Data Science & Machine Learning
73.1K subscribers
778 photos
2 videos
68 files
685 links
Join this channel to learn data science, artificial intelligence and machine learning with funny quizzes, interesting projects and amazing resources for free

For collaborations: @love_data
Download Telegram
Python Libraries for Data Science
๐Ÿ‘5โค4
How to choose Data Science Career ๐Ÿ‘†
๐Ÿ‘7๐Ÿ”ฅ1
๐Ÿ”ฐ Machine Learning Roadmap for Beginners 2025
โ”œโ”€โ”€ ๐Ÿง  What is Machine Learning?
โ”œโ”€โ”€ ๐Ÿงช ML vs AI vs Deep Learning
โ”œโ”€โ”€ ๐Ÿ”ข Math Foundation (Linear Algebra, Calculus, Stats Basics)
โ”œโ”€โ”€ ๐Ÿ Python Libraries (NumPy, Pandas, Scikit-learn)
โ”œโ”€โ”€ ๐Ÿ“Š Data Preprocessing & Cleaning
โ”œโ”€โ”€ ๐Ÿ“‰ Feature Selection & Engineering
โ”œโ”€โ”€ ๐Ÿงญ Supervised Learning (Regression, Classification)
โ”œโ”€โ”€ ๐Ÿงฑ Unsupervised Learning (Clustering, Dimensionality Reduction)
โ”œโ”€โ”€ ๐Ÿ•น Model Evaluation (Confusion Matrix, ROC, AUC)
โ”œโ”€โ”€ โš™๏ธ Model Tuning (Hyperparameter Tuning, Grid Search)
โ”œโ”€โ”€ ๐Ÿงฐ Ensemble Methods (Bagging, Boosting, Random Forests)
โ”œโ”€โ”€ ๐Ÿ”ฎ Introduction to Neural Networks
โ”œโ”€โ”€ ๐Ÿ” Overfitting vs Underfitting
โ”œโ”€โ”€ ๐Ÿ“ˆ Model Deployment (Streamlit, Flask, FastAPI Basics)
โ”œโ”€โ”€ ๐Ÿงช ML Projects (Classification, Forecasting, Recommender)
โ”œโ”€โ”€ ๐Ÿ† ML Competitions (Kaggle, Hackathons)

Like for the detailed explanation โค๏ธ

#machinelearning
โค7๐Ÿ‘2
If I Were to Start My Data Science Career from Scratch, Here's What I Would Do ๐Ÿ‘‡

1๏ธโƒฃ Master Advanced SQL

Foundations: Learn database structures, tables, and relationships.

Basic SQL Commands: SELECT, FROM, WHERE, ORDER BY.

Aggregations: Get hands-on with SUM, COUNT, AVG, MIN, MAX, GROUP BY, and HAVING.

JOINs: Understand LEFT, RIGHT, INNER, OUTER, and CARTESIAN joins.

Advanced Concepts: CTEs, window functions, and query optimization.

Metric Development: Build and report metrics effectively.


2๏ธโƒฃ Study Statistics & A/B Testing

Descriptive Statistics: Know your mean, median, mode, and standard deviation.

Distributions: Familiarize yourself with normal, Bernoulli, binomial, exponential, and uniform distributions.

Probability: Understand basic probability and Bayes' theorem.

Intro to ML: Start with linear regression, decision trees, and K-means clustering.

Experimentation Basics: T-tests, Z-tests, Type 1 & Type 2 errors.

A/B Testing: Design experimentsโ€”hypothesis formation, sample size calculation, and sample biases.


3๏ธโƒฃ Learn Python for Data

Data Manipulation: Use pandas for data cleaning and manipulation.

Data Visualization: Explore matplotlib and seaborn for creating visualizations.

Hypothesis Testing: Dive into scipy for statistical testing.

Basic Modeling: Practice building models with scikit-learn.


4๏ธโƒฃ Develop Product Sense

Product Management Basics: Manage projects and understand the product life cycle.

Data-Driven Strategy: Leverage data to inform decisions and measure success.

Metrics in Business: Define and evaluate metrics that matter to the business.


5๏ธโƒฃ Hone Soft Skills

Communication: Clearly explain data findings to technical and non-technical audiences.

Collaboration: Work effectively in teams.

Time Management: Prioritize and manage projects efficiently.

Self-Reflection: Regularly assess and improve your skills.


6๏ธโƒฃ Bonus: Basic Data Engineering

Data Modeling: Understand dimensional modeling and trade-offs in normalization vs. denormalization.

ETL: Set up extraction jobs, manage dependencies, clean and validate data.

Pipeline Testing: Conduct unit testing and ensure data quality throughout the pipeline.

