Data Science & Machine Learning
73.1K subscribers
778 photos
2 videos
68 files
685 links
Join this channel to learn data science, artificial intelligence and machine learning with funny quizzes, interesting projects and amazing resources for free

For collaborations: @love_data
Download Telegram
Python Libraries for Data Science
๐Ÿ‘5๐Ÿ”ฅ1
9 tips to get started with Data Analysis:

Learn Excel, SQL, and a programming language (Python or R)

Understand basic statistics and probability

Practice with real-world datasets (Kaggle, Data.gov)

Clean and preprocess data effectively

Visualize data using charts and graphs

Ask the right questions before diving into data

Use libraries like Pandas, NumPy, and Matplotlib

Focus on storytelling with data insights

Build small projects to apply what you learn

Data Science & Machine Learning Resources: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
10 Machine Learning Concepts You Must Know

โœ… Supervised vs Unsupervised Learning โ€“ Understand the foundation of ML tasks
โœ… Bias-Variance Tradeoff โ€“ Balance underfitting and overfitting
โœ… Feature Engineering โ€“ The secret sauce to boost model performance
โœ… Train-Test Split & Cross-Validation โ€“ Evaluate models the right way
โœ… Confusion Matrix โ€“ Measure model accuracy, precision, recall, and F1
โœ… Gradient Descent โ€“ The algorithm behind learning in most models
โœ… Regularization (L1/L2) โ€“ Prevent overfitting by penalizing complexity
โœ… Decision Trees & Random Forests โ€“ Interpretable and powerful models
โœ… Support Vector Machines โ€“ Great for classification with clear boundaries
โœ… Neural Networks โ€“ The foundation of deep learning

React with โค๏ธ for detailed explained

Data Science & Machine Learning Resources: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
โค5๐Ÿ‘1
Python Roadmap for 2025 ๐Ÿ‘†
๐Ÿ‘1๐Ÿ”ฅ1
๐—›๐—ผ๐˜„ ๐˜๐—ผ ๐—•๐—ฒ๐—ฐ๐—ผ๐—บ๐—ฒ ๐—ฎ ๐—๐—ผ๐—ฏ-๐—ฅ๐—ฒ๐—ฎ๐—ฑ๐˜† ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐˜๐—ถ๐˜€๐˜ ๐—ณ๐—ฟ๐—ผ๐—บ ๐—ฆ๐—ฐ๐—ฟ๐—ฎ๐˜๐—ฐ๐—ต (๐—˜๐˜ƒ๐—ฒ๐—ป ๐—ถ๐—ณ ๐—ฌ๐—ผ๐˜‚โ€™๐—ฟ๐—ฒ ๐—ฎ ๐—•๐—ฒ๐—ด๐—ถ๐—ป๐—ป๐—ฒ๐—ฟ!) ๐Ÿ“Š

Wanna break into data science but feel overwhelmed by too many courses, buzzwords, and conflicting advice? Youโ€™re not alone.

Hereโ€™s the truth: You donโ€™t need a PhD or 10 certifications. You just need the right skills in the right order.

Let me show you a proven 5-step roadmap that actually works for landing data science roles (even entry-level) ๐Ÿ‘‡

๐Ÿ”น Step 1: Learn the Core Tools (This is Your Foundation)

Focus on 3 key tools firstโ€”donโ€™t overcomplicate:

โœ… Python โ€“ NumPy, Pandas, Matplotlib, Seaborn
โœ… SQL โ€“ Joins, Aggregations, Window Functions
โœ… Excel โ€“ VLOOKUP, Pivot Tables, Data Cleaning

๐Ÿ”น Step 2: Master Data Cleaning & EDA (Your Real-World Skill)

Real data is messy. Learn how to:

โœ… Handle missing data, outliers, and duplicates
โœ… Visualize trends using Matplotlib/Seaborn
โœ… Use groupby(), merge(), and pivot_table()

๐Ÿ”น Step 3: Learn ML Basics (No Fancy Math Needed)

Stick to core algorithms first:

โœ… Linear & Logistic Regression
โœ… Decision Trees & Random Forest
โœ… KMeans Clustering + Model Evaluation Metrics

๐Ÿ”น Step 4: Build Projects That Prove Your Skills

One strong project > 5 courses. Create:

โœ… Sales Forecasting using Time Series
โœ… Movie Recommendation System
โœ… HR Analytics Dashboard using Python + Excel
๐Ÿ“ Upload them on GitHub. Add visuals, write a good README, and share on LinkedIn.

๐Ÿ”น Step 5: Prep for the Job Hunt (Your Personal Brand Matters)

โœ… Create a strong LinkedIn profile with keywords like โ€œAspiring Data Scientist | Python | SQL | MLโ€
โœ… Add GitHub link + Highlight your Projects
โœ… Follow Data Science mentors, engage with content, and network for referrals

๐ŸŽฏ No shortcuts. Just consistent baby steps.

