural Networks – The foundation of deep learning

React with ❤️ for detailed explained

Data Science & Machine Learning Resources: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D

ENJOY LEARNING 👍👍
8👍8😁1
3 Data Science Free courses by Microsoft🔥🔥

1. AI For Beginners - https://microsoft.github.io/AI-For-Beginners/

2. ML For Beginners - https://microsoft.github.io/ML-For-Beginners/#/

3. Data Science For Beginners - https://github.com/microsoft/Data-Science-For-Beginners

Join for more: https://t.iss.one/udacityfreecourse
👍1
FREE RESOURCES TO LEARN MACHINE LEARNING
👇👇

Intro to ML by MIT Free Course

https://openlearninglibrary.mit.edu/courses/course-v1:MITx+6.036+1T2019/about

Machine Learning for Everyone FREE BOOK

https://buildmedia.readthedocs.org/media/pdf/pymbook/latest/pymbook.pdf

ML Crash Course by Google

https://developers.google.com/machine-learning/crash-course

Advanced Machine Learning with Python Github

https://github.com/PacktPublishing/Advanced-Machine-Learning-with-Python

Practical Machine Learning Tools and Techniques Free Book

https://vk.com/doc10903696_437487078?hash=674d2f82c486ac525b&dl=ed6dd98cd9d60a642b

ENJOY LEARNING 👍👍
👍21
If I Were to Start My Data Science Career from Scratch, Here's What I Would Do 👇

1️⃣ Master Advanced SQL

Foundations: Learn database structures, tables, and relationships.

Basic SQL Commands: SELECT, FROM, WHERE, ORDER BY.

Aggregations: Get hands-on with SUM, COUNT, AVG, MIN, MAX, GROUP BY, and HAVING.

JOINs: Understand LEFT, RIGHT, INNER, OUTER, and CARTESIAN joins.

Advanced Concepts: CTEs, window functions, and query optimization.

Metric Development: Build and report metrics effectively.


2️⃣ Study Statistics & A/B Testing

Descriptive Statistics: Know your mean, median, mode, and standard deviation.

Distributions: Familiarize yourself with normal, Bernoulli, binomial, exponential, and uniform distributions.

Probability: Understand basic probability and Bayes' theorem.

Intro to ML: Start with linear regression, decision trees, and K-means clustering.

Experimentation Basics: T-tests, Z-tests, Type 1 & Type 2 errors.

A/B Testing: Design experiments—hypothesis formation, sample size calculation, and sample biases.


3️⃣ Learn Python for Data

Data Manipulation: Use pandas for data cleaning and manipulation.

Data Visualization: Explore matplotlib and seaborn for creating visualizations.

Hypothesis Testing: Dive into scipy for statistical testing.

Basic Modeling: Practice building models with scikit-learn.


4️⃣ Develop Product Sense

Product Management Basics: Manage projects and understand the product life cycle.

Data-Driven Strategy: Leverage data to inform decisions and measure success.

Metrics in Business: Define and evaluate metrics that matter to the business.


5️⃣ Hone Soft Skills

Communication: Clearly explain data findings to technical and non-technical audiences.

Collaboration: Work effectively in teams.

Time Management: Prioritize and manage projects efficiently.

Self-Reflection: Regularly assess and improve your skills.


6️⃣ Bonus: Basic Data Engineering

Data Modeling: Understand dimensional modeling and trade-offs in normalization vs. denormalization.

ETL: Set up extraction jobs, manage dependencies, clean and validate data.

Pipeline Testing: Conduct unit testing and ensure data quality throughout the pipeline.

I have curated the best interview resources to crack Data Science Interviews
👇👇
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D

Like if you need similar content 😄👍
👍85
100 Days Data Science Challenge 👆
👍132
15 Best Project Ideas for Data Science : 📊

🚀 Beginner Level:

1. Exploratory Data Analysis (EDA) on Titanic Dataset
2. Netflix Movies/TV Shows Data Analysis
3. COVID-19 Data Visualization Dashboard
4. Sales Data Analysis (CSV/Excel)
5. Student Performance Analysis

🌟 Intermediate Level:
6. Sentiment Analysis on Tweets
7. Customer Segmentation using K-Means
8. Credit Score Classification
9. House Price Prediction
10. Market Basket Analysis (Apriori Algorithm)

🌌 Advanced Level:
11. Time Series Forecasting (Stock/Weather Data)
12. Fake News Detection using NLP
13. Image Classification with CNN
14. Resume Parser using NLP
15. Customer Churn Prediction

Credits: https://whatsapp.com/channel/0029VaxbzNFCxoAmYgiGTL3Z
👍71
🔥 Data Science Roadmap 2025

Step 1: 🐍 Python Basics
Step 2: 📊 Data Analysis (Pandas, NumPy)
Step 3: 📈 Data Visualization (Matplotlib, Seaborn)
Step 4: 🤖 Machine Learning (Scikit-learn)
Step 5: � Deep Learning (TensorFlow/PyTorch)
Step 6: 🗃️ SQL & Big Data (Spark)
Step 7: 🚀 Deploy Models (Flask, FastAPI)
Step 8: 📢 Showcase Projects
Step 9: 💼 Land a Job!

🔓 Pro Tip: Compete on Kaggle

#datascience
👍9