AI & ML Project Ideas
โค1
๐ฅ Top SQL Projects for Data Analytics ๐
If you're preparing for a Data Analyst role or looking to level up your SQL skills, working on real-world projects is the best way to learn!
Here are some must-do SQL projects to strengthen your portfolio. ๐
๐ข Beginner-Friendly SQL Projects (Great for Learning Basics)
โ Employee Database Management โ Build and query HR data ๐
โ Library Book Tracking โ Create a database for book loans and returns
โ Student Grading System โ Analyze student performance data
โ Retail Point-of-Sale System โ Work with sales and transactions ๐ฐ
โ Hotel Booking System โ Manage customer bookings and check-ins ๐จ
๐ก Intermediate SQL Projects (For Stronger Querying & Analysis)
โก E-commerce Order Management โ Analyze order trends & customer data ๐
โก Sales Performance Analysis โ Work with revenue, profit margins & KPIs ๐
โก Inventory Control System โ Optimize stock tracking ๐ฆ
โก Real Estate Listings โ Manage and analyze property data ๐ก
โก Movie Rating System โ Analyze user reviews & trends ๐ฌ
๐ต Advanced SQL Projects (For Business-Level Analytics)
๐น Social Media Analytics โ Track user engagement & content trends
๐น Insurance Claim Management โ Fraud detection & risk assessment
๐น Customer Feedback Analysis โ Perform sentiment analysis on reviews โญ
๐น Freelance Job Platform โ Match freelancers with project opportunities
๐น Pharmacy Inventory System โ Optimize stock levels & prescriptions
๐ด Expert-Level SQL Projects (For Data-Driven Decision Making)
๐ฅ Music Streaming Analysis โ Study user behavior & song trends ๐ถ
๐ฅ Healthcare Prescription Tracking โ Identify patterns in medicine usage
๐ฅ Employee Shift Scheduling โ Optimize workforce efficiency โณ
๐ฅ Warehouse Stock Control โ Manage supply chain data efficiently
๐ฅ Online Auction System โ Analyze bidding patterns & sales performance ๐๏ธ
๐ Pro Tip: If you're applying for Data Analyst roles, pick 3-4 projects, clean the data, and create interactive dashboards using Power BI/Tableau to showcase insights!
React with โฅ๏ธ if you want detailed explanation of each project
Share with credits: ๐ https://t.iss.one/sqlspecialist
Hope it helps :)
If you're preparing for a Data Analyst role or looking to level up your SQL skills, working on real-world projects is the best way to learn!
Here are some must-do SQL projects to strengthen your portfolio. ๐
๐ข Beginner-Friendly SQL Projects (Great for Learning Basics)
โ Employee Database Management โ Build and query HR data ๐
โ Library Book Tracking โ Create a database for book loans and returns
โ Student Grading System โ Analyze student performance data
โ Retail Point-of-Sale System โ Work with sales and transactions ๐ฐ
โ Hotel Booking System โ Manage customer bookings and check-ins ๐จ
๐ก Intermediate SQL Projects (For Stronger Querying & Analysis)
โก E-commerce Order Management โ Analyze order trends & customer data ๐
โก Sales Performance Analysis โ Work with revenue, profit margins & KPIs ๐
โก Inventory Control System โ Optimize stock tracking ๐ฆ
โก Real Estate Listings โ Manage and analyze property data ๐ก
โก Movie Rating System โ Analyze user reviews & trends ๐ฌ
๐ต Advanced SQL Projects (For Business-Level Analytics)
๐น Social Media Analytics โ Track user engagement & content trends
๐น Insurance Claim Management โ Fraud detection & risk assessment
๐น Customer Feedback Analysis โ Perform sentiment analysis on reviews โญ
๐น Freelance Job Platform โ Match freelancers with project opportunities
๐น Pharmacy Inventory System โ Optimize stock levels & prescriptions
๐ด Expert-Level SQL Projects (For Data-Driven Decision Making)
๐ฅ Music Streaming Analysis โ Study user behavior & song trends ๐ถ
๐ฅ Healthcare Prescription Tracking โ Identify patterns in medicine usage
๐ฅ Employee Shift Scheduling โ Optimize workforce efficiency โณ
๐ฅ Warehouse Stock Control โ Manage supply chain data efficiently
๐ฅ Online Auction System โ Analyze bidding patterns & sales performance ๐๏ธ
๐ Pro Tip: If you're applying for Data Analyst roles, pick 3-4 projects, clean the data, and create interactive dashboards using Power BI/Tableau to showcase insights!
React with โฅ๏ธ if you want detailed explanation of each project
Share with credits: ๐ https://t.iss.one/sqlspecialist
Hope it helps :)
โค4
๐ค AI/ML Roadmap
1๏ธโฃ Math & Stats ๐งฎ๐ข: Learn Linear Algebra, Probability, and Calculus.
2๏ธโฃ Programming ๐๐ป: Master Python, NumPy, Pandas, and Matplotlib.
3๏ธโฃ Machine Learning ๐๐ค: Study Supervised & Unsupervised Learning, and Model Evaluation.
4๏ธโฃ Deep Learning ๐ฅ๐ง : Understand Neural Networks, CNNs, RNNs, and Transformers.
5๏ธโฃ Specializations ๐๐ฌ: Choose from NLP, Computer Vision, or Reinforcement Learning.
