Machine Learning & Artificial Intelligence | Data Science Free Courses
63.6K subscribers
553 photos
2 videos
98 files
421 links
Perfect channel to learn Data Analytics, Data Sciene, Machine Learning & Artificial Intelligence

Admin: @coderfun
Download Telegram
Are you looking to become a machine learning engineer? The algorithm brought you to the right place! ๐Ÿ“Œ

I created a free and comprehensive roadmap. Let's go through this thread and explore what you need to know to become an expert machine learning engineer:

Math & Statistics

Just like most other data roles, machine learning engineering starts with strong foundations from math, precisely linear algebra, probability and statistics.

Here are the probability units you will need to focus on:

Basic probability concepts statistics
Inferential statistics
Regression analysis
Experimental design and A/B testing Bayesian statistics
Calculus
Linear algebra

Python:

You can choose Python, R, Julia, or any other language, but Python is the most versatile and flexible language for machine learning.

Variables, data types, and basic operations
Control flow statements (e.g., if-else, loops)
Functions and modules
Error handling and exceptions
Basic data structures (e.g., lists, dictionaries, tuples)
Object-oriented programming concepts
Basic work with APIs
Detailed data structures and algorithmic thinking

Machine Learning Prerequisites:

Exploratory Data Analysis (EDA) with NumPy and Pandas
Basic data visualization techniques to visualize the variables and features.
Feature extraction
Feature engineering
Different types of encoding data

Machine Learning Fundamentals

Using scikit-learn library in combination with other Python libraries for:

Supervised Learning: (Linear Regression, K-Nearest Neighbors, Decision Trees)
Unsupervised Learning: (K-Means Clustering, Principal Component Analysis, Hierarchical Clustering)
Reinforcement Learning: (Q-Learning, Deep Q Network, Policy Gradients)

Solving two types of problems:
Regression
Classification

Neural Networks:
Neural networks are like computer brains that learn from examples, made up of layers of "neurons" that handle data. They learn without explicit instructions.

Types of Neural Networks:

Feedforward Neural Networks: Simplest form, with straight connections and no loops.
Convolutional Neural Networks (CNNs): Great for images, learning visual patterns.
Recurrent Neural Networks (RNNs): Good for sequences like text or time series, because they remember past information.

In Python, itโ€™s the best to use TensorFlow and Keras libraries, as well as PyTorch, for deeper and more complex neural network systems.

Deep Learning:

Deep learning is a subset of machine learning in artificial intelligence (AI) that has networks capable of learning unsupervised from data that is unstructured or unlabeled.

Convolutional Neural Networks (CNNs)
Recurrent Neural Networks (RNNs)
Long Short-Term Memory Networks (LSTMs)
Generative Adversarial Networks (GANs)
Autoencoders
Deep Belief Networks (DBNs)
Transformer Models

Machine Learning Project Deployment

Machine learning engineers should also be able to dive into MLOps and project deployment. Here are the things that you should be familiar or skilled at:

Version Control for Data and Models
Automated Testing and Continuous Integration (CI)
Continuous Delivery and Deployment (CD)
Monitoring and Logging
Experiment Tracking and Management
Feature Stores
Data Pipeline and Workflow Orchestration
Infrastructure as Code (IaC)
Model Serving and APIs

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Credits: https://t.iss.one/datasciencefun

Like if you need similar content ๐Ÿ˜„๐Ÿ‘

Hope this helps you ๐Ÿ˜Š
๐Ÿ‘4โค1
Guys, Big Announcement!

Weโ€™ve officially hit 5 Lakh followers on WhatsApp and itโ€™s time to level up together! โค๏ธ

I've launched a Python Learning Series โ€” designed for beginners to those preparing for technical interviews or building real-world projects.

This will be a step-by-step journey โ€” from basics to advanced โ€” with real examples and short quizzes after each topic to help you lock in the concepts.

