Machine Learning & Artificial Intelligence | Data Science Free Courses
63.6K subscribers
553 photos
2 videos
98 files
421 links
Perfect channel to learn Data Analytics, Data Sciene, Machine Learning & Artificial Intelligence

Admin: @coderfun
Download Telegram
Guys, Big Announcement! ๐Ÿš€

We've officially hit 3 Lakh subscribers on WhatsAppโ€” and it's time to kick off the next big learning journey together! ๐Ÿคฉ

Artificial Intelligence Complete Series โ€” a comprehensive, step-by-step journey from scratch to real-world applications. Whether you're a complete beginner or looking to take your AI skills to the next level, this series has got you covered!

This series is packed with real-world examples, hands-on projects, and tips to understand how AI impacts our world.

Hereโ€™s what weโ€™ll cover:

*Week 1: Introduction to AI*

- What is AI? Understanding the basics without the jargon

- Types of AI: Narrow vs. General AI

- Key AI concepts (Machine Learning, Deep Learning, and Neural Networks)

- Real-world applications: From Chatbots to Self-Driving Cars ๐Ÿš—

- Tools & frameworks for AI (TensorFlow, Keras, PyTorch)


*Week 2: Core AI Techniques*

- Supervised vs. Unsupervised Learning

- Understanding Data: The backbone of AI

- Linear Regression: Your first AI algorithm!

- Decision Trees, K-Nearest Neighbors, and Support Vector Machines

- Hands-on project: Building a basic classifier with Python ๐Ÿ


*Week 3: Deep Dive into Machine Learning*

- What makes ML different from AI?

- Gradient Descent & Model Optimization

- Evaluating Models: Accuracy, Precision, Recall, and F1-Score

- Hyperparameter Tuning

- Hands-on project: Building a predictive model with real data ๐Ÿ“Š


*Week 4: Introduction to Neural Networks*

- The fundamentals of neural networks & deep learning

- Understanding how a neural network mimics the human brain ๐Ÿง 

- Training your first Neural Network with TensorFlow

- Introduction to Backpropagation and Activation Functions

- Hands-on project: Build a simple neural network to recognize images ๐Ÿ“ธ


*Week 5: Advanced AI Concepts*

- Natural Language Processing (NLP): Teach machines to understand text and speech ๐Ÿ—ฃ๏ธ

- Computer Vision: Teaching machines to "see" with Convolutional Neural Networks (CNNs)

- Reinforcement Learning: AI that learns through trial and error (think AlphaGo)

- Real-world AI Use Cases: Healthcare, Finance, Gaming, and more

- Hands-on project: Implementing NLP for text classification ๐Ÿ“š


*Week 6: Building Real-World AI Applications*

- AI in the real world: Chatbots, Recommendation Systems, and Fraud Detection

- Integrating AI with APIs and Web Services

- Cloud AI: Using AWS, Google Cloud, and Azure for scaling AI projects

- Hands-on project: Build a recommendation system like Netflix ๐ŸŽฌ


*Week 7: Preparing for AI Careers*

- Common interview questions for AI & ML roles ๐Ÿ“

- Building an AI Portfolio: Showcase your projects

- Understanding AI in Industry: How itโ€™s transforming businesses

- Networking and building your career in AI ๐ŸŒ


Join our WhatsApp channel to access it for FREE: https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y/1031
โค4๐Ÿ‘1
7 Essential Data Analysis Techniques You Need to Know in 2025

โœ… Exploratory Data Analysis (EDA) โ€“ Uncover patterns, spot anomalies, and visualize distributions before diving deeper
โœ… Time Series Analysis โ€“ Analyze trends over time, forecast future values (using ARIMA or Prophet)
โœ… Hypothesis Testing โ€“ Use statistical tests (T-tests, Chi-square) to validate assumptions and claims
โœ… Regression Analysis โ€“ Predict continuous variables using linear or non-linear models
โœ… Cluster Analysis โ€“ Group similar data points using K-means or hierarchical clustering
โœ… Dimensionality Reduction โ€“ Simplify complex datasets using PCA (Principal Component Analysis)
โœ… Classification Algorithms โ€“ Predict categorical outcomes with decision trees, random forests, and SVMs

Mastering these will give you the edge in any data analysis role.