6๏ธโฃ Big Data & Cloud โ๏ธ๐ก: Work with SQL, NoSQL, AWS, and GCP.
7๏ธโฃ MLOps & Deployment ๐๐ ๏ธ: Learn Flask, Docker, and Kubernetes.
8๏ธโฃ Ethics & Safety โ๏ธ๐ก๏ธ: Understand Bias, Fairness, and Explainability.
9๏ธโฃ Research & Practice ๐๐: Read Papers and Build Projects.
๐ Projects ๐๐: Compete in Kaggle and contribute to Open-Source.
React โค๏ธ for more
#ai
1๏ธโฃ Math & Stats ๐งฎ๐ข: Learn Linear Algebra, Probability, and Calculus.
2๏ธโฃ Programming ๐๐ป: Master Python, NumPy, Pandas, and Matplotlib.
3๏ธโฃ Machine Learning ๐๐ค: Study Supervised & Unsupervised Learning, and Model Evaluation.
4๏ธโฃ Deep Learning ๐ฅ๐ง : Understand Neural Networks, CNNs, RNNs, and Transformers.
5๏ธโฃ Specializations ๐๐ฌ: Choose from NLP, Computer Vision, or Reinforcement Learning.
6๏ธโฃ Big Data & Cloud โ๏ธ๐ก: Work with SQL, NoSQL, AWS, and GCP.
7๏ธโฃ MLOps & Deployment ๐๐ ๏ธ: Learn Flask, Docker, and Kubernetes.
8๏ธโฃ Ethics & Safety โ๏ธ๐ก๏ธ: Understand Bias, Fairness, and Explainability.
9๏ธโฃ Research & Practice ๐๐: Read Papers and Build Projects.
๐ Projects ๐๐: Compete in Kaggle and contribute to Open-Source.
React โค๏ธ for more
#ai
โค8๐1
ยฉHow fresher can get a job as a data scientist?ยฉ
Job market is highly resistant to hire data scientist as a fresher. Everyone out there asks for at least 2 years of experience, but then the question is where will we get the two years experience from?
The important thing here to build a portfolio. As you are a fresher I would assume you had learnt data science through online courses. They only teach you the basics, the analytical skills required to clean the data and apply machine learning algorithms to them comes only from practice.
Do some real-world data science projects, participate in Kaggle competition. kaggle provides data sets for practice as well. Whatever projects you do, create a GitHub repository for it. Place all your projects there so when a recruiter is looking at your profile they know you have hands-on practice and do know the basics. This will take you a long way.
All the major data science jobs for freshers will only be available through off-campus interviews.
Some companies that hires data scientists are:
Siemens
Accenture
IBM
Cerner
Creating a technical portfolio will showcase the knowledge you have already gained and that is essential while you got out there as a fresher and try to find a data scientist job.
Job market is highly resistant to hire data scientist as a fresher. Everyone out there asks for at least 2 years of experience, but then the question is where will we get the two years experience from?
The important thing here to build a portfolio. As you are a fresher I would assume you had learnt data science through online courses. They only teach you the basics, the analytical skills required to clean the data and apply machine learning algorithms to them comes only from practice.
Do some real-world data science projects, participate in Kaggle competition. kaggle provides data sets for practice as well. Whatever projects you do, create a GitHub repository for it. Place all your projects there so when a recruiter is looking at your profile they know you have hands-on practice and do know the basics. This will take you a long way.
All the major data science jobs for freshers will only be available through off-campus interviews.
Some companies that hires data scientists are:
Siemens
Accenture
IBM
Cerner
Creating a technical portfolio will showcase the knowledge you have already gained and that is essential while you got out there as a fresher and try to find a data scientist job.
๐4โค2
Machine learning is a subset of artificial intelligence that involves developing algorithms and models that enable computers to learn from and make predictions or decisions based on data. In machine learning, computers are trained on large datasets to identify patterns, relationships, and trends without being explicitly programmed to do so.
There are three main types of machine learning: supervised learning, unsupervised learning, and reinforcement learning. In supervised learning, the algorithm is trained on labeled data, where the correct output is provided along with the input data. Unsupervised learning involves training the algorithm on unlabeled data, allowing it to identify patterns and relationships on its own. Reinforcement learning involves training an algorithm to make decisions by rewarding or punishing it based on its actions.
Machine learning algorithms can be used for a wide range of applications, including image and speech recognition, natural language processing, recommendation systems, predictive analytics, and more. These algorithms can be trained using various techniques such as neural networks, decision trees, support vector machines, and clustering algorithms.
Free Machine Learning Resources: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
React โค๏ธ for more free resources
There are three main types of machine learning: supervised learning, unsupervised learning, and reinforcement learning. In supervised learning, the algorithm is trained on labeled data, where the correct output is provided along with the input data. Unsupervised learning involves training the algorithm on unlabeled data, allowing it to identify patterns and relationships on its own. Reinforcement learning involves training an algorithm to make decisions by rewarding or punishing it based on its actions.
Machine learning algorithms can be used for a wide range of applications, including image and speech recognition, natural language processing, recommendation systems, predictive analytics, and more. These algorithms can be trained using various techniques such as neural networks, decision trees, support vector machines, and clustering algorithms.
