Machine Learning & Artificial Intelligence | Data Science Free Courses
64.2K subscribers
557 photos
2 videos
98 files
425 links
Perfect channel to learn Data Analytics, Data Sciene, Machine Learning & Artificial Intelligence

Admin: @coderfun
Download Telegram
๐Ÿ”ฅ Data Science Roadmap 2025

Step 1: ๐Ÿ Python Basics
Step 2: ๐Ÿ“Š Data Analysis (Pandas, NumPy)
Step 3: ๐Ÿ“ˆ Data Visualization (Matplotlib, Seaborn)
Step 4: ๐Ÿค– Machine Learning (Scikit-learn)
Step 5: ๏ฟฝ Deep Learning (TensorFlow/PyTorch)
Step 6: ๐Ÿ—ƒ๏ธ SQL & Big Data (Spark)
Step 7: ๐Ÿš€ Deploy Models (Flask, FastAPI)
Step 8: ๐Ÿ“ข Showcase Projects
Step 9: ๐Ÿ’ผ Land a Job!

๐Ÿ”“ Pro Tip: Compete on Kaggle

#datascience
๐Ÿ‘2
Understanding Popular ML Algorithms:

1๏ธโƒฃ Linear Regression: Think of it as drawing a straight line through data points to predict future outcomes.

2๏ธโƒฃ Logistic Regression: Like a yes/no machine - it predicts the likelihood of something happening or not.

3๏ธโƒฃ Decision Trees: Imagine making decisions by answering yes/no questions, leading to a conclusion.

4๏ธโƒฃ Random Forest: It's like a group of decision trees working together, making more accurate predictions.

5๏ธโƒฃ Support Vector Machines (SVM): Visualize drawing lines to separate different types of things, like cats and dogs.

6๏ธโƒฃ K-Nearest Neighbors (KNN): Friends sticking together - if most of your friends like something, chances are you'll like it too!

7๏ธโƒฃ Neural Networks: Inspired by the brain, they learn patterns from examples - perfect for recognizing faces or understanding speech.

8๏ธโƒฃ K-Means Clustering: Imagine sorting your socks by color without knowing how many colors there are - it groups similar things.

9๏ธโƒฃ Principal Component Analysis (PCA): Simplifies complex data by focusing on what's important, like summarizing a long story with just a few key points.

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
โค2๐Ÿ‘2
Want to make a transition to a career in data?

Here is a 7-step plan for each data role

Data Scientist

Statistics and Math: Advanced statistics, linear algebra, calculus.
Machine Learning: Supervised and unsupervised learning algorithms.
xData Wrangling: Cleaning and transforming datasets.
Big Data: Hadoop, Spark, SQL/NoSQL databases.
Data Visualization: Matplotlib, Seaborn, D3.js.
Domain Knowledge: Industry-specific data science applications.

Data Analyst

Data Visualization: Tableau, Power BI, Excel for visualizations.
SQL: Querying and managing databases.
Statistics: Basic statistical analysis and probability.
Excel: Data manipulation and analysis.
Python/R: Programming for data analysis.
Data Cleaning: Techniques for data preprocessing.
Business Acumen: Understanding business context for insights.

Data Engineer

SQL/NoSQL Databases: MySQL, PostgreSQL, MongoDB, Cassandra.
ETL Tools: Apache NiFi, Talend, Informatica.
Big Data: Hadoop, Spark, Kafka.
Programming: Python, Java, Scala.
Data Warehousing: Redshift, BigQuery, Snowflake.
Cloud Platforms: AWS, GCP, Azure.
Data Modeling: Designing and implementing data models.

#data
๐Ÿ‘2โค1
Best practices for writing SQL queries:

Join for more: https://t.iss.one/learndataanalysis

1- Write SQL keywords in capital letters.

2- Use table aliases with columns when you are joining multiple tables.

3- Never use select *, always mention list of columns in select clause.

4- Add useful comments wherever you write complex logic. Avoid too many comments.

5- Use joins instead of subqueries when possible for better performance.

