๐ Embark on a Journey of Discovery and Innovation with @DeepLearning_ai! and @MachineLearning_Programming ๐
What We Offer:
* ๐ง Deep Dives into AI & ML.
* ๐ค Latest in Deep Learning.
* ๐ Data Science Mastery.
* ๐ Computer Vision & Image Processing.
* ๐ Exclusive Access to Research Papers.
Why Us?
* Connect with experts and enthusiasts.
* Stay updated, stay ahead.
* Empower your knowledge and career in tech.
Ready for a deep dive? Click here to explore, learn, and grow with
@DeepLearning_ai
@MachineLearning_Programming!
Step into the futureโtoday.
What We Offer:
* ๐ง Deep Dives into AI & ML.
* ๐ค Latest in Deep Learning.
* ๐ Data Science Mastery.
* ๐ Computer Vision & Image Processing.
* ๐ Exclusive Access to Research Papers.
Why Us?
* Connect with experts and enthusiasts.
* Stay updated, stay ahead.
* Empower your knowledge and career in tech.
Ready for a deep dive? Click here to explore, learn, and grow with
@DeepLearning_ai
@MachineLearning_Programming!
Step into the futureโtoday.
๐5โค1๐ฅ1๐1๐คฉ1
Resume key words for data scientist role explained in points:
1. Data Analysis:
- Proficient in extracting, cleaning, and analyzing data to derive insights.
- Skilled in using statistical methods and machine learning algorithms for data analysis.
- Experience with tools such as Python, R, or SQL for data manipulation and analysis.
2. Machine Learning:
- Strong understanding of machine learning techniques such as regression, classification, clustering, and neural networks.
- Experience in model development, evaluation, and deployment.
- Familiarity with libraries like TensorFlow, scikit-learn, or PyTorch for implementing machine learning models.
3. Data Visualization:
- Ability to present complex data in a clear and understandable manner through visualizations.
- Proficiency in tools like Matplotlib, Seaborn, or Tableau for creating insightful graphs and charts.
- Understanding of best practices in data visualization for effective communication of findings.
4. Big Data:
- Experience working with large datasets using technologies like Hadoop, Spark, or Apache Flink.
- Knowledge of distributed computing principles and tools for processing and analyzing big data.
- Ability to optimize algorithms and processes for scalability and performance.
5. Problem-Solving:
- Strong analytical and problem-solving skills to tackle complex data-related challenges.
- Ability to formulate hypotheses, design experiments, and iterate on solutions.
- Aptitude for identifying opportunities for leveraging data to drive business outcomes and decision-making.
Resume key words for a data analyst role
1. SQL (Structured Query Language):
- SQL is a programming language used for managing and querying relational databases.
- Data analysts often use SQL to extract, manipulate, and analyze data stored in databases, making it a fundamental skill for the role.
2. Python/R:
- Python and R are popular programming languages used for data analysis and statistical computing.
- Proficiency in Python or R allows data analysts to perform various tasks such as data cleaning, modeling, visualization, and machine learning.
3. Data Visualization:
- Data visualization involves presenting data in graphical or visual formats to communicate insights effectively.
- Data analysts use tools like Tableau, Power BI, or Python libraries like Matplotlib and Seaborn to create visualizations that help stakeholders understand complex data patterns and trends.
4. Statistical Analysis:
- Statistical analysis involves applying statistical methods to analyze and interpret data.
- Data analysts use statistical techniques to uncover relationships, trends, and patterns in data, providing valuable insights for decision-making.
5. Data-driven Decision Making:
- Data-driven decision making is the process of making decisions based on data analysis and evidence rather than intuition or gut feelings.
- Data analysts play a crucial role in helping organizations make informed decisions by analyzing data and providing actionable insights that drive business strategies and operations.
Data Science Interview Resources
๐๐
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
Like for more ๐
1. Data Analysis:
- Proficient in extracting, cleaning, and analyzing data to derive insights.
- Skilled in using statistical methods and machine learning algorithms for data analysis.
- Experience with tools such as Python, R, or SQL for data manipulation and analysis.
2. Machine Learning:
- Strong understanding of machine learning techniques such as regression, classification, clustering, and neural networks.
- Experience in model development, evaluation, and deployment.