Hereโ€™s what weโ€™ll cover in the coming days:

Week 1: Python Fundamentals

- Variables & Data Types

- Operators & Expressions

- Conditional Statements (if, elif, else)

- Loops (for, while)

- Functions & Parameters

- Input/Output & Basic Formatting


Week 2: Core Python Skills

- Lists, Tuples, Sets, Dictionaries

- String Manipulation

- List Comprehensions

- File Handling

- Exception Handling


Week 3: Intermediate Python

- Lambda Functions

- Map, Filter, Reduce

- Modules & Packages

- Scope & Global Variables

- Working with Dates & Time


Week 4: OOP & Pythonic Concepts

- Classes & Objects

- Inheritance & Polymorphism

- Decorators (Intro level)

- Generators & Iterators

- Writing Clean & Readable Code


Week 5: Real-World & Interview Prep

- Web Scraping (BeautifulSoup)

- Working with APIs (Requests)

- Automating Tasks

- Data Analysis Basics (Pandas)

- Interview Coding Patterns

You can join our WhatsApp channel to access it for free: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L/1527
๐Ÿ‘7
Learning Python Network
Programming


๐Ÿ“š book
๐Ÿ‘10
Important Pandas & Spark Commands for Data Science
๐Ÿ‘5
The Only roadmap you need to become an ML Engineer ๐Ÿฅณ

Phase 1: Foundations (1-2 Months)
๐Ÿ”น Math & Stats Basics โ€“ Linear Algebra, Probability, Statistics
๐Ÿ”น Python Programming โ€“ NumPy, Pandas, Matplotlib, Scikit-Learn
๐Ÿ”น Data Handling โ€“ Cleaning, Feature Engineering, Exploratory Data Analysis

Phase 2: Core Machine Learning (2-3 Months)
๐Ÿ”น Supervised & Unsupervised Learning โ€“ Regression, Classification, Clustering
๐Ÿ”น Model Evaluation โ€“ Cross-validation, Metrics (Accuracy, Precision, Recall, AUC-ROC)
๐Ÿ”น Hyperparameter Tuning โ€“ Grid Search, Random Search, Bayesian Optimization
๐Ÿ”น Basic ML Projects โ€“ Predict house prices, customer segmentation

Phase 3: Deep Learning & Advanced ML (2-3 Months)
๐Ÿ”น Neural Networks โ€“ TensorFlow & PyTorch Basics
๐Ÿ”น CNNs & Image Processing โ€“ Object Detection, Image Classification
๐Ÿ”น NLP & Transformers โ€“ Sentiment Analysis, BERT, LLMs (GPT, Gemini)
๐Ÿ”น Reinforcement Learning Basics โ€“ Q-learning, Policy Gradient

Phase 4: ML System Design & MLOps (2-3 Months)
๐Ÿ”น ML in Production โ€“ Model Deployment (Flask, FastAPI, Docker)
๐Ÿ”น MLOps โ€“ CI/CD, Model Monitoring, Model Versioning (MLflow, Kubeflow)
๐Ÿ”น Cloud & Big Data โ€“ AWS/GCP/Azure, Spark, Kafka
๐Ÿ”น End-to-End ML Projects โ€“ Fraud detection, Recommendation systems

Phase 5: Specialization & Job Readiness (Ongoing)
๐Ÿ”น Specialize โ€“ Computer Vision, NLP, Generative AI, Edge AI
๐Ÿ”น Interview Prep โ€“ Leetcode for ML, System Design, ML Case Studies
๐Ÿ”น Portfolio Building โ€“ GitHub, Kaggle Competitions, Writing Blogs
๐Ÿ”น Networking โ€“ Contribute to open-source, Attend ML meetups, LinkedIn presence

Follow this advanced roadmap to build a successful career in ML!

The data field is vast, offering endless opportunities so start preparing now.
๐Ÿ‘5โค2
๐Ÿฑ ๐—–๐—ผ๐—ฑ๐—ถ๐—ป๐—ด ๐—–๐—ต๐—ฎ๐—น๐—น๐—ฒ๐—ป๐—ด๐—ฒ๐˜€ ๐—ง๐—ต๐—ฎ๐˜ ๐—”๐—ฐ๐˜๐˜‚๐—ฎ๐—น๐—น๐˜† ๐— ๐—ฎ๐˜๐˜๐—ฒ๐—ฟ ๐—™๐—ผ๐—ฟ ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐˜๐—ถ๐˜€๐˜๐˜€ ๐Ÿ’ป

You donโ€™t need to be a LeetCode grandmaster.
But data science interviews still test your problem-solving mindsetโ€”and these 5 types of challenges are the ones that actually matter.

