๐๐ผ๐ ๐๐ผ ๐๐ฒ๐ฐ๐ผ๐บ๐ฒ ๐ฎ ๐๐ผ๐ฏ-๐ฅ๐ฒ๐ฎ๐ฑ๐ ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐๐ถ๐๐ ๐ณ๐ฟ๐ผ๐บ ๐ฆ๐ฐ๐ฟ๐ฎ๐๐ฐ๐ต (๐๐๐ฒ๐ป ๐ถ๐ณ ๐ฌ๐ผ๐โ๐ฟ๐ฒ ๐ฎ ๐๐ฒ๐ด๐ถ๐ป๐ป๐ฒ๐ฟ!) ๐
Wanna break into data science but feel overwhelmed by too many courses, buzzwords, and conflicting advice? Youโre not alone.
Hereโs the truth: You donโt need a PhD or 10 certifications. You just need the right skills in the right order.
Let me show you a proven 5-step roadmap that actually works for landing data science roles (even entry-level) ๐
๐น Step 1: Learn the Core Tools (This is Your Foundation)
Focus on 3 key tools firstโdonโt overcomplicate:
โ Python โ NumPy, Pandas, Matplotlib, Seaborn
โ SQL โ Joins, Aggregations, Window Functions
โ Excel โ VLOOKUP, Pivot Tables, Data Cleaning
๐น Step 2: Master Data Cleaning & EDA (Your Real-World Skill)
Real data is messy. Learn how to:
โ Handle missing data, outliers, and duplicates
โ Visualize trends using Matplotlib/Seaborn
โ Use groupby(), merge(), and pivot_table()
๐น Step 3: Learn ML Basics (No Fancy Math Needed)
Stick to core algorithms first:
โ Linear & Logistic Regression
โ Decision Trees & Random Forest
โ KMeans Clustering + Model Evaluation Metrics
๐น Step 4: Build Projects That Prove Your Skills
One strong project > 5 courses. Create:
โ Sales Forecasting using Time Series
โ Movie Recommendation System
โ HR Analytics Dashboard using Python + Excel
๐ Upload them on GitHub. Add visuals, write a good README, and share on LinkedIn.
๐น Step 5: Prep for the Job Hunt (Your Personal Brand Matters)
โ Create a strong LinkedIn profile with keywords like โAspiring Data Scientist | Python | SQL | MLโ
โ Add GitHub link + Highlight your Projects
โ Follow Data Science mentors, engage with content, and network for referrals
๐ฏ No shortcuts. Just consistent baby steps.
Every pro data scientist once started as a beginner. Stay curious, stay consistent.
Free Data Science Resources: https://whatsapp.com/channel/0029VauCKUI6WaKrgTHrRD0i
ENJOY LEARNING ๐๐
Wanna break into data science but feel overwhelmed by too many courses, buzzwords, and conflicting advice? Youโre not alone.
Hereโs the truth: You donโt need a PhD or 10 certifications. You just need the right skills in the right order.
Let me show you a proven 5-step roadmap that actually works for landing data science roles (even entry-level) ๐
๐น Step 1: Learn the Core Tools (This is Your Foundation)
Focus on 3 key tools firstโdonโt overcomplicate:
โ Python โ NumPy, Pandas, Matplotlib, Seaborn
โ SQL โ Joins, Aggregations, Window Functions
โ Excel โ VLOOKUP, Pivot Tables, Data Cleaning
๐น Step 2: Master Data Cleaning & EDA (Your Real-World Skill)
Real data is messy. Learn how to:
โ Handle missing data, outliers, and duplicates
โ Visualize trends using Matplotlib/Seaborn
โ Use groupby(), merge(), and pivot_table()
๐น Step 3: Learn ML Basics (No Fancy Math Needed)
Stick to core algorithms first:
โ Linear & Logistic Regression
โ Decision Trees & Random Forest
โ KMeans Clustering + Model Evaluation Metrics
๐น Step 4: Build Projects That Prove Your Skills
One strong project > 5 courses. Create:
โ Sales Forecasting using Time Series
โ Movie Recommendation System
โ HR Analytics Dashboard using Python + Excel
๐ Upload them on GitHub. Add visuals, write a good README, and share on LinkedIn.
๐น Step 5: Prep for the Job Hunt (Your Personal Brand Matters)
โ Create a strong LinkedIn profile with keywords like โAspiring Data Scientist | Python | SQL | MLโ
โ Add GitHub link + Highlight your Projects
โ Follow Data Science mentors, engage with content, and network for referrals
๐ฏ No shortcuts. Just consistent baby steps.
Every pro data scientist once started as a beginner. Stay curious, stay consistent.
Free Data Science Resources: https://whatsapp.com/channel/0029VauCKUI6WaKrgTHrRD0i
ENJOY LEARNING ๐๐
๐5โค2
๐ฐ Data Science Roadmap for Beginners 2025
โโโ ๐ What is Data Science?
โโโ ๐ง Data Science vs Data Analytics vs Machine Learning
โโโ ๐ Tools of the Trade (Python, R, Excel, SQL)
โโโ ๐ Python for Data Science (NumPy, Pandas, Matplotlib)
โโโ ๐ข Statistics & Probability Basics
โโโ ๐ Data Visualization (Matplotlib, Seaborn, Plotly)
โโโ ๐งผ Data Cleaning & Preprocessing
โโโ ๐งฎ Exploratory Data Analysis (EDA)
โโโ ๐ง Introduction to Machine Learning
โโโ ๐ฆ Supervised vs Unsupervised Learning
โโโ ๐ค Popular ML Algorithms (Linear Reg, KNN, Decision Trees)
โโโ ๐งช Model Evaluation (Accuracy, Precision, Recall, F1 Score)
โโโ ๐งฐ Model Tuning (Cross Validation, Grid Search)
โโโ โ๏ธ Feature Engineering
โโโ ๐ Real-world Projects (Kaggle, UCI Datasets)
โโโ ๐ Basic Deployment (Streamlit, Flask, Heroku)
โโโ ๐ Continuous Learning: Blogs, Research Papers, Competitions
Free Resources: https://t.iss.one/datalemur
Like for more โค๏ธ
โโโ ๐ What is Data Science?
โโโ ๐ง Data Science vs Data Analytics vs Machine Learning
โโโ ๐ Tools of the Trade (Python, R, Excel, SQL)
โโโ ๐ Python for Data Science (NumPy, Pandas, Matplotlib)
โโโ ๐ข Statistics & Probability Basics
โโโ ๐ Data Visualization (Matplotlib, Seaborn, Plotly)
โโโ ๐งผ Data Cleaning & Preprocessing
โโโ ๐งฎ Exploratory Data Analysis (EDA)
โโโ ๐ง Introduction to Machine Learning
โโโ ๐ฆ Supervised vs Unsupervised Learning
โโโ ๐ค Popular ML Algorithms (Linear Reg, KNN, Decision Trees)
โโโ ๐งช Model Evaluation (Accuracy, Precision, Recall, F1 Score)
โโโ ๐งฐ Model Tuning (Cross Validation, Grid Search)
โโโ โ๏ธ Feature Engineering
โโโ ๐ Real-world Projects (Kaggle, UCI Datasets)
โโโ ๐ Basic Deployment (Streamlit, Flask, Heroku)
โโโ ๐ Continuous Learning: Blogs, Research Papers, Competitions
Free Resources: https://t.iss.one/datalemur
Like for more โค๏ธ
๐4โค1
๐ฐ Machine Learning Roadmap for Beginners 2025
โโโ ๐ง What is Machine Learning?