Free Machine Learning Resources: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
React โค๏ธ for more free resources
โค2
Source codes for data science projects ๐๐
1. Build chatbots:
https://dzone.com/articles/python-chatbot-project-build-your-first-python-pro
2. Credit card fraud detection:
https://www.kaggle.com/renjithmadhavan/credit-card-fraud-detection-using-python
3. Fake news detection
https://data-flair.training/blogs/advanced-python-project-detecting-fake-news/
4.Driver Drowsiness Detection
https://data-flair.training/blogs/python-project-driver-drowsiness-detection-system/
5. Recommender Systems (Movie Recommendation)
https://data-flair.training/blogs/data-science-r-movie-recommendation/
6. Sentiment Analysis
https://data-flair.training/blogs/data-science-r-sentiment-analysis-project/
7. Gender Detection & Age Prediction
https://www.pyimagesearch.com/2020/04/13/opencv-age-detection-with-deep-learning/
๐๐ก๐๐ข๐ฌ ๐๐๐๐ฅ๐ก๐๐ก๐๐๐
1. Build chatbots:
https://dzone.com/articles/python-chatbot-project-build-your-first-python-pro
2. Credit card fraud detection:
https://www.kaggle.com/renjithmadhavan/credit-card-fraud-detection-using-python
3. Fake news detection
https://data-flair.training/blogs/advanced-python-project-detecting-fake-news/
4.Driver Drowsiness Detection
https://data-flair.training/blogs/python-project-driver-drowsiness-detection-system/
5. Recommender Systems (Movie Recommendation)
https://data-flair.training/blogs/data-science-r-movie-recommendation/
6. Sentiment Analysis
https://data-flair.training/blogs/data-science-r-sentiment-analysis-project/
7. Gender Detection & Age Prediction
https://www.pyimagesearch.com/2020/04/13/opencv-age-detection-with-deep-learning/
๐๐ก๐๐ข๐ฌ ๐๐๐๐ฅ๐ก๐๐ก๐๐๐
โค7
In a data science project, using multiple scalers can be beneficial when dealing with features that have different scales or distributions. Scaling is important in machine learning to ensure that all features contribute equally to the model training process and to prevent certain features from dominating others.
Here are some scenarios where using multiple scalers can be helpful in a data science project:
1. Standardization vs. Normalization: Standardization (scaling features to have a mean of 0 and a standard deviation of 1) and normalization (scaling features to a range between 0 and 1) are two common scaling techniques. Depending on the distribution of your data, you may choose to apply different scalers to different features.
2. RobustScaler vs. MinMaxScaler: RobustScaler is a good choice when dealing with outliers, as it scales the data based on percentiles rather than the mean and standard deviation. MinMaxScaler, on the other hand, scales the data to a specific range. Using both scalers can be beneficial when dealing with mixed types of data.
3. Feature engineering: In feature engineering, you may create new features that have different scales than the original features. In such cases, applying different scalers to different sets of features can help maintain consistency in the scaling process.
4. Pipeline flexibility: By using multiple scalers within a preprocessing pipeline, you can experiment with different scaling techniques and easily switch between them to see which one works best for your data.
5. Domain-specific considerations: Certain domains may require specific scaling techniques based on the nature of the data. For example, in image processing tasks, pixel values are often scaled differently than numerical features.
When using multiple scalers in a data science project, it's important to evaluate the impact of scaling on the model performance through cross-validation or other evaluation methods. Try experimenting with different scaling techniques to you find the optimal approach for your specific dataset and machine learning model.
Here are some scenarios where using multiple scalers can be helpful in a data science project:
1. Standardization vs. Normalization: Standardization (scaling features to have a mean of 0 and a standard deviation of 1) and normalization (scaling features to a range between 0 and 1) are two common scaling techniques. Depending on the distribution of your data, you may choose to apply different scalers to different features.
2. RobustScaler vs. MinMaxScaler: RobustScaler is a good choice when dealing with outliers, as it scales the data based on percentiles rather than the mean and standard deviation. MinMaxScaler, on the other hand, scales the data to a specific range. Using both scalers can be beneficial when dealing with mixed types of data.
3. Feature engineering: In feature engineering, you may create new features that have different scales than the original features. In such cases, applying different scalers to different sets of features can help maintain consistency in the scaling process.
4. Pipeline flexibility: By using multiple scalers within a preprocessing pipeline, you can experiment with different scaling techniques and easily switch between them to see which one works best for your data.
5. Domain-specific considerations: Certain domains may require specific scaling techniques based on the nature of the data. For example, in image processing tasks, pixel values are often scaled differently than numerical features.
When using multiple scalers in a data science project, it's important to evaluate the impact of scaling on the model performance through cross-validation or other evaluation methods. Try experimenting with different scaling techniques to you find the optimal approach for your specific dataset and machine learning model.
โค4
Guys, Big Announcement!
Weโve officially hit 2 MILLION followers โ and itโs time to take our Python journey to the next level!
Iโm super excited to launch the 30-Day Python Coding Challenge โ perfect for absolute beginners, interview prep, or anyone wanting to build real projects from scratch.
This challenge is your daily dose of Python โ bite-sized lessons with hands-on projects so you actually code every day and level up fast.