Free Resources: https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02
๐Ÿ‘2โค1
Free Programming and Data Analytics Resources ๐Ÿ‘‡๐Ÿ‘‡

โœ… Data science and Data Analytics Free Courses by Google

https://developers.google.com/edu/python/introduction

https://grow.google/intl/en_in/data-analytics-course/?tab=get-started-in-the-field

https://cloud.google.com/data-science?hl=en

https://developers.google.com/machine-learning/crash-course

https://t.iss.one/datasciencefun/1371

๐Ÿ” Free Data Analytics Courses by Microsoft

1. Get started with microsoft dataanalytics
https://learn.microsoft.com/en-us/training/paths/data-analytics-microsoft/

2. Introduction to version control with git
https://learn.microsoft.com/en-us/training/paths/intro-to-vc-git/

3. Microsoft azure ai fundamentals
https://learn.microsoft.com/en-us/training/paths/get-started-with-artificial-intelligence-on-azure/

๐Ÿค– Free AI Courses by Microsoft

1. Fundamentals of AI by Microsoft

https://learn.microsoft.com/en-us/training/paths/get-started-with-artificial-intelligence-on-azure/

2. Introduction to AI with python by Harvard.

https://pll.harvard.edu/course/cs50s-introduction-artificial-intelligence-python

๐Ÿ“š Useful Resources for the Programmers

Data Analyst Roadmap
https://t.iss.one/sqlspecialist/94

Free C course from Microsoft
https://docs.microsoft.com/en-us/cpp/c-language/?view=msvc-170&viewFallbackFrom=vs-2019

Interactive React Native Resources
https://fullstackopen.com/en/part10

Python for Data Science and ML
https://t.iss.one/datasciencefree/68

Ethical Hacking Bootcamp
https://t.iss.one/ethicalhackingtoday/3

Unity Documentation
https://docs.unity3d.com/Manual/index.html

Advanced Javascript concepts
https://t.iss.one/Programming_experts/72

Oops in Java
https://nptel.ac.in/courses/106105224

Intro to Version control with Git
https://docs.microsoft.com/en-us/learn/modules/intro-to-git/0-introduction

Python Data Structure and Algorithms
https://t.iss.one/programming_guide/76

Free PowerBI course by Microsoft
https://docs.microsoft.com/en-us/users/microsoftpowerplatform-5978/collections/k8xidwwnzk1em

Data Structures Interview Preparation
https://t.iss.one/crackingthecodinginterview/309?single

๐Ÿป Free Programming Courses by Microsoft

โฏ JavaScript
https://learn.microsoft.com/training/paths/web-development-101/

โฏ TypeScript
https://learn.microsoft.com/training/paths/build-javascript-applications-typescript/

โฏ C#
https://learn.microsoft.com/users/dotnet/collections/yz26f8y64n7k07

Join @free4unow_backup for more free resources.

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
๐Ÿ‘1
This is a quick and easy guide to the four main categories: Supervised, Unsupervised, Semi-Supervised, and Reinforcement Learning.

1. Supervised Learning
In supervised learning, the model learns from examples that already have the answers (labeled data). The goal is for the model to predict the correct result when given new data.

Some common supervised learning algorithms include:

โžก๏ธ Linear Regression โ€“ For predicting continuous values, like house prices.
โžก๏ธ Logistic Regression โ€“ For predicting categories, like spam or not spam.
โžก๏ธ Decision Trees โ€“ For making decisions in a step-by-step way.
โžก๏ธ K-Nearest Neighbors (KNN) โ€“ For finding similar data points.
โžก๏ธ Random Forests โ€“ A collection of decision trees for better accuracy.
โžก๏ธ Neural Networks โ€“ The foundation of deep learning, mimicking the human brain.

2. Unsupervised Learning
With unsupervised learning, the model explores patterns in data that doesnโ€™t have any labels. It finds hidden structures or groupings.

Some popular unsupervised learning algorithms include:

โžก๏ธ K-Means Clustering โ€“ For grouping data into clusters.
โžก๏ธ Hierarchical Clustering โ€“ For building a tree of clusters.
โžก๏ธ Principal Component Analysis (PCA) โ€“ For reducing data to its most important parts.
โžก๏ธ Autoencoders โ€“ For finding simpler representations of data.

3. Semi-Supervised Learning
This is a mix of supervised and unsupervised learning. It uses a small amount of labeled data with a large amount of unlabeled data to improve learning.

Common semi-supervised learning algorithms include:

โžก๏ธ Label Propagation โ€“ For spreading labels through connected data points.
โžก๏ธ Semi-Supervised SVM โ€“ For combining labeled and unlabeled data.
โžก๏ธ Graph-Based Methods โ€“ For using graph structures to improve learning.

