Machine Learning & Artificial Intelligence | Data Science Free Courses
64.2K subscribers
557 photos
2 videos
98 files
425 links
Perfect channel to learn Data Analytics, Data Sciene, Machine Learning & Artificial Intelligence

Admin: @coderfun
Download Telegram
Probability for Data Science
๐Ÿ‘4๐Ÿฅฐ4โค1
Python Libraries for Generative AI
โค2๐Ÿ‘2๐Ÿฅฐ2
In a data science project, using multiple scalers can be beneficial when dealing with features that have different scales or distributions. Scaling is important in machine learning to ensure that all features contribute equally to the model training process and to prevent certain features from dominating others.

Here are some scenarios where using multiple scalers can be helpful in a data science project:

1. Standardization vs. Normalization: Standardization (scaling features to have a mean of 0 and a standard deviation of 1) and normalization (scaling features to a range between 0 and 1) are two common scaling techniques. Depending on the distribution of your data, you may choose to apply different scalers to different features.

2. RobustScaler vs. MinMaxScaler: RobustScaler is a good choice when dealing with outliers, as it scales the data based on percentiles rather than the mean and standard deviation. MinMaxScaler, on the other hand, scales the data to a specific range. Using both scalers can be beneficial when dealing with mixed types of data.

3. Feature engineering: In feature engineering, you may create new features that have different scales than the original features. In such cases, applying different scalers to different sets of features can help maintain consistency in the scaling process.

4. Pipeline flexibility: By using multiple scalers within a preprocessing pipeline, you can experiment with different scaling techniques and easily switch between them to see which one works best for your data.

5. Domain-specific considerations: Certain domains may require specific scaling techniques based on the nature of the data. For example, in image processing tasks, pixel values are often scaled differently than numerical features.

When using multiple scalers in a data science project, it's important to evaluate the impact of scaling on the model performance through cross-validation or other evaluation methods. Try experimenting with different scaling techniques to you find the optimal approach for your specific dataset and machine learning model.
๐Ÿ‘8โค1
๐Ÿ”— Machine learning project ideas
๐Ÿ‘7โค1
Data Science Techniques
โค8๐Ÿ‘1
Essential Python Libraries to build your career in Data Science ๐Ÿ“Š๐Ÿ‘‡

1. NumPy:
- Efficient numerical operations and array manipulation.

2. Pandas:
- Data manipulation and analysis with powerful data structures (DataFrame, Series).

3. Matplotlib:
- 2D plotting library for creating visualizations.

4. Seaborn:
- Statistical data visualization built on top of Matplotlib.

5. Scikit-learn:
- Machine learning toolkit for classification, regression, clustering, etc.

6. TensorFlow:
- Open-source machine learning framework for building and deploying ML models.

7. PyTorch:
- Deep learning library, particularly popular for neural network research.

8. SciPy:
- Library for scientific and technical computing.

9. Statsmodels:
- Statistical modeling and econometrics in Python.

10. NLTK (Natural Language Toolkit):
- Tools for working with human language data (text).

11. Gensim:
- Topic modeling and document similarity analysis.

12. Keras:
- High-level neural networks API, running on top of TensorFlow.

13. Plotly:
- Interactive graphing library for making interactive plots.

14. Beautiful Soup:
- Web scraping library for pulling data out of HTML and XML files.

15. OpenCV:
- Library for computer vision tasks.

As a beginner, you can start with Pandas and NumPy for data manipulation and analysis. For data visualization, Matplotlib and Seaborn are great starting points. As you progress, you can explore machine learning with Scikit-learn, TensorFlow, and PyTorch.

Free Notes & Books to learn Data Science: https://t.iss.one/datasciencefree

Python Project Ideas: https://t.iss.one/dsabooks/85

Best Resources to learn Python & Data Science ๐Ÿ‘‡๐Ÿ‘‡

Python Tutorial

Data Science Course by Kaggle

Machine Learning Course by Google

Best Data Science & Machine Learning Resources

Interview Process for Data Science Role at Amazon

Python Interview Resources

Join @free4unow_backup for more free courses

Like for more โค๏ธ

ENJOY LEARNING๐Ÿ‘๐Ÿ‘
๐Ÿ‘5โค2
ML Engineer Roadmap ๐Ÿ‘†
โค5๐Ÿ‘1
Cheatsheet Machine Learning Algorithms๐ŸŒŸ
โค5
๐—ฃ-๐—ฉ๐—ฎ๐—น๐˜‚๐—ฒ๐˜€ ๐—ณ๐—ผ๐—ฟ ๐—ฅ๐—ฒ๐—ด๐—ฟ๐—ฒ๐˜€๐˜€๐—ถ๐—ผ๐—ป ๐— ๐—ผ๐—ฑ๐—ฒ๐—น ๐—˜๐˜…๐—ฝ๐—น๐—ฎ๐—ถ๐—ป๐—ฒ๐—ฑ