I have curated the best interview resources to crack Data Science Interviews
๐Ÿ‘‡๐Ÿ‘‡
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D

Like if you need similar content ๐Ÿ˜„๐Ÿ‘
๐Ÿ‘8โค4๐Ÿ‘2
Platforms to learn Data Science ๐Ÿ‘†
โค2๐Ÿ‘2๐Ÿ‘1
๐—ง๐—ต๐—ฒ ๐Ÿฐ ๐—ฃ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜๐˜€ ๐—ง๐—ต๐—ฎ๐˜ ๐—–๐—ฎ๐—ป ๐—Ÿ๐—ฎ๐—ป๐—ฑ ๐—ฌ๐—ผ๐˜‚ ๐—ฎ ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—๐—ผ๐—ฏ (๐—˜๐˜ƒ๐—ฒ๐—ป ๐—ช๐—ถ๐˜๐—ต๐—ผ๐˜‚๐˜ ๐—˜๐˜…๐—ฝ๐—ฒ๐—ฟ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ) ๐Ÿ’ผ

Recruiters donโ€™t want to see more certificatesโ€”they want proof you can solve real-world problems. Thatโ€™s where the right projects come in. Not toy datasets, but projects that demonstrate storytelling, problem-solving, and impact.

Here are 4 killer projects thatโ€™ll make your portfolio stand out ๐Ÿ‘‡

๐Ÿ”น 1. Exploratory Data Analysis (EDA) on Real-World Dataset

Pick a messy dataset from Kaggle or public sources. Show your thought process.

โœ… Clean data using Pandas
โœ… Visualize trends with Seaborn/Matplotlib
โœ… Share actionable insights with graphs and markdown

Bonus: Turn it into a Jupyter Notebook with detailed storytelling

๐Ÿ”น 2. Predictive Modeling with ML

Solve a real problem using machine learning. For example:

โœ… Predict customer churn using Logistic Regression
โœ… Predict housing prices with Random Forest or XGBoost
โœ… Use scikit-learn for training + evaluation

Bonus: Add SHAP or feature importance to explain predictions

๐Ÿ”น 3. SQL-Powered Business Dashboard

Use real sales or ecommerce data to build a dashboard.

โœ… Write complex SQL queries for KPIs
โœ… Visualize with Power BI or Tableau
โœ… Show trends: Revenue by Region, Product Performance, etc.

Bonus: Add filters & slicers to make it interactive

๐Ÿ”น 4. End-to-End Data Science Pipeline Project

Build a complete pipeline from scratch.

โœ… Collect data via web scraping (e.g., IMDb, LinkedIn Jobs)
โœ… Clean + Analyze + Model + Deploy
โœ… Deploy with Streamlit/Flask + GitHub + Render

Bonus: Add a blog post or LinkedIn write-up explaining your approach

๐ŸŽฏ One solid project > 10 certificates.

Make it visible. Make it valuable. Share it confidently.

I have curated the best interview resources to crack Data Science Interviews
๐Ÿ‘‡๐Ÿ‘‡
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D

Like if you need similar content ๐Ÿ˜„๐Ÿ‘
๐Ÿ‘6โค2
AI Engineer vs Software Engineer ๐Ÿ‘†
๐Ÿ‘1๐Ÿ”ฅ1
๐Ÿฑ ๐—–๐—ผ๐—ฑ๐—ถ๐—ป๐—ด ๐—–๐—ต๐—ฎ๐—น๐—น๐—ฒ๐—ป๐—ด๐—ฒ๐˜€ ๐—ง๐—ต๐—ฎ๐˜ ๐—”๐—ฐ๐˜๐˜‚๐—ฎ๐—น๐—น๐˜† ๐— ๐—ฎ๐˜๐˜๐—ฒ๐—ฟ ๐—™๐—ผ๐—ฟ ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐˜๐—ถ๐˜€๐˜๐˜€ ๐Ÿ’ป

You donโ€™t need to be a LeetCode grandmaster.
But data science interviews still test your problem-solving mindsetโ€”and these 5 types of challenges are the ones that actually matter.

Hereโ€™s what to focus on (with examples) ๐Ÿ‘‡

๐Ÿ”น 1. String Manipulation (Common in Data Cleaning)

โœ… Parse messy columns (e.g., split โ€œName_Age_Cityโ€)
โœ… Regex to extract phone numbers, emails, URLs
โœ… Remove stopwords or HTML tags in text data

Example: Clean up a scraped dataset from LinkedIn bias

๐Ÿ”น 2. GroupBy and Aggregation with Pandas

โœ… Group sales data by product/region
โœ… Calculate avg, sum, count using .groupby()
โœ… Handle missing values smartly

Example: โ€œWhatโ€™s the top-selling product in each region?โ€

๐Ÿ”น 3. SQL Join + Window Functions

โœ… INNER JOIN, LEFT JOIN to merge tables
โœ… ROW_NUMBER(), RANK(), LEAD(), LAG() for trends
โœ… Use CTEs to break complex queries