4. Reinforcement Learning
In reinforcement learning, the model learns by trial and error. It interacts with its environment, receives feedback (rewards or penalties), and learns how to act to maximize rewards.

Popular reinforcement learning algorithms include:

โžก๏ธ Q-Learning โ€“ For learning the best actions over time.
โžก๏ธ Deep Q-Networks (DQN) โ€“ Combining Q-learning with deep learning.
โžก๏ธ Policy Gradient Methods โ€“ For learning policies directly.
โžก๏ธ Proximal Policy Optimization (PPO) โ€“ For stable and effective learning.

Join our WhatsApp channel: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D

Like if you need similar content ๐Ÿ˜„๐Ÿ‘

Hope this helps you ๐Ÿ˜Š
๐Ÿ‘6โค1
๐Ÿ”— Roadmap to master Machine Learning
๐Ÿฅฐ1
๐Ÿ”— Roadmap to master Machine Learning
๐Ÿ‘4โค1๐Ÿฅฐ1
๐Ÿ–ฅ Large Language Model Course

The popular free LLM course has just been updated.

This is a step-by-step guide with useful resources and notebooks for both beginners and those who already have an ml-base.

The course is divided into 3 parts:
1๏ธโƒฃ LLM Fundamentals : The block provides fundamental knowledge of mathematics, Python and neural networks.
2๏ธโƒฃ LLM Scientist : This block focuses on the internal structure of LLMs and their creation using the latest technologies and frameworks.
3๏ธโƒฃ The LLM Engineer : Here you will learn how to write applications in a hands-on way and how to deploy them.

โญ๏ธ 41.4k stars on Github

๐Ÿ“Œ https://github.com/mlabonne/llm-course

#llm #course #opensource #ml
โค2๐Ÿ‘1๐Ÿฅฐ1
10 Free Machine Learning Books For 2025

๐Ÿ“˜ 1. Foundations of Machine Learning
Build a solid theoretical base before diving into machine learning algorithms.
๐Ÿ”˜ Click Here

๐Ÿ“™ 2. Practical Machine Learning: A Beginner's Guide with Ethical Insights
Learn to implement ML with a focus on responsible and ethical AI.
๐Ÿ”˜ Open Book

๐Ÿ“— 3. Mathematics for Machine Learning
Master the core math concepts that power machine learning algorithms.
๐Ÿ”˜ Click Here

๐Ÿ“• 4. Algorithms for Decision Making
Use machine learning to make smarter decisions in complex environments.
๐Ÿ”˜ Open Book

๐Ÿ“˜ 5. Learning to Quantify
Dive into the niche field of quantification and its real-world impact.
๐Ÿ”˜ Click Here

๐Ÿ“™ 6. Gradient Expectations
Explore predictive neural networks inspired by the mammalian brain.
๐Ÿ”˜ Open Book

๐Ÿ“— 7. Reinforcement Learning: An Introduction
A comprehensive intro to RL, from theory to practical applications.
๐Ÿ”˜ Click Here

๐Ÿ“• 8. Interpretable Machine Learning
Understand how to make machine learning models transparent and trustworthy.
๐Ÿ”˜ Open Book

๐Ÿ“˜ 9. Fairness and Machine Learning
Tackle bias and ensure fairness in AI and ML model outputs.
๐Ÿ”˜ Click Here

๐Ÿ“™ 10. Machine Learning in Production
Learn how to deploy ML models successfully into real-world systems.
๐Ÿ”˜ Open Book

Like for more โค๏ธ
๐Ÿ‘7โค2๐Ÿฅฐ1
7 Powerful AI Project Ideas to Build Your Portfolio

โœ… AI Chatbot โ€“ Create a custom chatbot using NLP libraries like spaCy, Rasa, or GPT API
โœ… Fake News Detector โ€“ Classify real vs fake news using Natural Language Processing and machine learning
โœ… Image Classifier โ€“ Build a CNN to identify objects (e.g., cats vs dogs, handwritten digits)
โœ… Resume Screener โ€“ Automate shortlisting candidates using keyword extraction and scoring logic
โœ… Text Summarizer โ€“ Generate short summaries from long documents using Transformer models
โœ… AI-Powered Recommendation System โ€“ Suggest products, movies, or courses based on user preferences
โœ… Voice Assistant Clone โ€“ Build a basic version of Alexa or Siri with speech recognition and response generation

These projects are not just for learningโ€”theyโ€™ll also impress recruiters!