โโโ ๐งช ML vs AI vs Deep Learning
โโโ ๐ข Math Foundation (Linear Algebra, Calculus, Stats Basics)
โโโ ๐ Python Libraries (NumPy, Pandas, Scikit-learn)
โโโ ๐ Data Preprocessing & Cleaning
โโโ ๐ Feature Selection & Engineering
โโโ ๐งญ Supervised Learning (Regression, Classification)
โโโ ๐งฑ Unsupervised Learning (Clustering, Dimensionality Reduction)
โโโ ๐น Model Evaluation (Confusion Matrix, ROC, AUC)
โโโ โ๏ธ Model Tuning (Hyperparameter Tuning, Grid Search)
โโโ ๐งฐ Ensemble Methods (Bagging, Boosting, Random Forests)
โโโ ๐ฎ Introduction to Neural Networks
โโโ ๐ Overfitting vs Underfitting
โโโ ๐ Model Deployment (Streamlit, Flask, FastAPI Basics)
โโโ ๐งช ML Projects (Classification, Forecasting, Recommender)
โโโ ๐ ML Competitions (Kaggle, Hackathons)
Like for the detailed explanation โค๏ธ
#machinelearning
โโโ ๐ง What is Machine Learning?
โโโ ๐งช ML vs AI vs Deep Learning
โโโ ๐ข Math Foundation (Linear Algebra, Calculus, Stats Basics)
โโโ ๐ Python Libraries (NumPy, Pandas, Scikit-learn)
โโโ ๐ Data Preprocessing & Cleaning
โโโ ๐ Feature Selection & Engineering
โโโ ๐งญ Supervised Learning (Regression, Classification)
โโโ ๐งฑ Unsupervised Learning (Clustering, Dimensionality Reduction)
โโโ ๐น Model Evaluation (Confusion Matrix, ROC, AUC)
โโโ โ๏ธ Model Tuning (Hyperparameter Tuning, Grid Search)
โโโ ๐งฐ Ensemble Methods (Bagging, Boosting, Random Forests)
โโโ ๐ฎ Introduction to Neural Networks
โโโ ๐ Overfitting vs Underfitting
โโโ ๐ Model Deployment (Streamlit, Flask, FastAPI Basics)
โโโ ๐งช ML Projects (Classification, Forecasting, Recommender)
โโโ ๐ ML Competitions (Kaggle, Hackathons)
Like for the detailed explanation โค๏ธ
#machinelearning
โค7๐2
If I Were to Start My Data Science Career from Scratch, Here's What I Would Do ๐
1๏ธโฃ Master Advanced SQL
Foundations: Learn database structures, tables, and relationships.
Basic SQL Commands: SELECT, FROM, WHERE, ORDER BY.
Aggregations: Get hands-on with SUM, COUNT, AVG, MIN, MAX, GROUP BY, and HAVING.
JOINs: Understand LEFT, RIGHT, INNER, OUTER, and CARTESIAN joins.
Advanced Concepts: CTEs, window functions, and query optimization.
Metric Development: Build and report metrics effectively.
2๏ธโฃ Study Statistics & A/B Testing
Descriptive Statistics: Know your mean, median, mode, and standard deviation.
Distributions: Familiarize yourself with normal, Bernoulli, binomial, exponential, and uniform distributions.
Probability: Understand basic probability and Bayes' theorem.
Intro to ML: Start with linear regression, decision trees, and K-means clustering.
Experimentation Basics: T-tests, Z-tests, Type 1 & Type 2 errors.
A/B Testing: Design experimentsโhypothesis formation, sample size calculation, and sample biases.
3๏ธโฃ Learn Python for Data
Data Manipulation: Use pandas for data cleaning and manipulation.
Data Visualization: Explore matplotlib and seaborn for creating visualizations.
Hypothesis Testing: Dive into scipy for statistical testing.
Basic Modeling: Practice building models with scikit-learn.
4๏ธโฃ Develop Product Sense
Product Management Basics: Manage projects and understand the product life cycle.
Data-Driven Strategy: Leverage data to inform decisions and measure success.