Example: โ€œGet 2nd highest salary in each departmentโ€

๐Ÿ”น 4. Data Structures: Lists, Dicts, Sets in Python

โœ… Use dictionaries to map, filter, and count
โœ… Remove duplicates with sets
โœ… List comprehensions for clean solutions

Example: โ€œCount frequency of hashtags in tweetsโ€

๐Ÿ”น 5. Basic Algorithms (Not DP or Graphs)

โœ… Sliding window for moving averages
โœ… Two pointers for duplicate detection
โœ… Binary search in sorted arrays

Example: โ€œDetect if a pair of values sum to 100โ€

๐ŸŽฏ Tip: Practice challenges that feel like real-world data work, not textbook CS exams.

Use platforms like:

StrataScratch
Hackerrank (SQL + Python)
Kaggle Code

I have curated the best interview resources to crack Data Science Interviews
๐Ÿ‘‡๐Ÿ‘‡
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D

Like if you need similar content ๐Ÿ˜„๐Ÿ‘
๐Ÿ‘5โค3๐Ÿ‘1
Get File Size using Python ๐Ÿ‘†
โค1๐Ÿ‘1๐Ÿ”ฅ1
Important data science topics you should definitely be aware of

1. Statistics & Probability

Descriptive Statistics (mean, median, mode, variance, std deviation)
Probability Distributions (Normal, Binomial, Poisson)
Bayes' Theorem
Hypothesis Testing (t-test, chi-square test, ANOVA)
Confidence Intervals

2. Data Manipulation & Analysis

Data wrangling/cleaning
Handling missing values & outliers
Feature engineering & scaling
GroupBy operations
Pivot tables
Time series manipulation

3. Programming (Python/R)

Data structures (lists, dictionaries, sets)
Libraries:
Python: pandas, NumPy, matplotlib, seaborn, scikit-learn
R: dplyr, ggplot2, caret
Writing reusable functions
Working with APIs & files (CSV, JSON, Excel)

4. Data Visualization
Plot types: bar, line, scatter, histograms, heatmaps, boxplots
Dashboards (Power BI, Tableau, Plotly Dash, Streamlit)
Communicating insights clearly

5. Machine Learning

Supervised Learning
Linear & Logistic Regression
Decision Trees, Random Forest, Gradient Boosting (XGBoost, LightGBM)
SVM, KNN

Unsupervised Learning
K-means Clustering
PCA
Hierarchical Clustering

Model Evaluation
Accuracy, Precision, Recall, F1-Score
Confusion Matrix, ROC-AUC
Cross-validation, Grid Search

6. Deep Learning (Basics)
Neural Networks (perceptron, activation functions)
CNNs, RNNs (just an overview unless you're going deep into DL)
Frameworks: TensorFlow, PyTorch, Keras

7. SQL & Databases
SELECT, WHERE, GROUP BY, JOINS, CTEs, Subqueries
Window functions
Indexes and Query Optimization

8. Big Data & Cloud (Basics)
Hadoop, Spark
AWS, GCP, Azure (basic knowledge of data services)

9. Deployment & MLOps (Basic Awareness)
Model deployment (Flask, FastAPI)
Docker basics
CI/CD pipelines
Model monitoring

10. Business & Domain Knowledge
Framing a problem
Understanding business KPIs
Translating data insights into actionable strategies

I have curated the best interview resources to crack Data Science Interviews
๐Ÿ‘‡๐Ÿ‘‡
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D

Like for the detailed explanation on each topic ๐Ÿ˜„๐Ÿ‘
๐Ÿ‘8โค3
๐ŸŒฎ Data Analyst Vs Data Engineer Vs Data Scientist ๐ŸŒฎ


Skills required to become data analyst
๐Ÿ‘‰ Advanced Excel, Oracle/SQL
๐Ÿ‘‰ Python/R

Skills required to become data engineer
๐Ÿ‘‰ Python/ Java.
๐Ÿ‘‰ SQL, NoSQL technologies like Cassandra or MongoDB
๐Ÿ‘‰ Big data technologies like Hadoop, Hive/ Pig/ Spark

Skills required to become data Scientist
๐Ÿ‘‰ In-depth knowledge of tools like R/ Python/ SAS.
๐Ÿ‘‰ Well versed in various machine learning algorithms like scikit-learn, karas and tensorflow
๐Ÿ‘‰ SQL and NoSQL

Bonus skill required: Data Visualization (PowerBI/ Tableau) & Statistics
๐Ÿ‘4โค1๐Ÿ”ฅ1
Today, lets understand Machine Learning in simplest way possible

What is Machine Learning?

Think of it like this:

Machine Learning is when you teach a computer to learn from data, so it can make decisions or predictions without being told exactly what to do step-by-step.