Hereโs what youโll learn over the next 30 days:
Week 1: Python Fundamentals
- Variables & Data Types (Build your own bio/profile script)
- Operators (Mini calculator to sharpen math skills)
- Strings & String Methods (Word counter & palindrome checker)
- Lists & Tuples (Manage a grocery list like a pro)
- Dictionaries & Sets (Create your own contact book)
- Conditionals (Make a guess-the-number game)
- Loops (Multiplication tables & pattern printing)
Week 2: Functions & Logic โ Make Your Code Smarter
- Functions (Prime number checker)
- Function Arguments (Tip calculator with custom tips)
- Recursion Basics (Factorials & Fibonacci series)
- Lambda, map & filter (Process lists efficiently)
- List Comprehensions (Filter odd/even numbers easily)
- Error Handling (Build a safe input reader)
- Review + Mini Project (Command-line to-do list)
Week 3: Files, Modules & OOP
- Reading & Writing Files (Save and load notes)
- Custom Modules (Create your own utility math module)
- Classes & Objects (Student grade tracker)
- Inheritance & OOP (RPG character system)
- Dunder Methods (Build a custom string class)
- OOP Mini Project (Simple bank account system)
- Review & Practice (Quiz app using OOP concepts)
Week 4: Real-World Python & APIs โ Build Cool Apps
- JSON & APIs (Fetch weather data)
- Web Scraping (Extract titles from HTML)
- Regular Expressions (Find emails & phone numbers)
- Tkinter GUI (Create a simple counter app)
- CLI Tools (Command-line calculator with argparse)
- Automation (File organizer script)
- Final Project (Choose, build, and polish your app!)
React with โค๏ธ if you're ready for this new journey
You can join our WhatsApp channel to access it for free: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L/1661
Weโve officially hit 2 MILLION followers โ and itโs time to take our Python journey to the next level!
Iโm super excited to launch the 30-Day Python Coding Challenge โ perfect for absolute beginners, interview prep, or anyone wanting to build real projects from scratch.
This challenge is your daily dose of Python โ bite-sized lessons with hands-on projects so you actually code every day and level up fast.
Hereโs what youโll learn over the next 30 days:
Week 1: Python Fundamentals
- Variables & Data Types (Build your own bio/profile script)
- Operators (Mini calculator to sharpen math skills)
- Strings & String Methods (Word counter & palindrome checker)
- Lists & Tuples (Manage a grocery list like a pro)
- Dictionaries & Sets (Create your own contact book)
- Conditionals (Make a guess-the-number game)
- Loops (Multiplication tables & pattern printing)
Week 2: Functions & Logic โ Make Your Code Smarter
- Functions (Prime number checker)
- Function Arguments (Tip calculator with custom tips)
- Recursion Basics (Factorials & Fibonacci series)
- Lambda, map & filter (Process lists efficiently)
- List Comprehensions (Filter odd/even numbers easily)
- Error Handling (Build a safe input reader)
- Review + Mini Project (Command-line to-do list)
Week 3: Files, Modules & OOP
- Reading & Writing Files (Save and load notes)
- Custom Modules (Create your own utility math module)
- Classes & Objects (Student grade tracker)
- Inheritance & OOP (RPG character system)
- Dunder Methods (Build a custom string class)
- OOP Mini Project (Simple bank account system)
- Review & Practice (Quiz app using OOP concepts)
Week 4: Real-World Python & APIs โ Build Cool Apps
- JSON & APIs (Fetch weather data)
- Web Scraping (Extract titles from HTML)
- Regular Expressions (Find emails & phone numbers)
- Tkinter GUI (Create a simple counter app)
- CLI Tools (Command-line calculator with argparse)
- Automation (File organizer script)
- Final Project (Choose, build, and polish your app!)
React with โค๏ธ if you're ready for this new journey
You can join our WhatsApp channel to access it for free: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L/1661
โค4
Top Platforms for Building Data Science Portfolio
Build an irresistible portfolio that hooks recruiters with these free platforms.
Landing a job as a data scientist begins with building your portfolio with a comprehensive list of all your projects. To help you get started with building your portfolio, here is the list of top data science platforms. Remember the stronger your portfolio, the better chances you have of landing your dream job.
1. GitHub
2. Kaggle
3. LinkedIn
4. Medium
5. MachineHack
6. DagsHub
7. HuggingFace
7 Websites to Learn Data Science for FREE๐งโ๐ป
โ w3school
โ datasimplifier
โ hackerrank
โ kaggle
โ geeksforgeeks
โ leetcode
โ freecodecamp
Build an irresistible portfolio that hooks recruiters with these free platforms.
Landing a job as a data scientist begins with building your portfolio with a comprehensive list of all your projects. To help you get started with building your portfolio, here is the list of top data science platforms. Remember the stronger your portfolio, the better chances you have of landing your dream job.
1. GitHub
2. Kaggle
3. LinkedIn
4. Medium
5. MachineHack
6. DagsHub
7. HuggingFace
7 Websites to Learn Data Science for FREE๐งโ๐ป
โ w3school
โ datasimplifier
โ hackerrank
โ kaggle
โ geeksforgeeks
โ leetcode
โ freecodecamp
โค4
2206.13446.pdf
3 MB
Book: ๐Exercises in Machine Learning
Authors: Michael U. Gutmann
year: 2024
pages: 211
Authors: Michael U. Gutmann
year: 2024
pages: 211
โค4๐1
Machine learning algorithms are basically the brains behind computers that learn from data, spot patterns, and make predictions without being directly programmed for each task. Theyโre grouped into three main types:
โฆ Supervised learning: Learns from labeled data to predict outcomes (e.g., Linear Regression, Logistic Regression, Decision Trees, Random Forests, Support Vector Machines, Neural Networks).