Metrics in Business: Define and evaluate metrics that matter to the business.
5๏ธโฃ Hone Soft Skills
Communication: Clearly explain data findings to technical and non-technical audiences.
Collaboration: Work effectively in teams.
Time Management: Prioritize and manage projects efficiently.
Self-Reflection: Regularly assess and improve your skills.
6๏ธโฃ Bonus: Basic Data Engineering
Data Modeling: Understand dimensional modeling and trade-offs in normalization vs. denormalization.
ETL: Set up extraction jobs, manage dependencies, clean and validate data.
Pipeline Testing: Conduct unit testing and ensure data quality throughout the pipeline.
I have curated the best interview resources to crack Data Science Interviews
๐๐
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
Like if you need similar content ๐๐
1๏ธโฃ Master Advanced SQL
Foundations: Learn database structures, tables, and relationships.
Basic SQL Commands: SELECT, FROM, WHERE, ORDER BY.
Aggregations: Get hands-on with SUM, COUNT, AVG, MIN, MAX, GROUP BY, and HAVING.
JOINs: Understand LEFT, RIGHT, INNER, OUTER, and CARTESIAN joins.
Advanced Concepts: CTEs, window functions, and query optimization.
Metric Development: Build and report metrics effectively.
2๏ธโฃ Study Statistics & A/B Testing
Descriptive Statistics: Know your mean, median, mode, and standard deviation.
Distributions: Familiarize yourself with normal, Bernoulli, binomial, exponential, and uniform distributions.
Probability: Understand basic probability and Bayes' theorem.
Intro to ML: Start with linear regression, decision trees, and K-means clustering.
Experimentation Basics: T-tests, Z-tests, Type 1 & Type 2 errors.
A/B Testing: Design experimentsโhypothesis formation, sample size calculation, and sample biases.
3๏ธโฃ Learn Python for Data
Data Manipulation: Use pandas for data cleaning and manipulation.
Data Visualization: Explore matplotlib and seaborn for creating visualizations.
Hypothesis Testing: Dive into scipy for statistical testing.
Basic Modeling: Practice building models with scikit-learn.
4๏ธโฃ Develop Product Sense
Product Management Basics: Manage projects and understand the product life cycle.
Data-Driven Strategy: Leverage data to inform decisions and measure success.
Metrics in Business: Define and evaluate metrics that matter to the business.
5๏ธโฃ Hone Soft Skills
Communication: Clearly explain data findings to technical and non-technical audiences.
Collaboration: Work effectively in teams.
Time Management: Prioritize and manage projects efficiently.
Self-Reflection: Regularly assess and improve your skills.
6๏ธโฃ Bonus: Basic Data Engineering
Data Modeling: Understand dimensional modeling and trade-offs in normalization vs. denormalization.
ETL: Set up extraction jobs, manage dependencies, clean and validate data.
Pipeline Testing: Conduct unit testing and ensure data quality throughout the pipeline.
I have curated the best interview resources to crack Data Science Interviews
๐๐
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
Like if you need similar content ๐๐
๐8โค4๐2
๐ง๐ต๐ฒ ๐ฐ ๐ฃ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐๐ ๐ง๐ต๐ฎ๐ ๐๐ฎ๐ป ๐๐ฎ๐ป๐ฑ ๐ฌ๐ผ๐ ๐ฎ ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐๐ผ๐ฏ (๐๐๐ฒ๐ป ๐ช๐ถ๐๐ต๐ผ๐๐ ๐๐
๐ฝ๐ฒ๐ฟ๐ถ๐ฒ๐ป๐ฐ๐ฒ) ๐ผ
Recruiters donโt want to see more certificatesโthey want proof you can solve real-world problems. Thatโs where the right projects come in. Not toy datasets, but projects that demonstrate storytelling, problem-solving, and impact.