6- Create CTEs instead of multiple sub queries , it will make your query easy to read.

7- Join tables using JOIN keywords instead of writing join condition in where clause for better readability.

8- Never use order by in sub queries , It will unnecessary increase runtime.

9- If you know there are no duplicates in 2 tables, use UNION ALL instead of UNION for better performance.

SQL Basics: https://t.iss.one/sqlanalyst/105
๐Ÿ‘3
๐—›๐—ผ๐˜„ ๐˜๐—ผ ๐—•๐—ฒ๐—ฐ๐—ผ๐—บ๐—ฒ ๐—ฎ ๐—๐—ผ๐—ฏ-๐—ฅ๐—ฒ๐—ฎ๐—ฑ๐˜† ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐˜๐—ถ๐˜€๐˜ ๐—ณ๐—ฟ๐—ผ๐—บ ๐—ฆ๐—ฐ๐—ฟ๐—ฎ๐˜๐—ฐ๐—ต (๐—˜๐˜ƒ๐—ฒ๐—ป ๐—ถ๐—ณ ๐—ฌ๐—ผ๐˜‚โ€™๐—ฟ๐—ฒ ๐—ฎ ๐—•๐—ฒ๐—ด๐—ถ๐—ป๐—ป๐—ฒ๐—ฟ!) ๐Ÿ“Š

Wanna break into data science but feel overwhelmed by too many courses, buzzwords, and conflicting advice? Youโ€™re not alone.

Hereโ€™s the truth: You donโ€™t need a PhD or 10 certifications. You just need the right skills in the right order.

Let me show you a proven 5-step roadmap that actually works for landing data science roles (even entry-level) ๐Ÿ‘‡

๐Ÿ”น Step 1: Learn the Core Tools (This is Your Foundation)

Focus on 3 key tools firstโ€”donโ€™t overcomplicate:

โœ… Python โ€“ NumPy, Pandas, Matplotlib, Seaborn
โœ… SQL โ€“ Joins, Aggregations, Window Functions
โœ… Excel โ€“ VLOOKUP, Pivot Tables, Data Cleaning

๐Ÿ”น Step 2: Master Data Cleaning & EDA (Your Real-World Skill)

Real data is messy. Learn how to:

โœ… Handle missing data, outliers, and duplicates
โœ… Visualize trends using Matplotlib/Seaborn
โœ… Use groupby(), merge(), and pivot_table()

๐Ÿ”น Step 3: Learn ML Basics (No Fancy Math Needed)

Stick to core algorithms first:

โœ… Linear & Logistic Regression
โœ… Decision Trees & Random Forest
โœ… KMeans Clustering + Model Evaluation Metrics

๐Ÿ”น Step 4: Build Projects That Prove Your Skills

One strong project > 5 courses. Create:

โœ… Sales Forecasting using Time Series
โœ… Movie Recommendation System
โœ… HR Analytics Dashboard using Python + Excel
๐Ÿ“ Upload them on GitHub. Add visuals, write a good README, and share on LinkedIn.

๐Ÿ”น Step 5: Prep for the Job Hunt (Your Personal Brand Matters)

โœ… Create a strong LinkedIn profile with keywords like โ€œAspiring Data Scientist | Python | SQL | MLโ€
โœ… Add GitHub link + Highlight your Projects
โœ… Follow Data Science mentors, engage with content, and network for referrals

๐ŸŽฏ No shortcuts. Just consistent baby steps.

Every pro data scientist once started as a beginner. Stay curious, stay consistent.

Free Data Science Resources: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
โค2๐Ÿ‘2
40 ML Questions you must know with answers โœ…
๐Ÿ‘7โค1๐Ÿ‘Œ1
We have the Key to unlock AI-Powered Data Skills!

We have got some news for College grads & pros:

Level up with PW Skills' Data Analytics & Data Science with Gen AI course!