โฆ Unsupervised learning: Finds patterns in unlabeled data (e.g., K-means Clustering, Hierarchical Clustering, Association Rules, Principal Component Analysis, Autoencoders).
โฆ Reinforcement learning: Learns by trial and error, getting feedback from actions (great for games and robotics).
Each type has its own popular algorithms and use cases, from predicting house prices to grouping customers by behavior.
โฆ Supervised learning: Learns from labeled data to predict outcomes (e.g., Linear Regression, Logistic Regression, Decision Trees, Random Forests, Support Vector Machines, Neural Networks).
โฆ Unsupervised learning: Finds patterns in unlabeled data (e.g., K-means Clustering, Hierarchical Clustering, Association Rules, Principal Component Analysis, Autoencoders).
โฆ Reinforcement learning: Learns by trial and error, getting feedback from actions (great for games and robotics).
Each type has its own popular algorithms and use cases, from predicting house prices to grouping customers by behavior.
โค2๐2
๐ฏ ๐๐ฌ๐ฌ๐๐ง๐ญ๐ข๐๐ฅ ๐๐๐๐ ๐๐๐๐๐๐๐ ๐๐๐๐๐๐ ๐๐ก๐๐ญ ๐๐๐๐ซ๐ฎ๐ข๐ญ๐๐ซ๐ฌ ๐๐จ๐จ๐ค ๐
๐จ๐ซ ๐ฏ
If you're applying for Data Analyst roles, having technical skills like SQL and Power BI is importantโbut recruiters look for more than just tools!
๐น 1๏ธโฃ ๐๐๐ ๐ข๐ฌ ๐๐๐๐ ๐โ๐๐๐ฌ๐ญ๐๐ซ ๐๐ญ
โ Know how to write optimized queries (not just SELECT * from everywhere!)
โ Be comfortable with JOINS, CTEs, Window Functions & Performance Optimization
โ Practice solving real-world business scenarios using SQL
๐ก Example Question: How would you find the top 5 best-selling products in each category using SQL?
๐น 2๏ธโฃ ๐๐ฎ๐ฌ๐ข๐ง๐๐ฌ๐ฌ ๐๐๐ฎ๐ฆ๐๐ง: ๐๐ก๐ข๐ง๐ค ๐๐ข๐ค๐ ๐ ๐๐๐๐ข๐ฌ๐ข๐จ๐ง-๐๐๐ค๐๐ซ
โ Understand the why behind the dataโnot just the numbers
โ Learn how to frame insights for different stakeholders (Tech & Non-Tech)
โ Use data storytellingโsimplify complex findings into actionable takeaways
๐ก Example: Instead of saying, "Revenue increased by 12%," say "Revenue increased 12% after launching a targeted discount campaign, driving a 20% increase in repeat purchases."
๐น 3๏ธโฃ ๐๐จ๐ฐ๐๐ซ ๐๐ / ๐๐๐๐ฅ๐๐๐ฎโ๐๐๐ค๐ ๐๐๐ฌ๐ก๐๐จ๐๐ซ๐๐ฌ ๐๐ก๐๐ญ ๐๐ฉ๐๐๐ค!
โ Avoid overloading dashboards with too many visualsโfocus on key KPIs
โ Use interactive elements (filters, drill-throughs) for better usability
โ Keep visuals simple & clearโbar charts are better than complex pie charts!
๐ก Tip: Before creating a dashboard, ask: "What business problem does this solve?"
๐น 4๏ธโฃ ๐๐ฒ๐ญ๐ก๐จ๐ง & ๐๐ฑ๐๐๐ฅโ๐๐๐ง๐๐ฅ๐ ๐๐๐ญ๐ ๐๐๐๐ข๐๐ข๐๐ง๐ญ๐ฅ๐ฒ
โ Python for data wrangling, EDA & automation (Pandas, NumPy, Seaborn)
โ Excel for quick analysis, PivotTables, VLOOKUP/XLOOKUP, Power Query
โ Know when to use Excel vs. Python (hint: small vs. large datasets)
Being a Data Analyst is more than just running queriesโitโs about understanding the business, making insights actionable, and communicating effectively!
If you're applying for Data Analyst roles, having technical skills like SQL and Power BI is importantโbut recruiters look for more than just tools!
๐น 1๏ธโฃ ๐๐๐ ๐ข๐ฌ ๐๐๐๐ ๐โ๐๐๐ฌ๐ญ๐๐ซ ๐๐ญ
โ Know how to write optimized queries (not just SELECT * from everywhere!)
โ Be comfortable with JOINS, CTEs, Window Functions & Performance Optimization
โ Practice solving real-world business scenarios using SQL
๐ก Example Question: How would you find the top 5 best-selling products in each category using SQL?
๐น 2๏ธโฃ ๐๐ฎ๐ฌ๐ข๐ง๐๐ฌ๐ฌ ๐๐๐ฎ๐ฆ๐๐ง: ๐๐ก๐ข๐ง๐ค ๐๐ข๐ค๐ ๐ ๐๐๐๐ข๐ฌ๐ข๐จ๐ง-๐๐๐ค๐๐ซ
โ Understand the why behind the dataโnot just the numbers
โ Learn how to frame insights for different stakeholders (Tech & Non-Tech)
โ Use data storytellingโsimplify complex findings into actionable takeaways
๐ก Example: Instead of saying, "Revenue increased by 12%," say "Revenue increased 12% after launching a targeted discount campaign, driving a 20% increase in repeat purchases."