Here are 4 killer projects thatโll make your portfolio stand out ๐
๐น 1. Exploratory Data Analysis (EDA) on Real-World Dataset
Pick a messy dataset from Kaggle or public sources. Show your thought process.
โ Clean data using Pandas
โ Visualize trends with Seaborn/Matplotlib
โ Share actionable insights with graphs and markdown
Bonus: Turn it into a Jupyter Notebook with detailed storytelling
๐น 2. Predictive Modeling with ML
Solve a real problem using machine learning. For example:
โ Predict customer churn using Logistic Regression
โ Predict housing prices with Random Forest or XGBoost
โ Use scikit-learn for training + evaluation
Bonus: Add SHAP or feature importance to explain predictions
๐น 3. SQL-Powered Business Dashboard
Use real sales or ecommerce data to build a dashboard.
โ Write complex SQL queries for KPIs
โ Visualize with Power BI or Tableau
โ Show trends: Revenue by Region, Product Performance, etc.
Bonus: Add filters & slicers to make it interactive
๐น 4. End-to-End Data Science Pipeline Project
Build a complete pipeline from scratch.
โ Collect data via web scraping (e.g., IMDb, LinkedIn Jobs)
โ Clean + Analyze + Model + Deploy
โ Deploy with Streamlit/Flask + GitHub + Render
Bonus: Add a blog post or LinkedIn write-up explaining your approach
๐ฏ One solid project > 10 certificates.
Make it visible. Make it valuable. Share it confidently.
I have curated the best interview resources to crack Data Science Interviews
๐๐
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
Like if you need similar content ๐๐
Recruiters donโt want to see more certificatesโthey want proof you can solve real-world problems. Thatโs where the right projects come in. Not toy datasets, but projects that demonstrate storytelling, problem-solving, and impact.
Here are 4 killer projects thatโll make your portfolio stand out ๐
๐น 1. Exploratory Data Analysis (EDA) on Real-World Dataset
Pick a messy dataset from Kaggle or public sources. Show your thought process.
โ Clean data using Pandas
โ Visualize trends with Seaborn/Matplotlib
โ Share actionable insights with graphs and markdown
Bonus: Turn it into a Jupyter Notebook with detailed storytelling
๐น 2. Predictive Modeling with ML
Solve a real problem using machine learning. For example:
โ Predict customer churn using Logistic Regression
โ Predict housing prices with Random Forest or XGBoost
โ Use scikit-learn for training + evaluation
Bonus: Add SHAP or feature importance to explain predictions
๐น 3. SQL-Powered Business Dashboard
Use real sales or ecommerce data to build a dashboard.
โ Write complex SQL queries for KPIs
โ Visualize with Power BI or Tableau
โ Show trends: Revenue by Region, Product Performance, etc.
Bonus: Add filters & slicers to make it interactive
๐น 4. End-to-End Data Science Pipeline Project
Build a complete pipeline from scratch.
โ Collect data via web scraping (e.g., IMDb, LinkedIn Jobs)
โ Clean + Analyze + Model + Deploy
โ Deploy with Streamlit/Flask + GitHub + Render
Bonus: Add a blog post or LinkedIn write-up explaining your approach
๐ฏ One solid project > 10 certificates.
Make it visible. Make it valuable. Share it confidently.
I have curated the best interview resources to crack Data Science Interviews
๐๐
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
Like if you need similar content ๐๐
๐6โค2
๐ฑ ๐๐ผ๐ฑ๐ถ๐ป๐ด ๐๐ต๐ฎ๐น๐น๐ฒ๐ป๐ด๐ฒ๐ ๐ง๐ต๐ฎ๐ ๐๐ฐ๐๐๐ฎ๐น๐น๐ ๐ ๐ฎ๐๐๐ฒ๐ฟ ๐๐ผ๐ฟ ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐๐ถ๐๐๐ ๐ป
You donโt need to be a LeetCode grandmaster.
But data science interviews still test your problem-solving mindsetโand these 5 types of challenges are the ones that actually matter.