๐—ช๐—ต๐—ฒ๐—ป ๐—ฏ๐˜‚๐—ถ๐—น๐—ฑ๐—ถ๐—ป๐—ด ๐—ฎ ๐—ฟ๐—ฒ๐—ด๐—ฟ๐—ฒ๐˜€๐˜€๐—ถ๐—ผ๐—ป ๐—บ๐—ผ๐—ฑ๐—ฒ๐—น, ๐—ป๐—ผ๐˜ ๐—ฒ๐˜ƒ๐—ฒ๐—ฟ๐˜† ๐˜ƒ๐—ฎ๐—ฟ๐—ถ๐—ฎ๐—ฏ๐—น๐—ฒ ๐—ถ๐˜€ ๐—ฐ๐—ฟ๐—ฒ๐—ฎ๐˜๐—ฒ๐—ฑ ๐—ฒ๐—พ๐˜‚๐—ฎ๐—น.

Some variables will genuinely impact your predictions, while others are just background noise.

๐—ง๐—ต๐—ฒ ๐—ฝ-๐˜ƒ๐—ฎ๐—น๐˜‚๐—ฒ ๐—ต๐—ฒ๐—น๐—ฝ๐˜€ ๐˜†๐—ผ๐˜‚ ๐—ณ๐—ถ๐—ด๐˜‚๐—ฟ๐—ฒ ๐—ผ๐˜‚๐˜ ๐˜„๐—ต๐—ถ๐—ฐ๐—ต ๐—ถ๐˜€ ๐˜„๐—ต๐—ถ๐—ฐ๐—ต.

๐—ช๐—ต๐—ฎ๐˜ ๐—ฒ๐˜…๐—ฎ๐—ฐ๐˜๐—น๐˜† ๐—ถ๐˜€ ๐—ฎ ๐—ฃ-๐—ฉ๐—ฎ๐—น๐˜‚๐—ฒ?

๐—” ๐—ฝ-๐˜ƒ๐—ฎ๐—น๐˜‚๐—ฒ ๐—ฎ๐—ป๐˜€๐˜„๐—ฒ๐—ฟ๐˜€ ๐—ผ๐—ป๐—ฒ ๐—พ๐˜‚๐—ฒ๐˜€๐˜๐—ถ๐—ผ๐—ป:
โž” If this variable had no real effect, whatโ€™s the probability that weโ€™d still observe results this extreme just by chance?

โ€ข ๐—Ÿ๐—ผ๐˜„ ๐—ฃ-๐—ฉ๐—ฎ๐—น๐˜‚๐—ฒ (๐˜‚๐˜€๐˜‚๐—ฎ๐—น๐—น๐˜† < 0.05): Strong evidence that the variable is important.
โ€ข ๐—›๐—ถ๐—ด๐—ต ๐—ฃ-๐—ฉ๐—ฎ๐—น๐˜‚๐—ฒ (> 0.05): The variableโ€™s relationship with the output could easily be random.

๐—›๐—ผ๐˜„ ๐—ฃ-๐—ฉ๐—ฎ๐—น๐˜‚๐—ฒ๐˜€ ๐—š๐˜‚๐—ถ๐—ฑ๐—ฒ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—ฅ๐—ฒ๐—ด๐—ฟ๐—ฒ๐˜€๐˜€๐—ถ๐—ผ๐—ป ๐— ๐—ผ๐—ฑ๐—ฒ๐—น

๐—œ๐—บ๐—ฎ๐—ด๐—ถ๐—ป๐—ฒ ๐˜†๐—ผ๐˜‚โ€™๐—ฟ๐—ฒ ๐—ฎ ๐˜€๐—ฐ๐˜‚๐—น๐—ฝ๐˜๐—ผ๐—ฟ.
You start with a messy block of stone (all your features).
P-values are your chisel.
๐—ฅ๐—ฒ๐—บ๐—ผ๐˜ƒ๐—ฒ the features with high p-values (not useful).
๐—ž๐—ฒ๐—ฒ๐—ฝ the features with low p-values (important).

This results in a leaner, smarter model that doesnโ€™t just memorize noise but learns real patterns.