โœ… Real-world projects
โœ… Professional instructors
โœ… Flexible learning
โœ… Job Assistance

Ready for a data career boost? โžก๏ธ
Click Here for Data Science with Generative AI Course:

https://shorturl.at/j4lTD

Click Here for Data Analytics Course:
https://shorturl.at/7nrE5
๐Ÿ‘2โค1๐Ÿ‘Ž1
Machine learning powers so many things around us โ€“ from recommendation systems to self-driving cars!

But understanding the different types of algorithms can be tricky.

This is a quick and easy guide to the four main categories: Supervised, Unsupervised, Semi-Supervised, and Reinforcement Learning.

๐Ÿ. ๐’๐ฎ๐ฉ๐ž๐ซ๐ฏ๐ข๐ฌ๐ž๐ ๐‹๐ž๐š๐ซ๐ง๐ข๐ง๐ 
In supervised learning, the model learns from examples that already have the answers (labeled data). The goal is for the model to predict the correct result when given new data.

๐’๐จ๐ฆ๐ž ๐œ๐จ๐ฆ๐ฆ๐จ๐ง ๐ฌ๐ฎ๐ฉ๐ž๐ซ๐ฏ๐ข๐ฌ๐ž๐ ๐ฅ๐ž๐š๐ซ๐ง๐ข๐ง๐  ๐š๐ฅ๐ ๐จ๐ซ๐ข๐ญ๐ก๐ฆ๐ฌ ๐ข๐ง๐œ๐ฅ๐ฎ๐๐ž:

โžก๏ธ Linear Regression โ€“ For predicting continuous values, like house prices.
โžก๏ธ Logistic Regression โ€“ For predicting categories, like spam or not spam.
โžก๏ธ Decision Trees โ€“ For making decisions in a step-by-step way.
โžก๏ธ K-Nearest Neighbors (KNN) โ€“ For finding similar data points.
โžก๏ธ Random Forests โ€“ A collection of decision trees for better accuracy.
โžก๏ธ Neural Networks โ€“ The foundation of deep learning, mimicking the human brain.

๐Ÿ. ๐”๐ง๐ฌ๐ฎ๐ฉ๐ž๐ซ๐ฏ๐ข๐ฌ๐ž๐ ๐‹๐ž๐š๐ซ๐ง๐ข๐ง๐ 
With unsupervised learning, the model explores patterns in data that doesnโ€™t have any labels. It finds hidden structures or groupings.

๐’๐จ๐ฆ๐ž ๐ฉ๐จ๐ฉ๐ฎ๐ฅ๐š๐ซ ๐ฎ๐ง๐ฌ๐ฎ๐ฉ๐ž๐ซ๐ฏ๐ข๐ฌ๐ž๐ ๐ฅ๐ž๐š๐ซ๐ง๐ข๐ง๐  ๐š๐ฅ๐ ๐จ๐ซ๐ข๐ญ๐ก๐ฆ๐ฌ ๐ข๐ง๐œ๐ฅ๐ฎ๐๐ž:

โžก๏ธ K-Means Clustering โ€“ For grouping data into clusters.
โžก๏ธ Hierarchical Clustering โ€“ For building a tree of clusters.
โžก๏ธ Principal Component Analysis (PCA) โ€“ For reducing data to its most important parts.
โžก๏ธ Autoencoders โ€“ For finding simpler representations of data.

๐Ÿ‘. ๐’๐ž๐ฆ๐ข-๐’๐ฎ๐ฉ๐ž๐ซ๐ฏ๐ข๐ฌ๐ž๐ ๐‹๐ž๐š๐ซ๐ง๐ข๐ง๐ 
This is a mix of supervised and unsupervised learning. It uses a small amount of labeled data with a large amount of unlabeled data to improve learning.