Hereโs what to focus on (with examples) ๐
๐น 1. String Manipulation (Common in Data Cleaning)
โ Parse messy columns (e.g., split โName_Age_Cityโ)
โ Regex to extract phone numbers, emails, URLs
โ Remove stopwords or HTML tags in text data
Example: Clean up a scraped dataset from LinkedIn bias
๐น 2. GroupBy and Aggregation with Pandas
โ Group sales data by product/region
โ Calculate avg, sum, count using .groupby()
โ Handle missing values smartly
Example: โWhatโs the top-selling product in each region?โ
๐น 3. SQL Join + Window Functions
โ INNER JOIN, LEFT JOIN to merge tables
โ ROW_NUMBER(), RANK(), LEAD(), LAG() for trends
โ Use CTEs to break complex queries
Example: โGet 2nd highest salary in each departmentโ
๐น 4. Data Structures: Lists, Dicts, Sets in Python
โ Use dictionaries to map, filter, and count
โ Remove duplicates with sets
โ List comprehensions for clean solutions
Example: โCount frequency of hashtags in tweetsโ
๐น 5. Basic Algorithms (Not DP or Graphs)
โ Sliding window for moving averages
โ Two pointers for duplicate detection
โ Binary search in sorted arrays
Example: โDetect if a pair of values sum to 100โ
๐ฏ Tip: Practice challenges that feel like real-world data work, not textbook CS exams.
Use platforms like:
StrataScratch
Hackerrank (SQL + Python)
Kaggle Code
I have curated the best interview resources to crack Data Science Interviews
๐๐
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
Like if you need similar content ๐๐
You donโt need to be a LeetCode grandmaster.
But data science interviews still test your problem-solving mindsetโand these 5 types of challenges are the ones that actually matter.
Hereโs what to focus on (with examples) ๐
๐น 1. String Manipulation (Common in Data Cleaning)
โ Parse messy columns (e.g., split โName_Age_Cityโ)
โ Regex to extract phone numbers, emails, URLs
โ Remove stopwords or HTML tags in text data
Example: Clean up a scraped dataset from LinkedIn bias
๐น 2. GroupBy and Aggregation with Pandas
โ Group sales data by product/region
โ Calculate avg, sum, count using .groupby()
โ Handle missing values smartly
Example: โWhatโs the top-selling product in each region?โ
๐น 3. SQL Join + Window Functions
โ INNER JOIN, LEFT JOIN to merge tables
โ ROW_NUMBER(), RANK(), LEAD(), LAG() for trends
โ Use CTEs to break complex queries
Example: โGet 2nd highest salary in each departmentโ
๐น 4. Data Structures: Lists, Dicts, Sets in Python
โ Use dictionaries to map, filter, and count
โ Remove duplicates with sets
โ List comprehensions for clean solutions
Example: โCount frequency of hashtags in tweetsโ
๐น 5. Basic Algorithms (Not DP or Graphs)
โ Sliding window for moving averages
โ Two pointers for duplicate detection
โ Binary search in sorted arrays
Example: โDetect if a pair of values sum to 100โ
๐ฏ Tip: Practice challenges that feel like real-world data work, not textbook CS exams.