๐น 3๏ธโฃ ๐๐จ๐ฐ๐๐ซ ๐๐ / ๐๐๐๐ฅ๐๐๐ฎโ๐๐๐ค๐ ๐๐๐ฌ๐ก๐๐จ๐๐ซ๐๐ฌ ๐๐ก๐๐ญ ๐๐ฉ๐๐๐ค!
โ Avoid overloading dashboards with too many visualsโfocus on key KPIs
โ Use interactive elements (filters, drill-throughs) for better usability
โ Keep visuals simple & clearโbar charts are better than complex pie charts!
๐ก Tip: Before creating a dashboard, ask: "What business problem does this solve?"
๐น 4๏ธโฃ ๐๐ฒ๐ญ๐ก๐จ๐ง & ๐๐ฑ๐๐๐ฅโ๐๐๐ง๐๐ฅ๐ ๐๐๐ญ๐ ๐๐๐๐ข๐๐ข๐๐ง๐ญ๐ฅ๐ฒ
โ Python for data wrangling, EDA & automation (Pandas, NumPy, Seaborn)
โ Excel for quick analysis, PivotTables, VLOOKUP/XLOOKUP, Power Query
โ Know when to use Excel vs. Python (hint: small vs. large datasets)
Being a Data Analyst is more than just running queriesโitโs about understanding the business, making insights actionable, and communicating effectively!
โค4
This GitHub Repo will be very helpful if you are preparing for a data science technical interview. This question bank covers:
1๏ธโฃ Machine Learning Interview Questions & Answers
2๏ธโฃ Deep Learning Interview Questions & Answers
2.1. Deep learning basics
2.2. Deep learning for computer vision questions
2.3. Deep learning for NLP & LLMs
3๏ธโฃ Probability Interview Questions & Answers
4๏ธโฃ Statistics Interview Questions & Answers
5๏ธโฃ SQL Interview Questions & Answers
6๏ธโฃ Python Questions & Answers
GitHub Repo Link: https://github.com/youssefHosni/Data-Science-Interview-Questions-Answers
1๏ธโฃ Machine Learning Interview Questions & Answers
2๏ธโฃ Deep Learning Interview Questions & Answers
2.1. Deep learning basics
2.2. Deep learning for computer vision questions
2.3. Deep learning for NLP & LLMs
3๏ธโฃ Probability Interview Questions & Answers
4๏ธโฃ Statistics Interview Questions & Answers
5๏ธโฃ SQL Interview Questions & Answers
6๏ธโฃ Python Questions & Answers
GitHub Repo Link: https://github.com/youssefHosni/Data-Science-Interview-Questions-Answers
โค2
Some essential concepts every data scientist should understand:
### 1. Statistics and Probability
- Purpose: Understanding data distributions and making inferences.
- Core Concepts: Descriptive statistics (mean, median, mode), inferential statistics, probability distributions (normal, binomial), hypothesis testing, p-values, confidence intervals.
### 2. Programming Languages
- Purpose: Implementing data analysis and machine learning algorithms.
- Popular Languages: Python, R.
- Libraries: NumPy, Pandas, Scikit-learn (Python), dplyr, ggplot2 (R).
### 3. Data Wrangling
- Purpose: Cleaning and transforming raw data into a usable format.
- Techniques: Handling missing values, data normalization, feature engineering, data aggregation.
### 4. Exploratory Data Analysis (EDA)
- Purpose: Summarizing the main characteristics of a dataset, often using visual methods.
- Tools: Matplotlib, Seaborn (Python), ggplot2 (R).
- Techniques: Histograms, scatter plots, box plots, correlation matrices.
### 5. Machine Learning
- Purpose: Building models to make predictions or find patterns in data.
- Core Concepts: Supervised learning (regression, classification), unsupervised learning (clustering, dimensionality reduction), model evaluation (accuracy, precision, recall, F1 score).
- Algorithms: Linear regression, logistic regression, decision trees, random forests, support vector machines, k-means clustering, principal component analysis (PCA).
### 6. Deep Learning
- Purpose: Advanced machine learning techniques using neural networks.
- Core Concepts: Neural networks, backpropagation, activation functions, overfitting, dropout.
- Frameworks: TensorFlow, Keras, PyTorch.
### 7. Natural Language Processing (NLP)
- Purpose: Analyzing and modeling textual data.
- Core Concepts: Tokenization, stemming, lemmatization, TF-IDF, word embeddings.
- Techniques: Sentiment analysis, topic modeling, named entity recognition (NER).
### 8. Data Visualization
- Purpose: Communicating insights through graphical representations.
- Tools: Matplotlib, Seaborn, Plotly (Python), ggplot2, Shiny (R), Tableau.
- Techniques: Bar charts, line graphs, heatmaps, interactive dashboards.
### 9. Big Data Technologies
- Purpose: Handling and analyzing large volumes of data.
- Technologies: Hadoop, Spark.
- Core Concepts: Distributed computing, MapReduce, parallel processing.
### 10. Databases
- Purpose: Storing and retrieving data efficiently.
- Types: SQL databases (MySQL, PostgreSQL), NoSQL databases (MongoDB, Cassandra).
- Core Concepts: Querying, indexing, normalization, transactions.