๐‚๐จ๐ฆ๐ฆ๐จ๐ง ๐ฌ๐ž๐ฆ๐ข-๐ฌ๐ฎ๐ฉ๐ž๐ซ๐ฏ๐ข๐ฌ๐ž๐ ๐ฅ๐ž๐š๐ซ๐ง๐ข๐ง๐  ๐š๐ฅ๐ ๐จ๐ซ๐ข๐ญ๐ก๐ฆ๐ฌ ๐ข๐ง๐œ๐ฅ๐ฎ๐๐ž:

โžก๏ธ Label Propagation โ€“ For spreading labels through connected data points.
โžก๏ธ Semi-Supervised SVM โ€“ For combining labeled and unlabeled data.
โžก๏ธ Graph-Based Methods โ€“ For using graph structures to improve learning.

๐Ÿ’. ๐‘๐ž๐ข๐ง๐Ÿ๐จ๐ซ๐œ๐ž๐ฆ๐ž๐ง๐ญ ๐‹๐ž๐š๐ซ๐ง๐ข๐ง๐ 
In reinforcement learning, the model learns by trial and error. It interacts with its environment, receives feedback (rewards or penalties), and learns how to act to maximize rewards.

๐๐จ๐ฉ๐ฎ๐ฅ๐š๐ซ ๐ซ๐ž๐ข๐ง๐Ÿ๐จ๐ซ๐œ๐ž๐ฆ๐ž๐ง๐ญ ๐ฅ๐ž๐š๐ซ๐ง๐ข๐ง๐  ๐š๐ฅ๐ ๐จ๐ซ๐ข๐ญ๐ก๐ฆ๐ฌ ๐ข๐ง๐œ๐ฅ๐ฎ๐๐ž:

โžก๏ธ Q-Learning โ€“ For learning the best actions over time.
โžก๏ธ Deep Q-Networks (DQN) โ€“ Combining Q-learning with deep learning.
โžก๏ธ Policy Gradient Methods โ€“ For learning policies directly.
โžก๏ธ Proximal Policy Optimization (PPO) โ€“ For stable and effective learning.

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
๐Ÿ‘7
Essential statistics topics for data science

1. Descriptive statistics: Measures of central tendency, measures of dispersion, and graphical representations of data.

2. Inferential statistics: Hypothesis testing, confidence intervals, and regression analysis.

3. Probability theory: Concepts of probability, random variables, and probability distributions.

4. Sampling techniques: Simple random sampling, stratified sampling, and cluster sampling.

5. Statistical modeling: Linear regression, logistic regression, and time series analysis.

6. Machine learning algorithms: Supervised learning, unsupervised learning, and reinforcement learning.

7. Bayesian statistics: Bayesian inference, Bayesian networks, and Markov chain Monte Carlo methods.

8. Data visualization: Techniques for visualizing data and communicating insights effectively.

9. Experimental design: Designing experiments, analyzing experimental data, and interpreting results.

10. Big data analytics: Handling large volumes of data using tools like Hadoop, Spark, and SQL.

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Credits: https://t.iss.one/datasciencefun

Like if you need similar content ๐Ÿ˜„๐Ÿ‘
๐Ÿ‘2
Accenture Data Scientist Interview Questions!

1st round-

Technical Round

- 2 SQl questions based on playing around views and table, which could be solved by both subqueries and window functions.

- 2 Pandas questions , testing your knowledge on filtering , concatenation , joins and merge.

- 3-4 Machine Learning questions completely based on my Projects, starting from
Explaining the problem statements and then discussing the roadblocks of those projects and some cross questions.

2nd round-

- Couple of python questions agains on pandas and numpy and some hypothetical data.

- Machine Learning projects explanations and cross questions.

- Case Study and a quiz question.

3rd and Final round.

HR interview

Simple Scenerio Based Questions.