#ai #projects
๐Ÿ‘5โค1
๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฟ๐—ผ๐—ฎ๐—ฑ๐—บ๐—ฎ๐—ฝ ๐˜๐—ผ ๐˜€๐—ต๐—ฎ๐—ฝ๐—ฒ ๐˜†๐—ผ๐˜‚๐—ฟ ๐—ฐ๐—ฎ๐—ฟ๐—ฒ๐—ฒ๐—ฟ: ๐Ÿ‘‡

-> 1. Learn the Language of Data
Start with Python or R. Learn how to write clean scripts, automate tasks, and manipulate data like a pro.

-> 2. Master Data Handling
Use Pandas, NumPy, and SQL. These are your weapons for data cleaning, transformation, and querying.
Garbage in = Garbage out. Always clean your data.

-> 3. Nail the Basics of Statistics & Probability
You canโ€™t call yourself a data scientist if you donโ€™t understand distributions, p-values, confidence intervals, and hypothesis testing.

-> 4. Exploratory Data Analysis (EDA)
Visualize the story behind the numbers with Matplotlib, Seaborn, and Plotly.
EDA is how you uncover hidden gold.

-> 5. Learn Machine Learning the Right Way

Start simple:

Linear Regression

Logistic Regression

Decision Trees
Then level up with Random Forest, XGBoost, and Neural Networks.


-> 6. Build Real Projects
Kaggle, personal projects, domain-specific problemsโ€”donโ€™t just learn, apply.
Make a portfolio that speaks louder than your resume.

-> 7. Learn Deployment (Optional but Powerful)
Use Flask, Streamlit, or FastAPI to deploy your models.
Turn models into real-world applications.

-> 8. Sharpen Soft Skills
Storytelling, communication, and business acumen are just as important as technical skills.
Explain your insights like a leader.


๐—ฌ๐—ผ๐˜‚ ๐—ฑ๐—ผ๐—ปโ€™๐˜ ๐—ต๐—ฎ๐˜ƒ๐—ฒ ๐˜๐—ผ ๐—ฏ๐—ฒ ๐—ฝ๐—ฒ๐—ฟ๐—ณ๐—ฒ๐—ฐ๐˜.
๐—ฌ๐—ผ๐˜‚ ๐—ท๐˜‚๐˜€๐˜ ๐—ต๐—ฎ๐˜ƒ๐—ฒ ๐˜๐—ผ ๐—ฏ๐—ฒ ๐—ฐ๐—ผ๐—ป๐˜€๐—ถ๐˜€๐˜๐—ฒ๐—ป๐˜.

Join our WhatsApp channel: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D

Like if you need similar content ๐Ÿ˜„๐Ÿ‘

Hope this helps you ๐Ÿ˜Š
๐Ÿฅฐ2โค1๐Ÿ‘1
What's the ONE skill you absolutely NEED to master in 2025 to stay ahead of the curve?

๐Ÿค” The latest video dives deep into the MOST in-demand skill this year.

Watch Now: https://youtu.be/GuQHC2_pPxc?feature=shared

And trust me, you won't want to miss this!

Register Now: https://surl.li/bbkbvd
๐Ÿ‘2โค1๐Ÿฅฐ1๐Ÿคฃ1
For those of you who are new to Data Science and Machine learning algorithms, let me try to give you a brief overview. ML Algorithms can be categorized into three types: supervised learning, unsupervised learning, and reinforcement learning.

1. Supervised Learning:
- Definition: Algorithms learn from labeled training data, making predictions or decisions based on input-output pairs.
- Examples: Linear regression, decision trees, support vector machines (SVM), and neural networks.
- Applications: Email spam detection, image recognition, and medical diagnosis.

2. Unsupervised Learning:
- Definition: Algorithms analyze and group unlabeled data, identifying patterns and structures without prior knowledge of the outcomes.
- Examples: K-means clustering, hierarchical clustering, and principal component analysis (PCA).
- Applications: Customer segmentation, market basket analysis, and anomaly detection.

3. Reinforcement Learning:
- Definition: Algorithms learn by interacting with an environment, receiving rewards or penalties based on their actions, and optimizing for long-term goals.
- Examples: Q-learning, deep Q-networks (DQN), and policy gradient methods.
- Applications: Robotics, game playing (like AlphaGo), and self-driving cars.

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Credits: https://t.iss.one/datasciencefun

Like if you need similar content

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
๐Ÿ‘4โค1