### 11. Time Series Analysis
- Purpose: Analyzing data points collected or recorded at specific time intervals.
- Core Concepts: Trend analysis, seasonal decomposition, ARIMA models, exponential smoothing.
### 12. Model Deployment and Productionization
- Purpose: Integrating machine learning models into production environments.
- Techniques: API development, containerization (Docker), model serving (Flask, FastAPI).
- Tools: MLflow, TensorFlow Serving, Kubernetes.
### 13. Data Ethics and Privacy
- Purpose: Ensuring ethical use and privacy of data.
- Core Concepts: Bias in data, ethical considerations, data anonymization, GDPR compliance.
### 14. Business Acumen
- Purpose: Aligning data science projects with business goals.
- Core Concepts: Understanding key performance indicators (KPIs), domain knowledge, stakeholder communication.
### 15. Collaboration and Version Control
- Purpose: Managing code changes and collaborative work.
- Tools: Git, GitHub, GitLab.
- Practices: Version control, code reviews, collaborative development.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
ENJOY LEARNING ๐๐
### 1. Statistics and Probability
- Purpose: Understanding data distributions and making inferences.
- Core Concepts: Descriptive statistics (mean, median, mode), inferential statistics, probability distributions (normal, binomial), hypothesis testing, p-values, confidence intervals.
### 2. Programming Languages
- Purpose: Implementing data analysis and machine learning algorithms.
- Popular Languages: Python, R.
- Libraries: NumPy, Pandas, Scikit-learn (Python), dplyr, ggplot2 (R).
### 3. Data Wrangling
- Purpose: Cleaning and transforming raw data into a usable format.
- Techniques: Handling missing values, data normalization, feature engineering, data aggregation.
### 4. Exploratory Data Analysis (EDA)
- Purpose: Summarizing the main characteristics of a dataset, often using visual methods.
- Tools: Matplotlib, Seaborn (Python), ggplot2 (R).
- Techniques: Histograms, scatter plots, box plots, correlation matrices.
### 5. Machine Learning
- Purpose: Building models to make predictions or find patterns in data.
- Core Concepts: Supervised learning (regression, classification), unsupervised learning (clustering, dimensionality reduction), model evaluation (accuracy, precision, recall, F1 score).
- Algorithms: Linear regression, logistic regression, decision trees, random forests, support vector machines, k-means clustering, principal component analysis (PCA).
### 6. Deep Learning
- Purpose: Advanced machine learning techniques using neural networks.
- Core Concepts: Neural networks, backpropagation, activation functions, overfitting, dropout.
- Frameworks: TensorFlow, Keras, PyTorch.
### 7. Natural Language Processing (NLP)
- Purpose: Analyzing and modeling textual data.
- Core Concepts: Tokenization, stemming, lemmatization, TF-IDF, word embeddings.
- Techniques: Sentiment analysis, topic modeling, named entity recognition (NER).
### 8. Data Visualization
- Purpose: Communicating insights through graphical representations.
- Tools: Matplotlib, Seaborn, Plotly (Python), ggplot2, Shiny (R), Tableau.
- Techniques: Bar charts, line graphs, heatmaps, interactive dashboards.
### 9. Big Data Technologies
- Purpose: Handling and analyzing large volumes of data.
- Technologies: Hadoop, Spark.
- Core Concepts: Distributed computing, MapReduce, parallel processing.
### 10. Databases
- Purpose: Storing and retrieving data efficiently.
- Types: SQL databases (MySQL, PostgreSQL), NoSQL databases (MongoDB, Cassandra).
- Core Concepts: Querying, indexing, normalization, transactions.
### 11. Time Series Analysis
- Purpose: Analyzing data points collected or recorded at specific time intervals.
- Core Concepts: Trend analysis, seasonal decomposition, ARIMA models, exponential smoothing.
### 12. Model Deployment and Productionization
- Purpose: Integrating machine learning models into production environments.
- Techniques: API development, containerization (Docker), model serving (Flask, FastAPI).
- Tools: MLflow, TensorFlow Serving, Kubernetes.
### 13. Data Ethics and Privacy
- Purpose: Ensuring ethical use and privacy of data.
- Core Concepts: Bias in data, ethical considerations, data anonymization, GDPR compliance.
### 14. Business Acumen
- Purpose: Aligning data science projects with business goals.
- Core Concepts: Understanding key performance indicators (KPIs), domain knowledge, stakeholder communication.
### 15. Collaboration and Version Control
- Purpose: Managing code changes and collaborative work.
- Tools: Git, GitHub, GitLab.
- Practices: Version control, code reviews, collaborative development.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
ENJOY LEARNING ๐๐
โค8
๐๐ข๐ฌ๐๐ฎ๐ฌ๐ฌ๐ข๐ง๐ ๐๐จ๐ฐ๐๐ซ ๐๐ ๐ฌ๐๐๐ง๐๐ซ๐ข๐จ ๐๐๐ฌ๐๐ ๐ช๐ฎ๐๐ฌ๐ญ๐ข๐จ๐ง ๐ก
๐บ๐๐๐๐๐๐๐ ๐
You are a data analyst for a global e-commerce company. You need to analyze the performance of your marketing campaigns across different regions and identify which campaigns have the highest return on investment (ROI). Additionally, you want to see how customer acquisition costs (CAC) vary by region and campaign.