Hereโ€™s what to focus on (with examples) ๐Ÿ‘‡

๐Ÿ”น 1. String Manipulation (Common in Data Cleaning)

โœ… Parse messy columns (e.g., split โ€œName_Age_Cityโ€)
โœ… Regex to extract phone numbers, emails, URLs
โœ… Remove stopwords or HTML tags in text data

Example: Clean up a scraped dataset from LinkedIn bias

๐Ÿ”น 2. GroupBy and Aggregation with Pandas

โœ… Group sales data by product/region
โœ… Calculate avg, sum, count using .groupby()
โœ… Handle missing values smartly

Example: โ€œWhatโ€™s the top-selling product in each region?โ€

๐Ÿ”น 3. SQL Join + Window Functions

โœ… INNER JOIN, LEFT JOIN to merge tables
โœ… ROW_NUMBER(), RANK(), LEAD(), LAG() for trends
โœ… Use CTEs to break complex queries

Example: โ€œGet 2nd highest salary in each departmentโ€

๐Ÿ”น 4. Data Structures: Lists, Dicts, Sets in Python

โœ… Use dictionaries to map, filter, and count
โœ… Remove duplicates with sets
โœ… List comprehensions for clean solutions

Example: โ€œCount frequency of hashtags in tweetsโ€

๐Ÿ”น 5. Basic Algorithms (Not DP or Graphs)

โœ… Sliding window for moving averages
โœ… Two pointers for duplicate detection
โœ… Binary search in sorted arrays

Example: โ€œDetect if a pair of values sum to 100โ€

๐ŸŽฏ Tip: Practice challenges that feel like real-world data work, not textbook CS exams.

Use platforms like:

StrataScratch
Hackerrank (SQL + Python)
Kaggle Code

I have curated the best interview resources to crack Data Science Interviews
๐Ÿ‘‡๐Ÿ‘‡
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D

Like if you need similar content ๐Ÿ˜„๐Ÿ‘
๐Ÿ‘2โค1๐Ÿคฃ1
Data-Driven Decision Making

Data-driven decision-making (DDDM) involves using data analytics to guide business strategies instead of relying on intuition. Key techniques include A/B testing, forecasting, trend analysis, and KPI evaluation.

1๏ธโƒฃ A/B Testing & Hypothesis Testing

A/B testing compares two versions of a product, marketing campaign, or website feature to determine which performs better.

โœ” Key Metrics in A/B Testing:

Conversion Rate

Click-Through Rate (CTR)

Revenue per User


โœ” Steps in A/B Testing:

1. Define the hypothesis (e.g., "Changing the CTA button color will increase clicks").


2. Split users into Group A (control) and Group B (test).


3. Analyze differences using statistical tests.



โœ” SQL for A/B Testing:

Calculate average purchase per user in two test groups

SELECT test_group, AVG(purchase_amount) AS avg_purchase  
FROM ab_test_results
GROUP BY test_group;


Run a t-test to check statistical significance (Python)

from scipy.stats import ttest_ind
t_stat, p_value = ttest_ind(group_A['conversion_rate'], group_B['conversion_rate'])
print(f"T-statistic: {t_stat}, P-value: {p_value}")


๐Ÿ”น P-value < 0.05 โ†’ Statistically significant difference.
๐Ÿ”น P-value > 0.05 โ†’ No strong evidence of difference.


2๏ธโƒฃ Forecasting & Trend Analysis

Forecasting predicts future trends based on historical data.