- Familiarity with libraries like TensorFlow, scikit-learn, or PyTorch for implementing machine learning models.
3. Data Visualization:
- Ability to present complex data in a clear and understandable manner through visualizations.
- Proficiency in tools like Matplotlib, Seaborn, or Tableau for creating insightful graphs and charts.
- Understanding of best practices in data visualization for effective communication of findings.
4. Big Data:
- Experience working with large datasets using technologies like Hadoop, Spark, or Apache Flink.
- Knowledge of distributed computing principles and tools for processing and analyzing big data.
- Ability to optimize algorithms and processes for scalability and performance.
5. Problem-Solving:
- Strong analytical and problem-solving skills to tackle complex data-related challenges.
- Ability to formulate hypotheses, design experiments, and iterate on solutions.
- Aptitude for identifying opportunities for leveraging data to drive business outcomes and decision-making.
Resume key words for a data analyst role
1. SQL (Structured Query Language):
- SQL is a programming language used for managing and querying relational databases.
- Data analysts often use SQL to extract, manipulate, and analyze data stored in databases, making it a fundamental skill for the role.
2. Python/R:
- Python and R are popular programming languages used for data analysis and statistical computing.
- Proficiency in Python or R allows data analysts to perform various tasks such as data cleaning, modeling, visualization, and machine learning.
3. Data Visualization:
- Data visualization involves presenting data in graphical or visual formats to communicate insights effectively.
- Data analysts use tools like Tableau, Power BI, or Python libraries like Matplotlib and Seaborn to create visualizations that help stakeholders understand complex data patterns and trends.
4. Statistical Analysis:
- Statistical analysis involves applying statistical methods to analyze and interpret data.
- Data analysts use statistical techniques to uncover relationships, trends, and patterns in data, providing valuable insights for decision-making.
5. Data-driven Decision Making:
- Data-driven decision making is the process of making decisions based on data analysis and evidence rather than intuition or gut feelings.
- Data analysts play a crucial role in helping organizations make informed decisions by analyzing data and providing actionable insights that drive business strategies and operations.
Data Science Interview Resources
๐๐
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
Like for more ๐
๐13โค2
ML Interview Question โฌ๏ธ
โก๏ธ Logistic Regression
The interviewer asked to explain Logistic Regression along with its:
๐ท Cost function
๐ท Assumptions
๐ท Evaluation metrics
Here is the step by step approach to answer:
โ๏ธ Cost function: Point out how logistic regression uses log loss for classification.
โ๏ธ Assumptions: Explain LR assumes features are independent and they have a linear link.
โ๏ธ Evaluation metrics: Discuss accuracy, precision, and F1-score to measure performance.
Knowing every concept is important but more than that, it is important to convey our knowledge๐ฏ
Data Science Resources
๐๐
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
Like if you need similar content ๐๐
โก๏ธ Logistic Regression
The interviewer asked to explain Logistic Regression along with its:
๐ท Cost function
๐ท Assumptions
๐ท Evaluation metrics
Here is the step by step approach to answer:
โ๏ธ Cost function: Point out how logistic regression uses log loss for classification.
โ๏ธ Assumptions: Explain LR assumes features are independent and they have a linear link.
โ๏ธ Evaluation metrics: Discuss accuracy, precision, and F1-score to measure performance.
Knowing every concept is important but more than that, it is important to convey our knowledge๐ฏ
Data Science Resources
๐๐
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
Like if you need similar content ๐๐
๐10
๐ Top 10 Tools Data Scientists Love! ๐ง
In the ever-evolving world of data science, staying updated with the right tools is crucial to solving complex problems and deriving meaningful insights.
๐ Hereโs a quick breakdown of the most popular tools:
1. Python ๐: The go-to language for data science, favored for its versatility and powerful libraries.
2. SQL ๐ ๏ธ: Essential for querying databases and manipulating data.
3. Jupyter Notebooks ๐: An interactive environment that makes data analysis and visualization a breeze.
4. TensorFlow/PyTorch ๐ค: Leading frameworks for deep learning and neural networks.
5. Tableau ๐: A user-friendly tool for creating stunning visualizations and dashboards.
6. Git & GitHub ๐ป: Version control systems that every data scientist should master.
7. Hadoop & Spark ๐ฅ: Big data frameworks that help process massive datasets efficiently.
8. Scikit-learn ๐งฌ: A powerful library for machine learning in Python.
9. R ๐: A statistical programming language that is still a favorite among many analysts.
10. Docker ๐: A must-have for containerization and deploying applications.
I have curated the best interview resources to crack Data Science Interviews
๐๐
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
Like if you need similar content ๐๐
In the ever-evolving world of data science, staying updated with the right tools is crucial to solving complex problems and deriving meaningful insights.