Real-Life Example:
Letโ€™s say you want to teach a kid how to recognize a dog.
You show the kid a bunch of pictures of dogs.

The kid starts noticing patterns โ€” โ€œOh, they have four legs, fur, floppy ears...โ€

Next time the kid sees a new picture, they might say, โ€œThatโ€™s a dog!โ€ โ€” even if theyโ€™ve never seen that exact dog before.

Thatโ€™s what machine learning does โ€” but instead of a kid, it's a computer.

In Tech Terms (Still Simple):

You give the computer data (like pictures, numbers, or text).
You give it examples of the right answers (like โ€œthis is a dogโ€, โ€œthis is not a dogโ€).
It learns the patterns.

Later, when you give it new data, it makes a smart guess.

Few Common Uses of ML You See Every Day:

Netflix: Suggesting shows you might like.
Google Maps: Predicting traffic.
Amazon: Recommending products.
Banks: Detecting fraud in transactions.

Should we start covering all data Science and machine learning concepts like this?

I have curated the best interview resources to crack Data Science Interviews
๐Ÿ‘‡๐Ÿ‘‡
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D

Like for more โค๏ธ
๐Ÿ‘11โค3๐Ÿ”ฅ2๐Ÿ‘1
Machine Learning Types ๐Ÿ‘†
โค4๐Ÿ”ฅ1
Data Science & Machine Learning
Today, lets understand Machine Learning in simplest way possible What is Machine Learning? Think of it like this: Machine Learning is when you teach a computer to learn from data, so it can make decisions or predictions without being told exactly what toโ€ฆ
So now that you know what machine learning is (teaching computers to learn from data), the next thing is.

How do they learn?

Thatโ€™s where algorithms come in.
Think of algorithms as different learning styles.

Just like people โ€” some learn best by watching videos, others by solving problems โ€” computers have different ways to learn too. These different ways are what we call machine learning algorithms.

Letโ€™s start with the most common and simple ones.

Iโ€™ll explain them one by one in a way that makes sense.

Hereโ€™s a quick list of popular ML algorithms:
Linear Regression โ€“ predicts numbers (like house prices).
Logistic Regression โ€“ predicts categories (yes/no, spam/not spam).
Decision Trees โ€“ makes decisions by asking questions.
Random Forest โ€“ a group of decision trees working together.
K-Nearest Neighbors (KNN) โ€“ looks at neighbors to decide.
Support Vector Machine (SVM) โ€“ draws lines to separate data.
Naive Bayes โ€“ based on probability, good for text (like spam filters).
K-Means Clustering โ€“ groups similar things together.
Principal Component Analysis (PCA) โ€“ reduces complexity of data.
Neural Networks โ€“ the backbone of deep learning (used in face recognition, voice assistants, etc.).

Wanna need a detailed explanation on each algorithm?

React with โ™ฅ๏ธ and let me know in the comments if you really want to learn more about the algorithms.

You can now find Data Science & Machine Learning resources on WhatsApp as well: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
โค14๐Ÿ‘3๐Ÿ‘1๐Ÿค”1
Data Science & Machine Learning
So now that you know what machine learning is (teaching computers to learn from data), the next thing is. How do they learn? Thatโ€™s where algorithms come in. Think of algorithms as different learning styles. Just like people โ€” some learn best by watchingโ€ฆ
Now let's understand Linear Regression in detail.

Linear Regression is all about predicting a continuous value (like salary, price, temperature) based on another variable (like years of experience, number of products sold, etc.).

Let's say, Youโ€™re trying to predict someone's salary based on their years of experience. As experience increases, you generally expect the salary to increase too. What linear regression does is find the best line that fits this trend.

The line is represented by this simple equation:

Salary = m * Years of Experience + b

Here:
m is the slope of the line (it tells you how much salary increases with each additional year of experience).
b is the y-intercept (the starting point, or the salary when there's no experience).

The Process:

Training the model: The algorithm looks at all your data and tries to draw the straightest line possible that fits the pattern between experience and salary. It does this by adjusting the m (slope) and b (intercept) to minimize the difference between predicted and actual salaries.

Making predictions: Once the model has learned the best line, it can predict salaries for new people based on their years of experience. For example, if you tell it someone has 5 years of experience, it will give you the predicted salary.

Linear regression is great when there's a straight-line relationship between variables. It helps you make predictions, and because itโ€™s simple, itโ€™s often used as a starting point for many problems.

React with โ™ฅ๏ธ if you need similar explanation for the rest of the algorithms

Data Science & Machine Learning resources: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
โค11๐Ÿ‘5๐Ÿ‘1
Top Machine Learning Libraries ๐Ÿ‘†
๐Ÿ”ฅ4๐Ÿ‘2