Every pro data scientist once started as a beginner. Stay curious, stay consistent.

Free Data Science Resources: https://whatsapp.com/channel/0029VauCKUI6WaKrgTHrRD0i

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
๐Ÿ‘5โค2
๐Ÿ”ฐ Data Science Roadmap for Beginners 2025
โ”œโ”€โ”€ ๐Ÿ“˜ What is Data Science?
โ”œโ”€โ”€ ๐Ÿง  Data Science vs Data Analytics vs Machine Learning
โ”œโ”€โ”€ ๐Ÿ›  Tools of the Trade (Python, R, Excel, SQL)
โ”œโ”€โ”€ ๐Ÿ Python for Data Science (NumPy, Pandas, Matplotlib)
โ”œโ”€โ”€ ๐Ÿ”ข Statistics & Probability Basics
โ”œโ”€โ”€ ๐Ÿ“Š Data Visualization (Matplotlib, Seaborn, Plotly)
โ”œโ”€โ”€ ๐Ÿงผ Data Cleaning & Preprocessing
โ”œโ”€โ”€ ๐Ÿงฎ Exploratory Data Analysis (EDA)
โ”œโ”€โ”€ ๐Ÿง  Introduction to Machine Learning
โ”œโ”€โ”€ ๐Ÿ“ฆ Supervised vs Unsupervised Learning
โ”œโ”€โ”€ ๐Ÿค– Popular ML Algorithms (Linear Reg, KNN, Decision Trees)
โ”œโ”€โ”€ ๐Ÿงช Model Evaluation (Accuracy, Precision, Recall, F1 Score)
โ”œโ”€โ”€ ๐Ÿงฐ Model Tuning (Cross Validation, Grid Search)
โ”œโ”€โ”€ โš™๏ธ Feature Engineering
โ”œโ”€โ”€ ๐Ÿ— Real-world Projects (Kaggle, UCI Datasets)
โ”œโ”€โ”€ ๐Ÿ“ˆ Basic Deployment (Streamlit, Flask, Heroku)
โ”œโ”€โ”€ ๐Ÿ” Continuous Learning: Blogs, Research Papers, Competitions

Free Resources: https://t.iss.one/datalemur

Like for more โค๏ธ
๐Ÿ‘4โค1
Python Libraries for Data Science
๐Ÿ‘5โค4
How to choose Data Science Career ๐Ÿ‘†
๐Ÿ‘7๐Ÿ”ฅ1
๐Ÿ”ฐ Machine Learning Roadmap for Beginners 2025
โ”œโ”€โ”€ ๐Ÿง  What is Machine Learning?
โ”œโ”€โ”€ ๐Ÿงช ML vs AI vs Deep Learning
โ”œโ”€โ”€ ๐Ÿ”ข Math Foundation (Linear Algebra, Calculus, Stats Basics)
โ”œโ”€โ”€ ๐Ÿ Python Libraries (NumPy, Pandas, Scikit-learn)
โ”œโ”€โ”€ ๐Ÿ“Š Data Preprocessing & Cleaning
โ”œโ”€โ”€ ๐Ÿ“‰ Feature Selection & Engineering
โ”œโ”€โ”€ ๐Ÿงญ Supervised Learning (Regression, Classification)
โ”œโ”€โ”€ ๐Ÿงฑ Unsupervised Learning (Clustering, Dimensionality Reduction)
โ”œโ”€โ”€ ๐Ÿ•น Model Evaluation (Confusion Matrix, ROC, AUC)
โ”œโ”€โ”€ โš™๏ธ Model Tuning (Hyperparameter Tuning, Grid Search)
โ”œโ”€โ”€ ๐Ÿงฐ Ensemble Methods (Bagging, Boosting, Random Forests)
โ”œโ”€โ”€ ๐Ÿ”ฎ Introduction to Neural Networks
โ”œโ”€โ”€ ๐Ÿ” Overfitting vs Underfitting
โ”œโ”€โ”€ ๐Ÿ“ˆ Model Deployment (Streamlit, Flask, FastAPI Basics)
โ”œโ”€โ”€ ๐Ÿงช ML Projects (Classification, Forecasting, Recommender)
โ”œโ”€โ”€ ๐Ÿ† ML Competitions (Kaggle, Hackathons)

Like for the detailed explanation โค๏ธ

#machinelearning
โค7๐Ÿ‘2
If I Were to Start My Data Science Career from Scratch, Here's What I Would Do ๐Ÿ‘‡

1๏ธโƒฃ Master Advanced SQL

Foundations: Learn database structures, tables, and relationships.

Basic SQL Commands: SELECT, FROM, WHERE, ORDER BY.

Aggregations: Get hands-on with SUM, COUNT, AVG, MIN, MAX, GROUP BY, and HAVING.

JOINs: Understand LEFT, RIGHT, INNER, OUTER, and CARTESIAN joins.