๐ Hereโs a quick breakdown of the most popular tools:
1. Python ๐: The go-to language for data science, favored for its versatility and powerful libraries.
2. SQL ๐ ๏ธ: Essential for querying databases and manipulating data.
3. Jupyter Notebooks ๐: An interactive environment that makes data analysis and visualization a breeze.
4. TensorFlow/PyTorch ๐ค: Leading frameworks for deep learning and neural networks.
5. Tableau ๐: A user-friendly tool for creating stunning visualizations and dashboards.
6. Git & GitHub ๐ป: Version control systems that every data scientist should master.
7. Hadoop & Spark ๐ฅ: Big data frameworks that help process massive datasets efficiently.
8. Scikit-learn ๐งฌ: A powerful library for machine learning in Python.
9. R ๐: A statistical programming language that is still a favorite among many analysts.
10. Docker ๐: A must-have for containerization and deploying applications.
I have curated the best interview resources to crack Data Science Interviews
๐๐
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
Like if you need similar content ๐๐
๐6โค1
What ๐ ๐ ๐ฐ๐ผ๐ป๐ฐ๐ฒ๐ฝ๐๐ are commonly asked in ๐ฑ๐ฎ๐๐ฎ ๐๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐ถ๐ป๐๐ฒ๐ฟ๐๐ถ๐ฒ๐๐?
These are fair game in interviews at ๐๐๐ฎ๐ฟ๐๐๐ฝ๐, ๐ฐ๐ผ๐ป๐๐๐น๐๐ถ๐ป๐ด & ๐น๐ฎ๐ฟ๐ด๐ฒ ๐๐ฒ๐ฐ๐ต.
๐๐๐ป๐ฑ๐ฎ๐บ๐ฒ๐ป๐๐ฎ๐น๐
- Supervised vs. Unsupervised Learning
- Overfitting and Underfitting
- Cross-validation
- Bias-Variance Tradeoff
- Accuracy vs Interpretability
- Accuracy vs Latency
๐ ๐ ๐๐น๐ด๐ผ๐ฟ๐ถ๐๐ต๐บ๐
- Logistic Regression
- Decision Trees
- Random Forest
- Support Vector Machines
- K-Nearest Neighbors
- Naive Bayes
- Linear Regression
- Ridge and Lasso Regression
- K-Means Clustering
- Hierarchical Clustering
- PCA
๐ ๐ผ๐ฑ๐ฒ๐น๐ถ๐ป๐ด ๐ฆ๐๐ฒ๐ฝ๐
- EDA
- Data Cleaning (e.g. missing value imputation)
- Data Preprocessing (e.g. scaling)
- Feature Engineering (e.g. aggregation)
- Feature Selection (e.g. variable importance)
- Model Training (e.g. gradient descent)
- Model Evaluation (e.g. AUC vs Accuracy)
- Model Productionization
๐๐๐ฝ๐ฒ๐ฟ๐ฝ๐ฎ๐ฟ๐ฎ๐บ๐ฒ๐๐ฒ๐ฟ ๐ง๐๐ป๐ถ๐ป๐ด
- Grid Search
- Random Search
- Bayesian Optimization
๐ ๐ ๐๐ฎ๐๐ฒ๐
- [Capital One] Detect credit card fraudsters
- [Amazon] Forecast monthly sales
- [Airbnb] Estimate lifetime value of a guest
I have curated the best interview resources to crack Data Science Interviews
๐๐
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
Like if you need similar content ๐๐
These are fair game in interviews at ๐๐๐ฎ๐ฟ๐๐๐ฝ๐, ๐ฐ๐ผ๐ป๐๐๐น๐๐ถ๐ป๐ด & ๐น๐ฎ๐ฟ๐ด๐ฒ ๐๐ฒ๐ฐ๐ต.