๐ธ๐๐๐๐๐๐๐ ๐
How would you use Power BI to create a comprehensive report on marketing campaign performance and ROI analysis?
๐จ๐๐๐๐๐:
For this we are provided with three datasets:
๐๐๐ฆ๐ฉ๐๐ข๐ ๐ง๐ฌ: CampaignID, CampaignName, Region, StartDate, EndDate, Budget
๐๐๐ฅ๐๐ฌ: SaleID, CampaignID, SaleAmount, SaleDate
๐๐ฑ๐ฉ๐๐ง๐ฌ๐๐ฌ: ExpenseID, CampaignID, ExpenseAmount, ExpenseDate
โถ ๐บ๐๐๐ 1: Analyze the dataset thoroughly and perform some data cleaning and transformation steps ๐
โถ ๐บ๐๐๐ 2: Create Measures that are required in accordance with scenario given.
Total Sales = SUM(Sales[SaleAmount])
Total Expenses = SUM(Expenses[ExpenseAmount])
ROI = DIVIDE([Total Sales] - [Total Expenses], [Total Expenses])
Customer Acquisition Cost (CAC): CAC = DIVIDE([Total Expenses], DISTINCTCOUNT(Sales[SaleID]))
โถ ๐บ๐๐๐ 3: Use appropriate filters and visuals according to your requirements. You may use clustered column chart for CAC by region, line chart for sales and expense trends, can add slicers for region, campaign name, and date range, etc.
โถ ๐บ๐๐๐ 4: Analyze the project for some informative insights and trends.
I have curated the best interview resources to crack Power BI Interviews ๐๐
https://topmate.io/analyst/866125
Like this post if you need more resources like this ๐โค๏ธ
๐บ๐๐๐๐๐๐๐ ๐
You are a data analyst for a global e-commerce company. You need to analyze the performance of your marketing campaigns across different regions and identify which campaigns have the highest return on investment (ROI). Additionally, you want to see how customer acquisition costs (CAC) vary by region and campaign.
๐ธ๐๐๐๐๐๐๐ ๐
How would you use Power BI to create a comprehensive report on marketing campaign performance and ROI analysis?
๐จ๐๐๐๐๐:
For this we are provided with three datasets:
๐๐๐ฆ๐ฉ๐๐ข๐ ๐ง๐ฌ: CampaignID, CampaignName, Region, StartDate, EndDate, Budget
๐๐๐ฅ๐๐ฌ: SaleID, CampaignID, SaleAmount, SaleDate
๐๐ฑ๐ฉ๐๐ง๐ฌ๐๐ฌ: ExpenseID, CampaignID, ExpenseAmount, ExpenseDate
โถ ๐บ๐๐๐ 1: Analyze the dataset thoroughly and perform some data cleaning and transformation steps ๐
โถ ๐บ๐๐๐ 2: Create Measures that are required in accordance with scenario given.
Total Sales = SUM(Sales[SaleAmount])
Total Expenses = SUM(Expenses[ExpenseAmount])
ROI = DIVIDE([Total Sales] - [Total Expenses], [Total Expenses])
Customer Acquisition Cost (CAC): CAC = DIVIDE([Total Expenses], DISTINCTCOUNT(Sales[SaleID]))
โถ ๐บ๐๐๐ 3: Use appropriate filters and visuals according to your requirements. You may use clustered column chart for CAC by region, line chart for sales and expense trends, can add slicers for region, campaign name, and date range, etc.
โถ ๐บ๐๐๐ 4: Analyze the project for some informative insights and trends.
I have curated the best interview resources to crack Power BI Interviews ๐๐
https://topmate.io/analyst/866125
Like this post if you need more resources like this ๐โค๏ธ
โค3
Technical Questions Wipro may ask on their interviews
1. Data Structures and Algorithms:
- "Can you explain the difference between an array and a linked list? When would you use one over the other in a real-world application?"
- "Write code to implement a binary search algorithm."
2. Programming Languages:
- "What is the difference between Java and C++? Can you provide an example of a situation where you would prefer one language over the other?"
- "Write a program in your preferred programming language to reverse a string."
3. Database and SQL:
- "Explain the ACID properties in the context of database transactions."
- "Write an SQL query to retrieve all records from a 'customers' table where the 'country' column is 'India'."
4. Networking:
- "What is the difference between TCP and UDP? When would you choose one over the other for a specific application?"
- "Explain the concept of DNS (Domain Name System) and how it works."
5. System Design:
- "Design a simple online messaging system. What components would you include, and how would they interact?"
- "How would you ensure the scalability and fault tolerance of a web service or application?"
1. Data Structures and Algorithms:
- "Can you explain the difference between an array and a linked list? When would you use one over the other in a real-world application?"
- "Write code to implement a binary search algorithm."
2. Programming Languages:
- "What is the difference between Java and C++? Can you provide an example of a situation where you would prefer one language over the other?"
- "Write a program in your preferred programming language to reverse a string."
3. Database and SQL:
- "Explain the ACID properties in the context of database transactions."
- "Write an SQL query to retrieve all records from a 'customers' table where the 'country' column is 'India'."
4. Networking:
- "What is the difference between TCP and UDP? When would you choose one over the other for a specific application?"
- "Explain the concept of DNS (Domain Name System) and how it works."
5. System Design:
- "Design a simple online messaging system. What components would you include, and how would they interact?"
- "How would you ensure the scalability and fault tolerance of a web service or application?"
โค3