โœ” Time Series Analysis Techniques:

Moving Averages (smooth trends)

Exponential Smoothing (weights recent data more)

ARIMA Models (AutoRegressive Integrated Moving Average)


โœ” SQL for Moving Averages:

7-day moving average of sales

SELECT order_date,  
sales,
AVG(sales) OVER (ORDER BY order_date ROWS BETWEEN 6 PRECEDING AND CURRENT ROW) AS moving_avg
FROM sales_data;


โœ” Python for Forecasting (Using Prophet)

from fbprophet import Prophet
model = Prophet()
model.fit(df)
future = model.make_future_dataframe(periods=30)
forecast = model.predict(future)
model.plot(forecast)


3๏ธโƒฃ KPI & Metrics Analysis

KPIs (Key Performance Indicators) measure business performance.

โœ” Common Business KPIs:

Revenue Growth Rate โ†’ (Current Revenue - Previous Revenue) / Previous Revenue

Customer Retention Rate โ†’ Customers at End / Customers at Start

Churn Rate โ†’ % of customers lost over time

Net Promoter Score (NPS) โ†’ Measures customer satisfaction


โœ” SQL for KPI Analysis:

Calculate Monthly Revenue Growth

SELECT month,  
revenue,
LAG(revenue) OVER (ORDER BY month) AS prev_month_revenue,
(revenue - prev_month_revenue) / prev_month_revenue * 100 AS growth_rate
FROM revenue_data;


โœ” Python for KPI Dashboard (Using Matplotlib)

import matplotlib.pyplot as plt
plt.plot(df['month'], df['revenue_growth'], marker='o')
plt.title('Monthly Revenue Growth')
plt.xlabel('Month')
plt.ylabel('Growth Rate (%)')
plt.show()


4๏ธโƒฃ Real-Life Use Cases of Data-Driven Decisions

๐Ÿ“Œ E-commerce: Optimize pricing based on customer demand trends.
๐Ÿ“Œ Finance: Predict stock prices using time series forecasting.
๐Ÿ“Œ Marketing: Improve email campaign conversion rates with A/B testing.
๐Ÿ“Œ Healthcare: Identify disease patterns using predictive analytics.


Mini Task for You: Write an SQL query to calculate the customer churn rate for a subscription-based company.

Data Analyst Roadmap: ๐Ÿ‘‡
https://t.iss.one/sqlspecialist/1159

Like this post if you want me to continue covering all the topics! โค๏ธ

Share with credits: https://t.iss.one/sqlspecialist

Hope it helps :)
๐Ÿ‘4โค3
Breaking into Data Science doesnโ€™t need to be complicated.

If youโ€™re just starting out,

Hereโ€™s how to simplify your approach:

Avoid:
๐Ÿšซ Trying to learn every tool and library (Python, R, TensorFlow, Hadoop, etc.) all at once.
๐Ÿšซ Spending months on theoretical concepts without hands-on practice.
๐Ÿšซ Overloading your resume with keywords instead of impactful projects.
๐Ÿšซ Believing you need a Ph.D. to break into the field.

Instead:

โœ… Start with Python or Rโ€”focus on mastering one language first.
โœ… Learn how to work with structured data (Excel or SQL) - this is your bread and butter.
โœ… Dive into a simple machine learning model (like linear regression) to understand the basics.
โœ… Solve real-world problems with open datasets and share them in a portfolio.
โœ… Build a project that tells a story - why the problem matters, what you found, and what actions it suggests.

Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Like if you need similar content ๐Ÿ˜„๐Ÿ‘

Hope this helps you ๐Ÿ˜Š

#ai #datascience
โค6๐Ÿ‘1๐Ÿฅฐ1
An Artificial Neuron Network (ANN), popularly known as Neural Network is a computational model based on the structure and functions of biological neural networks. It is like an artificial human nervous system for receiving, processing, and transmitting information in terms of Computer Science.

Basically, there are 3 different layers in a neural network :

Input Layer (All the inputs are fed in the model through this layer)

Hidden Layers (There can be more than one hidden layers which are used for processing the inputs received from the input layers)

Output Layer (The data after processing is made available at the output layer)

Graph data can be used with a lot of learning tasks contain a lot rich relation data among elements. For example, modeling physics system, predicting protein interface, and classifying diseases require that a model learns from graph inputs. Graph reasoning models can also be used for learning from non-structural data like texts and images and reasoning on extracted structures.
๐Ÿ‘2
How to master Python from scratch๐Ÿš€

1. Setup and Basics ๐Ÿ
   - Install Python ๐Ÿ–ฅ๏ธ: Download Python and set it up.
   - Hello, World! ๐ŸŒ: Write your first Hello World program.