๐๐๐ป๐ฑ๐ฎ๐บ๐ฒ๐ป๐๐ฎ๐น๐
- Supervised vs. Unsupervised Learning
- Overfitting and Underfitting
- Cross-validation
- Bias-Variance Tradeoff
- Accuracy vs Interpretability
- Accuracy vs Latency
๐ ๐ ๐๐น๐ด๐ผ๐ฟ๐ถ๐๐ต๐บ๐
- Logistic Regression
- Decision Trees
- Random Forest
- Support Vector Machines
- K-Nearest Neighbors
- Naive Bayes
- Linear Regression
- Ridge and Lasso Regression
- K-Means Clustering
- Hierarchical Clustering
- PCA
๐ ๐ผ๐ฑ๐ฒ๐น๐ถ๐ป๐ด ๐ฆ๐๐ฒ๐ฝ๐
- EDA
- Data Cleaning (e.g. missing value imputation)
- Data Preprocessing (e.g. scaling)
- Feature Engineering (e.g. aggregation)
- Feature Selection (e.g. variable importance)
- Model Training (e.g. gradient descent)
- Model Evaluation (e.g. AUC vs Accuracy)
- Model Productionization
๐๐๐ฝ๐ฒ๐ฟ๐ฝ๐ฎ๐ฟ๐ฎ๐บ๐ฒ๐๐ฒ๐ฟ ๐ง๐๐ป๐ถ๐ป๐ด
- Grid Search
- Random Search
- Bayesian Optimization
๐ ๐ ๐๐ฎ๐๐ฒ๐
- [Capital One] Detect credit card fraudsters
- [Amazon] Forecast monthly sales
- [Airbnb] Estimate lifetime value of a guest
I have curated the best interview resources to crack Data Science Interviews
๐๐
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
Like if you need similar content ๐๐
๐3โค2
Three different learning styles in machine learning algorithms:
1. Supervised Learning
Input data is called training data and has a known label or result such as spam/not-spam or a stock price at a time.
A model is prepared through a training process in which it is required to make predictions and is corrected when those predictions are wrong. The training process continues until the model achieves a desired level of accuracy on the training data.
Example problems are classification and regression.
Example algorithms include: Logistic Regression and the Back Propagation Neural Network.
2. Unsupervised Learning
Input data is not labeled and does not have a known result.
A model is prepared by deducing structures present in the input data. This may be to extract general rules. It may be through a mathematical process to systematically reduce redundancy, or it may be to organize data by similarity.
Example problems are clustering, dimensionality reduction and association rule learning.
Example algorithms include: the Apriori algorithm and K-Means.
3. Semi-Supervised Learning
Input data is a mixture of labeled and unlabelled examples.
There is a desired prediction problem but the model must learn the structures to organize the data as well as make predictions.
Example problems are classification and regression.
Example algorithms are extensions to other flexible methods that make assumptions about how to model the unlabeled data.
I have curated the best interview resources to crack Data Science Interviews
๐๐
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
Like if you need similar content ๐๐
1. Supervised Learning
Input data is called training data and has a known label or result such as spam/not-spam or a stock price at a time.
A model is prepared through a training process in which it is required to make predictions and is corrected when those predictions are wrong. The training process continues until the model achieves a desired level of accuracy on the training data.
Example problems are classification and regression.
Example algorithms include: Logistic Regression and the Back Propagation Neural Network.
2. Unsupervised Learning
Input data is not labeled and does not have a known result.
A model is prepared by deducing structures present in the input data. This may be to extract general rules. It may be through a mathematical process to systematically reduce redundancy, or it may be to organize data by similarity.
Example problems are clustering, dimensionality reduction and association rule learning.
Example algorithms include: the Apriori algorithm and K-Means.
3. Semi-Supervised Learning
Input data is a mixture of labeled and unlabelled examples.
There is a desired prediction problem but the model must learn the structures to organize the data as well as make predictions.
Example problems are classification and regression.
Example algorithms are extensions to other flexible methods that make assumptions about how to model the unlabeled data.