Use platforms like:
StrataScratch
Hackerrank (SQL + Python)
Kaggle Code
I have curated the best interview resources to crack Data Science Interviews
๐๐
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
Like if you need similar content ๐๐
๐5โค3๐1
Important data science topics you should definitely be aware of
1. Statistics & Probability
Descriptive Statistics (mean, median, mode, variance, std deviation)
Probability Distributions (Normal, Binomial, Poisson)
Bayes' Theorem
Hypothesis Testing (t-test, chi-square test, ANOVA)
Confidence Intervals
2. Data Manipulation & Analysis
Data wrangling/cleaning
Handling missing values & outliers
Feature engineering & scaling
GroupBy operations
Pivot tables
Time series manipulation
3. Programming (Python/R)
Data structures (lists, dictionaries, sets)
Libraries:
Python: pandas, NumPy, matplotlib, seaborn, scikit-learn
R: dplyr, ggplot2, caret
Writing reusable functions
Working with APIs & files (CSV, JSON, Excel)
4. Data Visualization
Plot types: bar, line, scatter, histograms, heatmaps, boxplots
Dashboards (Power BI, Tableau, Plotly Dash, Streamlit)
Communicating insights clearly
5. Machine Learning
Supervised Learning
Linear & Logistic Regression
Decision Trees, Random Forest, Gradient Boosting (XGBoost, LightGBM)
SVM, KNN
Unsupervised Learning
K-means Clustering
PCA
Hierarchical Clustering
Model Evaluation
Accuracy, Precision, Recall, F1-Score
Confusion Matrix, ROC-AUC
Cross-validation, Grid Search
6. Deep Learning (Basics)
Neural Networks (perceptron, activation functions)
CNNs, RNNs (just an overview unless you're going deep into DL)
Frameworks: TensorFlow, PyTorch, Keras
7. SQL & Databases
SELECT, WHERE, GROUP BY, JOINS, CTEs, Subqueries
Window functions
Indexes and Query Optimization
8. Big Data & Cloud (Basics)
Hadoop, Spark
AWS, GCP, Azure (basic knowledge of data services)
9. Deployment & MLOps (Basic Awareness)
Model deployment (Flask, FastAPI)
Docker basics
CI/CD pipelines
Model monitoring
10. Business & Domain Knowledge
Framing a problem
Understanding business KPIs
Translating data insights into actionable strategies
I have curated the best interview resources to crack Data Science Interviews
๐๐
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
Like for the detailed explanation on each topic ๐๐
1. Statistics & Probability
Descriptive Statistics (mean, median, mode, variance, std deviation)
Probability Distributions (Normal, Binomial, Poisson)
Bayes' Theorem
Hypothesis Testing (t-test, chi-square test, ANOVA)
Confidence Intervals
2. Data Manipulation & Analysis
Data wrangling/cleaning
Handling missing values & outliers
Feature engineering & scaling
GroupBy operations
Pivot tables
Time series manipulation
3. Programming (Python/R)
Data structures (lists, dictionaries, sets)
Libraries:
Python: pandas, NumPy, matplotlib, seaborn, scikit-learn
R: dplyr, ggplot2, caret
Writing reusable functions
Working with APIs & files (CSV, JSON, Excel)
4. Data Visualization
Plot types: bar, line, scatter, histograms, heatmaps, boxplots
Dashboards (Power BI, Tableau, Plotly Dash, Streamlit)
Communicating insights clearly
5. Machine Learning
Supervised Learning
Linear & Logistic Regression
Decision Trees, Random Forest, Gradient Boosting (XGBoost, LightGBM)
SVM, KNN
Unsupervised Learning
K-means Clustering
PCA
Hierarchical Clustering
Model Evaluation
Accuracy, Precision, Recall, F1-Score
Confusion Matrix, ROC-AUC
Cross-validation, Grid Search
6. Deep Learning (Basics)
Neural Networks (perceptron, activation functions)
CNNs, RNNs (just an overview unless you're going deep into DL)
Frameworks: TensorFlow, PyTorch, Keras
7. SQL & Databases
SELECT, WHERE, GROUP BY, JOINS, CTEs, Subqueries
Window functions
Indexes and Query Optimization
8. Big Data & Cloud (Basics)
Hadoop, Spark
AWS, GCP, Azure (basic knowledge of data services)
9. Deployment & MLOps (Basic Awareness)
Model deployment (Flask, FastAPI)