๐—ช๐—ต๐˜† ๐—ฃ-๐—ฉ๐—ฎ๐—น๐˜‚๐—ฒ๐˜€ ๐— ๐—ฎ๐˜๐˜๐—ฒ๐—ฟ

๐—ช๐—ถ๐˜๐—ต๐—ผ๐˜‚๐˜ ๐—ฝ-๐˜ƒ๐—ฎ๐—น๐˜‚๐—ฒ๐˜€, ๐—บ๐—ผ๐—ฑ๐—ฒ๐—น ๐—ฏ๐˜‚๐—ถ๐—น๐—ฑ๐—ถ๐—ป๐—ด ๐—ฏ๐—ฒ๐—ฐ๐—ผ๐—บ๐—ฒ๐˜€ ๐—ด๐˜‚๐—ฒ๐˜€๐˜€๐˜„๐—ผ๐—ฟ๐—ธ.

โœ… ๐—Ÿ๐—ผ๐˜„ ๐—ฃ-๐—ฉ๐—ฎ๐—น๐˜‚๐—ฒ โž” Likely genuine effect.
โŒ ๐—›๐—ถ๐—ด๐—ต ๐—ฃ-๐—ฉ๐—ฎ๐—น๐˜‚๐—ฒ โž” Likely coincidence.

๐—œ๐—ณ ๐˜†๐—ผ๐˜‚ ๐—ถ๐—ด๐—ป๐—ผ๐—ฟ๐—ฒ ๐—ถ๐˜, ๐˜†๐—ผ๐˜‚ ๐—ฟ๐—ถ๐˜€๐—ธ:
โ€ข Overfitting your model with junk features
โ€ข Lowering your modelโ€™s accuracy and interpretability
โ€ข Making wrong business decisions based on faulty insights

๐—ง๐—ต๐—ฒ ๐Ÿฌ.๐Ÿฌ๐Ÿฑ ๐—ง๐—ต๐—ฟ๐—ฒ๐˜€๐—ต๐—ผ๐—น๐—ฑ: ๐—ก๐—ผ๐˜ ๐—” ๐— ๐—ฎ๐—ด๐—ถ๐—ฐ ๐—ก๐˜‚๐—บ๐—ฏ๐—ฒ๐—ฟ

Youโ€™ll often hear: If p < 0.05, itโ€™s significant!

๐—•๐˜‚๐˜ ๐—ฏ๐—ฒ ๐—ฐ๐—ฎ๐—ฟ๐—ฒ๐—ณ๐˜‚๐—น.
This threshold is not universal.
โ€ข In critical fields (like medicine), you might need a much lower p-value (e.g., 0.01).
โ€ข In exploratory analysis, you might tolerate higher p-values.

Context always matters.

๐—ฅ๐—ฒ๐—ฎ๐—น-๐—ช๐—ผ๐—ฟ๐—น๐—ฑ ๐—”๐—ฑ๐˜ƒ๐—ถ๐—ฐ๐—ฒ

When evaluating your regression model:
โž” ๐——๐—ผ๐—ปโ€™๐˜ ๐—ท๐˜‚๐˜€๐˜ ๐—น๐—ผ๐—ผ๐—ธ ๐—ฎ๐˜ ๐—ฝ-๐˜ƒ๐—ฎ๐—น๐˜‚๐—ฒ๐˜€ ๐—ฎ๐—น๐—ผ๐—ป๐—ฒ.

๐—–๐—ผ๐—ป๐˜€๐—ถ๐—ฑ๐—ฒ๐—ฟ:
โ€ข The featureโ€™s practical importance (not just statistical)
โ€ข Multicollinearity (highly correlated variables can distort p-values)
โ€ข Overall model fit (Rยฒ, Adjusted Rยฒ)

๐—œ๐—ป ๐—ฆ๐—ต๐—ผ๐—ฟ๐˜:

๐—Ÿ๐—ผ๐˜„ ๐—ฃ-๐—ฉ๐—ฎ๐—น๐˜‚๐—ฒ = ๐—ง๐—ต๐—ฒ ๐—ณ๐—ฒ๐—ฎ๐˜๐˜‚๐—ฟ๐—ฒ ๐—บ๐—ฎ๐˜๐˜๐—ฒ๐—ฟ๐˜€.
๐—›๐—ถ๐—ด๐—ต ๐—ฃ-๐—ฉ๐—ฎ๐—น๐˜‚๐—ฒ = ๐—œ๐˜โ€™๐˜€ ๐—ฝ๐—ฟ๐—ผ๐—ฏ๐—ฎ๐—ฏ๐—น๐˜† ๐—ท๐˜‚๐˜€๐˜ ๐—ป๐—ผ๐—ถ๐˜€๐—ฒ.
โค7๐Ÿ‘5
๐Ÿš€ ๐—ฆ๐˜๐—ฟ๐˜‚๐—ด๐—ด๐—น๐—ถ๐—ป๐—ด ๐˜„๐—ถ๐˜๐—ต ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐—ฒ๐˜„๐˜€? ๐—™๐—ผ๐—น๐—น๐—ผ๐˜„ ๐—ง๐—ต๐—ถ๐˜€ ๐—ฅ๐—ผ๐—ฎ๐—ฑ๐—บ๐—ฎ๐—ฝ! ๐Ÿš€