I have curated the best interview resources to crack Data Science Interviews
๐๐
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
Like if you need similar content ๐๐
๐4โค1
Important Topics to become a data scientist [Advanced Level]
๐๐
1. Mathematics
Linear Algebra
Analytic Geometry
Matrix
Vector Calculus
Optimization
Regression
Dimensionality Reduction
Density Estimation
Classification
2. Probability
Introduction to Probability
1D Random Variable
The function of One Random Variable
Joint Probability Distribution
Discrete Distribution
Normal Distribution
3. Statistics
Introduction to Statistics
Data Description
Random Samples
Sampling Distribution
Parameter Estimation
Hypotheses Testing
Regression
4. Programming
Python:
Python Basics
List
Set
Tuples
Dictionary
Function
NumPy
Pandas
Matplotlib/Seaborn
R Programming:
R Basics
Vector
List
Data Frame
Matrix
Array
Function
dplyr
ggplot2
Tidyr
Shiny
DataBase:
SQL
MongoDB
Data Structures
Web scraping
Linux
Git
5. Machine Learning
How Model Works
Basic Data Exploration
First ML Model
Model Validation
Underfitting & Overfitting
Random Forest
Handling Missing Values
Handling Categorical Variables
Pipelines
Cross-Validation(R)
XGBoost(Python|R)
Data Leakage
6. Deep Learning
Artificial Neural Network
Convolutional Neural Network
Recurrent Neural Network
TensorFlow
Keras
PyTorch
A Single Neuron
Deep Neural Network
Stochastic Gradient Descent
Overfitting and Underfitting
Dropout Batch Normalization
Binary Classification
7. Feature Engineering
Baseline Model
Categorical Encodings
Feature Generation
Feature Selection
8. Natural Language Processing
Text Classification
Word Vectors
9. Data Visualization Tools
BI (Business Intelligence):
Tableau
Power BI
Qlik View
Qlik Sense
10. Deployment
Microsoft Azure
Heroku
Google Cloud Platform
Flask
Django
I have curated the best interview resources to crack Data Science Interviews
๐๐
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
Like if you need similar content ๐๐
๐๐
1. Mathematics
Linear Algebra
Analytic Geometry
Matrix
Vector Calculus
Optimization
Regression
Dimensionality Reduction
Density Estimation
Classification
2. Probability
Introduction to Probability
1D Random Variable
The function of One Random Variable
Joint Probability Distribution
Discrete Distribution
Normal Distribution
3. Statistics
Introduction to Statistics
Data Description
Random Samples
Sampling Distribution
Parameter Estimation
Hypotheses Testing
Regression
4. Programming
Python:
Python Basics
List
Set
Tuples
Dictionary
Function
NumPy
Pandas
Matplotlib/Seaborn
R Programming:
R Basics
Vector
List
Data Frame
Matrix
Array
Function
dplyr
ggplot2
Tidyr
Shiny
DataBase:
SQL
MongoDB
Data Structures
Web scraping
Linux
Git
5. Machine Learning
How Model Works
Basic Data Exploration
First ML Model
Model Validation
Underfitting & Overfitting
Random Forest
Handling Missing Values
Handling Categorical Variables
Pipelines
Cross-Validation(R)
XGBoost(Python|R)
Data Leakage
6. Deep Learning
Artificial Neural Network
Convolutional Neural Network
Recurrent Neural Network
TensorFlow
Keras
PyTorch
A Single Neuron
Deep Neural Network
Stochastic Gradient Descent
Overfitting and Underfitting
Dropout Batch Normalization
Binary Classification
7. Feature Engineering
Baseline Model
Categorical Encodings
Feature Generation
Feature Selection
8. Natural Language Processing
Text Classification
Word Vectors
9. Data Visualization Tools
BI (Business Intelligence):
Tableau
Power BI
Qlik View
Qlik Sense
10. Deployment
Microsoft Azure
Heroku
Google Cloud Platform
Flask
Django
I have curated the best interview resources to crack Data Science Interviews
๐๐
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
Like if you need similar content ๐๐
๐12
Data Science Interview Questions
1: How would you preprocess and tokenize text data from tweets for sentiment analysis? Discuss potential challenges and solutions.
- Answer: Preprocessing and tokenizing text data for sentiment analysis involves tasks like lowercasing, removing stop words, and stemming or lemmatization. Handling challenges like handling emojis, slang, and noisy text is crucial. Tools like NLTK or spaCy can assist in these tasks.