Docker basics
CI/CD pipelines
Model monitoring
10. Business & Domain Knowledge
Framing a problem
Understanding business KPIs
Translating data insights into actionable strategies
I have curated the best interview resources to crack Data Science Interviews
๐๐
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
Like for the detailed explanation on each topic ๐๐
๐8โค3
๐ฎ Data Analyst Vs Data Engineer Vs Data Scientist ๐ฎ
Skills required to become data analyst
๐ Advanced Excel, Oracle/SQL
๐ Python/R
Skills required to become data engineer
๐ Python/ Java.
๐ SQL, NoSQL technologies like Cassandra or MongoDB
๐ Big data technologies like Hadoop, Hive/ Pig/ Spark
Skills required to become data Scientist
๐ In-depth knowledge of tools like R/ Python/ SAS.
๐ Well versed in various machine learning algorithms like scikit-learn, karas and tensorflow
๐ SQL and NoSQL
Bonus skill required: Data Visualization (PowerBI/ Tableau) & Statistics
Skills required to become data analyst
๐ Advanced Excel, Oracle/SQL
๐ Python/R
Skills required to become data engineer
๐ Python/ Java.
๐ SQL, NoSQL technologies like Cassandra or MongoDB
๐ Big data technologies like Hadoop, Hive/ Pig/ Spark
Skills required to become data Scientist
๐ In-depth knowledge of tools like R/ Python/ SAS.
๐ Well versed in various machine learning algorithms like scikit-learn, karas and tensorflow
๐ SQL and NoSQL
Bonus skill required: Data Visualization (PowerBI/ Tableau) & Statistics
๐4โค1๐ฅ1
Today, lets understand Machine Learning in simplest way possible
What is Machine Learning?
Think of it like this:
Machine Learning is when you teach a computer to learn from data, so it can make decisions or predictions without being told exactly what to do step-by-step.
Real-Life Example:
Letโs say you want to teach a kid how to recognize a dog.
You show the kid a bunch of pictures of dogs.
The kid starts noticing patterns โ โOh, they have four legs, fur, floppy ears...โ
Next time the kid sees a new picture, they might say, โThatโs a dog!โ โ even if theyโve never seen that exact dog before.
Thatโs what machine learning does โ but instead of a kid, it's a computer.
In Tech Terms (Still Simple):
You give the computer data (like pictures, numbers, or text).
You give it examples of the right answers (like โthis is a dogโ, โthis is not a dogโ).
It learns the patterns.
Later, when you give it new data, it makes a smart guess.
Few Common Uses of ML You See Every Day:
Netflix: Suggesting shows you might like.
Google Maps: Predicting traffic.
Amazon: Recommending products.
Banks: Detecting fraud in transactions.
Should we start covering all data Science and machine learning concepts like this?
I have curated the best interview resources to crack Data Science Interviews
๐๐
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
Like for more โค๏ธ
What is Machine Learning?
Think of it like this:
Machine Learning is when you teach a computer to learn from data, so it can make decisions or predictions without being told exactly what to do step-by-step.
Real-Life Example:
Letโs say you want to teach a kid how to recognize a dog.
You show the kid a bunch of pictures of dogs.
The kid starts noticing patterns โ โOh, they have four legs, fur, floppy ears...โ
Next time the kid sees a new picture, they might say, โThatโs a dog!โ โ even if theyโve never seen that exact dog before.
Thatโs what machine learning does โ but instead of a kid, it's a computer.
In Tech Terms (Still Simple):
You give the computer data (like pictures, numbers, or text).
You give it examples of the right answers (like โthis is a dogโ, โthis is not a dogโ).
It learns the patterns.
Later, when you give it new data, it makes a smart guess.
Few Common Uses of ML You See Every Day:
Netflix: Suggesting shows you might like.
Google Maps: Predicting traffic.
Amazon: Recommending products.
Banks: Detecting fraud in transactions.
Should we start covering all data Science and machine learning concepts like this?
I have curated the best interview resources to crack Data Science Interviews
๐๐
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
Like for more โค๏ธ
๐11โค3๐ฅ2๐1