Data Science Resources
๐Ÿ‘‡๐Ÿ‘‡
https://t.iss.one/datasciencefun

Like if you need similar content ๐Ÿ˜„๐Ÿ‘
๐Ÿ‘7
๐Ÿš€ ๐—›๐—ผ๐˜„ ๐˜๐—ผ ๐—•๐˜‚๐—ถ๐—น๐—ฑ ๐—ฎ ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฃ๐—ผ๐—ฟ๐˜๐—ณ๐—ผ๐—น๐—ถ๐—ผ ๐—ง๐—ต๐—ฎ๐˜ ๐—ง๐—ฟ๐˜‚๐—น๐˜† ๐—ฆ๐˜๐—ฎ๐—ป๐—ฑ๐˜€ ๐—ข๐˜‚๐˜

In todayโ€™s competitive landscape, a strong resume alone won't get you far. If you're aiming for ๐˜†๐—ผ๐˜‚๐—ฟ ๐—ฑ๐—ฟ๐—ฒ๐—ฎ๐—บ ๐—ฑ๐—ฎ๐˜๐—ฎ ๐˜€๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฟ๐—ผ๐—น๐—ฒ, you need a portfolio that speaks volumesโ€”one that highlights your skills, thinking process, and real-world impact.

A great portfolio isnโ€™t just a collection of projects. Itโ€™s your story as a data scientistโ€”and hereโ€™s how to make it unforgettable:

๐Ÿ”น ๐—ช๐—ต๐—ฎ๐˜ ๐— ๐—ฎ๐—ธ๐—ฒ๐˜€ ๐—ฎ๐—ป ๐—˜๐˜…๐—ฐ๐—ฒ๐—ฝ๐˜๐—ถ๐—ผ๐—ป๐—ฎ๐—น ๐—ฃ๐—ผ๐—ฟ๐˜๐—ณ๐—ผ๐—น๐—ถ๐—ผ?

โœ… Quality Over Quantity โ€“ A few impactful projects are far better than a dozen generic ones.

โœ… Tell a Story โ€“ Clearly explain the problem, your approach, and key insights. Keep it engaging.

โœ… Show Range โ€“ Demonstrate a variety of skillsโ€”data cleaning, visualization, analytics, modeling.

โœ… Make It Relevant โ€“ Choose projects with real-world business value, not just toy Kaggle datasets.

๐Ÿ”ฅ ๐—ฃ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜ ๐—œ๐—ฑ๐—ฒ๐—ฎ๐˜€ ๐—ง๐—ต๐—ฎ๐˜ ๐—ฅ๐—ฒ๐—ฐ๐—ฟ๐˜‚๐—ถ๐˜๐—ฒ๐—ฟ๐˜€ ๐—ก๐—ผ๐˜๐—ถ๐—ฐ๐—ฒ

1๏ธโƒฃ Customer Churn Prediction โ€“ Help businesses retain customers through insights.

2๏ธโƒฃ Social Media Sentiment Analysis โ€“ Extract opinions from real-time data like tweets or reviews.

3๏ธโƒฃ Supply Chain Optimization โ€“ Solve efficiency problems using operational data.

4๏ธโƒฃ E-commerce Recommender System โ€“ Personalize shopping experiences with smart suggestions.

5๏ธโƒฃ Interactive Dashboards โ€“ Use Power BI or Tableau to tell compelling visual stories.

๐Ÿ“Œ ๐—•๐—ฒ๐˜€๐˜ ๐—ฃ๐—ฟ๐—ฎ๐—ฐ๐˜๐—ถ๐—ฐ๐—ฒ๐˜€ ๐—ณ๐—ผ๐—ฟ ๐—ฎ ๐—ž๐—ถ๐—น๐—น๐—ฒ๐—ฟ ๐—ฃ๐—ผ๐—ฟ๐˜๐—ณ๐—ผ๐—น๐—ถ๐—ผ

๐Ÿ’ก Host on GitHub โ€“ Keep your code clean, well-structured, and documented.

๐Ÿ’ก Write About It โ€“ Use Medium or your own site to explain your projects and decisions.

๐Ÿ’ก Deploy Your Work โ€“ Use tools like Streamlit, Flask, or FastAPI to make your projects interactive.

๐Ÿ’ก Open Source Contributions โ€“ Itโ€™s a great way to gain credibility and connect with others.

A great data science portfolio is not just about codeโ€”it's about solving real problems with data.

Free Data Science Resources: https://t.iss.one/datalemur

All the best ๐Ÿ‘๐Ÿ‘
๐Ÿ‘4โค3