2: Explain the collaborative filtering approach in building recommendation systems. How might Twitter use this to enhance user experience?
- Answer: Collaborative filtering recommends items based on user preferences and similarities. Techniques include user-based or item-based collaborative filtering and matrix factorization. Twitter could leverage user interactions to recommend tweets, users, or topics.
3: Write a Python or Scala function to count the frequency of hashtags in a given collection of tweets.
- Answer (Python):
4: How does graph analysis contribute to understanding user interactions and content propagation on Twitter? Provide a specific use case.
- Answer: Graph analysis on Twitter involves examining user interactions. For instance, identifying influential users or detecting communities based on retweet or mention networks. Algorithms like PageRank or Louvain Modularity can aid in these analyses.
I have curated the best interview resources to crack Data Science Interviews
๐๐
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
Like if you need similar content ๐๐
1: How would you preprocess and tokenize text data from tweets for sentiment analysis? Discuss potential challenges and solutions.
- Answer: Preprocessing and tokenizing text data for sentiment analysis involves tasks like lowercasing, removing stop words, and stemming or lemmatization. Handling challenges like handling emojis, slang, and noisy text is crucial. Tools like NLTK or spaCy can assist in these tasks.
2: Explain the collaborative filtering approach in building recommendation systems. How might Twitter use this to enhance user experience?
- Answer: Collaborative filtering recommends items based on user preferences and similarities. Techniques include user-based or item-based collaborative filtering and matrix factorization. Twitter could leverage user interactions to recommend tweets, users, or topics.
3: Write a Python or Scala function to count the frequency of hashtags in a given collection of tweets.
- Answer (Python):
def count_hashtags(tweet_collection):
hashtags_count = {}
for tweet in tweet_collection:
hashtags = [word for word in tweet.split() if word.startswith('#')]
for hashtag in hashtags:
hashtags_count[hashtag] = hashtags_count.get(hashtag, 0) + 1
return hashtags_count
4: How does graph analysis contribute to understanding user interactions and content propagation on Twitter? Provide a specific use case.
- Answer: Graph analysis on Twitter involves examining user interactions. For instance, identifying influential users or detecting communities based on retweet or mention networks. Algorithms like PageRank or Louvain Modularity can aid in these analyses.
I have curated the best interview resources to crack Data Science Interviews
๐๐
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
Like if you need similar content ๐๐
๐2โค1
How much Statistics must I know to become a Data Scientist?
This is one of the most common questions
Here are the must-know Statistics concepts every Data Scientist should know:
๐ฃ๐ฟ๐ผ๐ฏ๐ฎ๐ฏ๐ถ๐น๐ถ๐๐
โ Bayes' Theorem & conditional probability
โ Permutations & combinations
โ Card & die roll problem-solving
๐๐ฒ๐๐ฐ๐ฟ๐ถ๐ฝ๐๐ถ๐๐ฒ ๐๐๐ฎ๐๐ถ๐๐๐ถ๐ฐ๐ & ๐ฑ๐ถ๐๐๐ฟ๐ถ๐ฏ๐๐๐ถ๐ผ๐ป๐
โ Mean, median, mode
โ Standard deviation and variance
โ Bernoulli's, Binomial, Normal, Uniform, Exponential distributions
๐๐ป๐ณ๐ฒ๐ฟ๐ฒ๐ป๐๐ถ๐ฎ๐น ๐๐๐ฎ๐๐ถ๐๐๐ถ๐ฐ๐
โ A/B experimentation
โ T-test, Z-test, Chi-squared tests
โ Type 1 & 2 errors
โ Sampling techniques & biases
โ Confidence intervals & p-values
โ Central Limit Theorem
โ Causal inference techniques
๐ ๐ฎ๐ฐ๐ต๐ถ๐ป๐ฒ ๐น๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด
โ Logistic & Linear regression
โ Decision trees & random forests
โ Clustering models
โ Feature engineering
โ Feature selection methods
โ Model testing & validation
โ Time series analysis
I have curated the best interview resources to crack Data Science Interviews
๐๐
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
Like if you need similar content ๐๐
This is one of the most common questions
Here are the must-know Statistics concepts every Data Scientist should know:
๐ฃ๐ฟ๐ผ๐ฏ๐ฎ๐ฏ๐ถ๐น๐ถ๐๐
โ Bayes' Theorem & conditional probability
โ Permutations & combinations
โ Card & die roll problem-solving
๐๐ฒ๐๐ฐ๐ฟ๐ถ๐ฝ๐๐ถ๐๐ฒ ๐๐๐ฎ๐๐ถ๐๐๐ถ๐ฐ๐ & ๐ฑ๐ถ๐๐๐ฟ๐ถ๐ฏ๐๐๐ถ๐ผ๐ป๐