Data Science interviews can be daunting, but with the right approach, you can ace them! If you're feeling overwhelmed, here's a roadmap to guide you through the process and help you succeed:

๐Ÿ” ๐Ÿญ. ๐—จ๐—ป๐—ฑ๐—ฒ๐—ฟ๐˜€๐˜๐—ฎ๐—ป๐—ฑ ๐˜๐—ต๐—ฒ ๐—•๐—ฎ๐˜€๐—ถ๐—ฐ๐˜€:
Master fundamental concepts like statistics, linear algebra, and probability. These are crucial for tackling both theoretical and practical questions.

๐Ÿ’ป ๐Ÿฎ. ๐—ช๐—ผ๐—ฟ๐—ธ ๐—ผ๐—ป ๐—ฅ๐—ฒ๐—ฎ๐—น-๐—ช๐—ผ๐—ฟ๐—น๐—ฑ ๐—ฃ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜๐˜€:
Build a strong portfolio by solving real-world problems. Kaggle competitions, open datasets, and personal projects are great ways to gain hands-on experience.

๐Ÿง  ๐Ÿฏ. ๐—ฆ๐—ต๐—ฎ๐—ฟ๐—ฝ๐—ฒ๐—ป ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—–๐—ผ๐—ฑ๐—ถ๐—ป๐—ด ๐—ฆ๐—ธ๐—ถ๐—น๐—น๐˜€:
Coding is key in Data Science! Practice on platforms like LeetCode, HackerRank, or Codewars to boost your problem-solving ability and efficiency. Be comfortable with Python, SQL, and essential libraries.

๐Ÿ“Š ๐Ÿฐ. ๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ ๐——๐—ฎ๐˜๐—ฎ ๐—ช๐—ฟ๐—ฎ๐—ป๐—ด๐—น๐—ถ๐—ป๐—ด & ๐—ฃ๐—ฟ๐—ฒ๐—ฝ๐—ฟ๐—ผ๐—ฐ๐—ฒ๐˜€๐˜€๐—ถ๐—ป๐—ด:
A significant portion of Data Science work revolves around cleaning and preparing data. Make sure you're comfortable with handling missing data, outliers, and feature engineering.

๐Ÿ“š ๐Ÿฑ. ๐—ฆ๐˜๐˜‚๐—ฑ๐˜† ๐—”๐—น๐—ด๐—ผ๐—ฟ๐—ถ๐˜๐—ต๐—บ๐˜€ & ๐— ๐—ผ๐—ฑ๐—ฒ๐—น๐˜€:
From decision trees to neural networks, ensure you understand how different models work and when to apply them. Know their strengths, weaknesses, and the mathematical principles behind them.

๐Ÿ’ฌ ๐Ÿฒ. ๐—œ๐—บ๐—ฝ๐—ฟ๐—ผ๐˜ƒ๐—ฒ ๐—–๐—ผ๐—บ๐—บ๐˜‚๐—ป๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—ฆ๐—ธ๐—ถ๐—น๐—น๐˜€:
Being able to explain complex concepts in a simple way is essential, especially when communicating with non-technical stakeholders. Practice explaining your findings and solutions clearly.

๐Ÿ”„ ๐Ÿณ. ๐— ๐—ผ๐—ฐ๐—ธ ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐—ฒ๐˜„๐˜€ & ๐—™๐—ฒ๐—ฒ๐—ฑ๐—ฏ๐—ฎ๐—ฐ๐—ธ:
Practice mock interviews with peers or mentors. Constructive feedback will help you identify areas of improvement and build confidence.

๐Ÿ“ˆ ๐Ÿด. ๐—ž๐—ฒ๐—ฒ๐—ฝ ๐—จ๐—ฝ ๐—ช๐—ถ๐˜๐—ต ๐—ง๐—ฟ๐—ฒ๐—ป๐—ฑ๐˜€:
Data Science is a fast-evolving field! Stay updated on the latest techniques, tools, and industry trends to remain competitive.

๐Ÿ‘‰ ๐—ฃ๐—ฟ๐—ผ ๐—ง๐—ถ๐—ฝ: Be persistent! Rejections are part of the journey, but every experience teaches you something new.
๐Ÿ‘3โค2๐ŸŽ‰1