2. Basic Syntax ๐Ÿ“œ
   - Variables and Data Types ๐Ÿ“Š: Learn about strings, integers, floats, and booleans.
   - Control Structures ๐Ÿ”„: Understand if-else statements, for loops, and while loops.
   - Functions ๐Ÿ› ๏ธ: Write reusable blocks of code.

3. Data Structures ๐Ÿ“‚
   - Lists ๐Ÿ“‹: Manage collections of items.
   - Dictionaries ๐Ÿ“–: Store key-value pairs.
   - Tuples ๐Ÿ“ฆ: Work with immutable sequences.
   - Sets ๐Ÿ”ข: Handle collections of unique items.

4. Modules and Packages ๐Ÿ“ฆ
   - Standard Library ๐Ÿ“š: Explore built-in modules.
   - Third-Party Packages ๐ŸŒ: Install and use packages with pip.

5. File Handling ๐Ÿ“
   - Read and Write Files ๐Ÿ“
   - CSV and JSON ๐Ÿ“‘

6. Object-Oriented Programming ๐Ÿงฉ
   - Classes and Objects ๐Ÿ›๏ธ
   - Inheritance and Polymorphism ๐Ÿ‘จโ€๐Ÿ‘ฉโ€๐Ÿ‘ง

7. Web Development ๐ŸŒ
   - Flask ๐Ÿผ: Start with a micro web framework.
   - Django ๐Ÿฆ„: Dive into a full-fledged web framework.

8. Data Science and Machine Learning ๐Ÿง 
   - NumPy ๐Ÿ“Š: Numerical operations.
   - Pandas ๐Ÿผ: Data manipulation and analysis.
   - Matplotlib ๐Ÿ“ˆ and Seaborn ๐Ÿ“Š: Data visualization.
   - Scikit-learn ๐Ÿค–: Machine learning.

9. Automation and Scripting ๐Ÿค–
   - Automate Tasks ๐Ÿ› ๏ธ: Use Python to automate repetitive tasks.
   - APIs ๐ŸŒ: Interact with web services.

10. Testing and Debugging ๐Ÿž
    - Unit Testing ๐Ÿงช: Write tests for your code.
    - Debugging ๐Ÿ”: Learn to debug efficiently.

11. Advanced Topics ๐Ÿš€
    - Concurrency and Parallelism ๐Ÿ•’
    - Decorators ๐ŸŒ€ and Generators โš™๏ธ
    - Web Scraping ๐Ÿ•ธ๏ธ: Extract data from websites using BeautifulSoup and Scrapy.

12. Practice Projects ๐Ÿ’ก
    - Calculator ๐Ÿงฎ
    - To-Do List App ๐Ÿ“‹
    - Weather App โ˜€๏ธ
    - Personal Blog ๐Ÿ“

13. Community and Collaboration ๐Ÿค
    - Contribute to Open Source ๐ŸŒ
    - Join Coding Communities ๐Ÿ’ฌ
    - Participate in Hackathons ๐Ÿ†

14. Keep Learning and Improving ๐Ÿ“ˆ
    - Read Books ๐Ÿ“–: Like "Automate the Boring Stuff with Python".
    - Watch Tutorials ๐ŸŽฅ: Follow video courses and tutorials.
    - Solve Challenges ๐Ÿงฉ: On platforms like LeetCode, HackerRank, and CodeWars.

15. Teach and Share Knowledge ๐Ÿ“ข
    - Write Blogs โœ๏ธ
    - Create Video Tutorials ๐Ÿ“น
    - Mentor Others ๐Ÿ‘จโ€๐Ÿซ

I have curated the best interview resources to crack Python Interviews ๐Ÿ‘‡๐Ÿ‘‡
https://topmate.io/coding/898340

Hope you'll like it

Like this post if you need more resources like this ๐Ÿ‘โค๏ธ
๐Ÿ‘5โค1