โ Mean, median, mode
โ Standard deviation and variance
โ Bernoulli's, Binomial, Normal, Uniform, Exponential distributions
๐๐ป๐ณ๐ฒ๐ฟ๐ฒ๐ป๐๐ถ๐ฎ๐น ๐๐๐ฎ๐๐ถ๐๐๐ถ๐ฐ๐
โ A/B experimentation
โ T-test, Z-test, Chi-squared tests
โ Type 1 & 2 errors
โ Sampling techniques & biases
โ Confidence intervals & p-values
โ Central Limit Theorem
โ Causal inference techniques
๐ ๐ฎ๐ฐ๐ต๐ถ๐ป๐ฒ ๐น๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด
โ Logistic & Linear regression
โ Decision trees & random forests
โ Clustering models
โ Feature engineering
โ Feature selection methods
โ Model testing & validation
โ Time series analysis
I have curated the best interview resources to crack Data Science Interviews
๐๐
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
Like if you need similar content ๐๐
๐7
Data Science Interview Questions
Question 1 : How would you approach building a recommendation system for personalized content on Facebook? Consider factors like scalability and user privacy.
- Answer: Building a recommendation system for personalized content on Facebook would involve collaborative filtering or content-based methods. Scalability can be achieved using distributed computing, and user privacy can be preserved through techniques like federated learning.
Question 2 : Describe a situation where you had to navigate conflicting opinions within your team. How did you facilitate resolution and maintain team cohesion?
- Answer: In navigating conflicting opinions within a team, I facilitated resolution through open communication, active listening, and finding common ground. Prioritizing team cohesion was key to achieving consensus.
Question 3 : How would you enhance the security of user data on Facebook, considering the evolving landscape of cybersecurity threats?
- Answer: Enhancing the security of user data on Facebook involves implementing robust encryption mechanisms, access controls, and regular security audits. Ensuring compliance with privacy regulations and proactive threat monitoring are essential.
Question 4 : Design a real-time notification system for Facebook, ensuring timely delivery of notifications to users across various platforms.
- Answer: Designing a real-time notification system for Facebook requires technologies like WebSocket for real-time communication and push notifications. Ensuring scalability and reliability through distributed systems is crucial for timely delivery.
I have curated the best interview resources to crack Data Science Interviews
๐๐
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
Like if you need similar content ๐๐
Question 1 : How would you approach building a recommendation system for personalized content on Facebook? Consider factors like scalability and user privacy.
- Answer: Building a recommendation system for personalized content on Facebook would involve collaborative filtering or content-based methods. Scalability can be achieved using distributed computing, and user privacy can be preserved through techniques like federated learning.
Question 2 : Describe a situation where you had to navigate conflicting opinions within your team. How did you facilitate resolution and maintain team cohesion?
- Answer: In navigating conflicting opinions within a team, I facilitated resolution through open communication, active listening, and finding common ground. Prioritizing team cohesion was key to achieving consensus.
Question 3 : How would you enhance the security of user data on Facebook, considering the evolving landscape of cybersecurity threats?
- Answer: Enhancing the security of user data on Facebook involves implementing robust encryption mechanisms, access controls, and regular security audits. Ensuring compliance with privacy regulations and proactive threat monitoring are essential.
Question 4 : Design a real-time notification system for Facebook, ensuring timely delivery of notifications to users across various platforms.
- Answer: Designing a real-time notification system for Facebook requires technologies like WebSocket for real-time communication and push notifications. Ensuring scalability and reliability through distributed systems is crucial for timely delivery.
I have curated the best interview resources to crack Data Science Interviews
๐๐
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
Like if you need similar content ๐๐
๐4