Advanced Concepts: CTEs, window functions, and query optimization.

Metric Development: Build and report metrics effectively.


2๏ธโƒฃ Study Statistics & A/B Testing

Descriptive Statistics: Know your mean, median, mode, and standard deviation.

Distributions: Familiarize yourself with normal, Bernoulli, binomial, exponential, and uniform distributions.

Probability: Understand basic probability and Bayes' theorem.

Intro to ML: Start with linear regression, decision trees, and K-means clustering.

Experimentation Basics: T-tests, Z-tests, Type 1 & Type 2 errors.

A/B Testing: Design experimentsโ€”hypothesis formation, sample size calculation, and sample biases.


3๏ธโƒฃ Learn Python for Data

Data Manipulation: Use pandas for data cleaning and manipulation.

Data Visualization: Explore matplotlib and seaborn for creating visualizations.

Hypothesis Testing: Dive into scipy for statistical testing.

Basic Modeling: Practice building models with scikit-learn.


4๏ธโƒฃ Develop Product Sense

Product Management Basics: Manage projects and understand the product life cycle.

Data-Driven Strategy: Leverage data to inform decisions and measure success.

Metrics in Business: Define and evaluate metrics that matter to the business.


5๏ธโƒฃ Hone Soft Skills

Communication: Clearly explain data findings to technical and non-technical audiences.

Collaboration: Work effectively in teams.

Time Management: Prioritize and manage projects efficiently.

Self-Reflection: Regularly assess and improve your skills.


6๏ธโƒฃ Bonus: Basic Data Engineering

Data Modeling: Understand dimensional modeling and trade-offs in normalization vs. denormalization.

ETL: Set up extraction jobs, manage dependencies, clean and validate data.

Pipeline Testing: Conduct unit testing and ensure data quality throughout the pipeline.

I have curated the best interview resources to crack Data Science Interviews
๐Ÿ‘‡๐Ÿ‘‡
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D

Like if you need similar content ๐Ÿ˜„๐Ÿ‘
๐Ÿ‘8โค4๐Ÿ‘2
Platforms to learn Data Science ๐Ÿ‘†
โค2๐Ÿ‘2๐Ÿ‘1
๐—ง๐—ต๐—ฒ ๐Ÿฐ ๐—ฃ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜๐˜€ ๐—ง๐—ต๐—ฎ๐˜ ๐—–๐—ฎ๐—ป ๐—Ÿ๐—ฎ๐—ป๐—ฑ ๐—ฌ๐—ผ๐˜‚ ๐—ฎ ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—๐—ผ๐—ฏ (๐—˜๐˜ƒ๐—ฒ๐—ป ๐—ช๐—ถ๐˜๐—ต๐—ผ๐˜‚๐˜ ๐—˜๐˜…๐—ฝ๐—ฒ๐—ฟ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ) ๐Ÿ’ผ

Recruiters donโ€™t want to see more certificatesโ€”they want proof you can solve real-world problems. Thatโ€™s where the right projects come in. Not toy datasets, but projects that demonstrate storytelling, problem-solving, and impact.

Here are 4 killer projects thatโ€™ll make your portfolio stand out ๐Ÿ‘‡

๐Ÿ”น 1. Exploratory Data Analysis (EDA) on Real-World Dataset

Pick a messy dataset from Kaggle or public sources. Show your thought process.

โœ… Clean data using Pandas
โœ… Visualize trends with Seaborn/Matplotlib
โœ… Share actionable insights with graphs and markdown

Bonus: Turn it into a Jupyter Notebook with detailed storytelling

๐Ÿ”น 2. Predictive Modeling with ML

Solve a real problem using machine learning. For example:

โœ… Predict customer churn using Logistic Regression
โœ… Predict housing prices with Random Forest or XGBoost
โœ… Use scikit-learn for training + evaluation

Bonus: Add SHAP or feature importance to explain predictions

๐Ÿ”น 3. SQL-Powered Business Dashboard

Use real sales or ecommerce data to build a dashboard.

โœ… Write complex SQL queries for KPIs
โœ… Visualize with Power BI or Tableau
โœ… Show trends: Revenue by Region, Product Performance, etc.

Bonus: Add filters & slicers to make it interactive

๐Ÿ”น 4. End-to-End Data Science Pipeline Project

Build a complete pipeline from scratch.

โœ… Collect data via web scraping (e.g., IMDb, LinkedIn Jobs)
โœ… Clean + Analyze + Model + Deploy
โœ… Deploy with Streamlit/Flask + GitHub + Render

Bonus: Add a blog post or LinkedIn write-up explaining your approach

๐ŸŽฏ One solid project > 10 certificates.

Make it visible. Make it valuable. Share it confidently.

I have curated the best interview resources to crack Data Science Interviews
๐Ÿ‘‡๐Ÿ‘‡
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D

Like if you need similar content ๐Ÿ˜„๐Ÿ‘
๐Ÿ‘6โค2