Machine Learning Roadmap โคด๏ธ
๐7
โ
Free Courses with Certificate:
https://t.iss.one/free4unow_backup
Best Telegram channels to get free coding & data science resources
๐๐
https://t.iss.one/addlist/4q2PYC0pH_VjZDk5
https://t.iss.one/free4unow_backup
Best Telegram channels to get free coding & data science resources
๐๐
https://t.iss.one/addlist/4q2PYC0pH_VjZDk5
Telegram
Free Courses with Certificate - Python Programming, Data Science, Java Coding, SQL, Web Development, AI, ML, ChatGPT Expert
We provide unlimited Free Courses with Certificate to learn Python, Data Science, Java, Web development, AI, ML, Finance, Hacking, Marketing and many more from top websites.
For promotions: @love_data
For promotions: @love_data
โค2
ROADMAP.jpg
60.2 KB
๐ Data Scientist Roadmap for 2025 ๐งโ๐ป๐
Want to become a Data Scientist in 2025? Here's a roadmap covering the essential skills:
โ Programming: Python, SQL
โ Maths: Statistics, Linear Algebra, Calculus
โ Data Analysis: Data Wrangling, EDA
โ Machine Learning: Classification, Regression, Clustering, Deep Learning
โ Visualization: PowerBI, Tableau, Matplotlib, Plotly
โ Web Scraping: BeautifulSoup, Scrapy, Selenium
Mastering these will set you up for success in the ever-growing field of Data Science!
๐ก What skills are you focusing on this year? Letโs discuss in the comments! ๐
Want to become a Data Scientist in 2025? Here's a roadmap covering the essential skills:
โ Programming: Python, SQL
โ Maths: Statistics, Linear Algebra, Calculus
โ Data Analysis: Data Wrangling, EDA
โ Machine Learning: Classification, Regression, Clustering, Deep Learning
โ Visualization: PowerBI, Tableau, Matplotlib, Plotly
โ Web Scraping: BeautifulSoup, Scrapy, Selenium
Mastering these will set you up for success in the ever-growing field of Data Science!
๐ก What skills are you focusing on this year? Letโs discuss in the comments! ๐
๐8โค1
Hey Guys๐,
The Average Salary Of a Data Scientist is 14LPA
๐๐๐๐จ๐ฆ๐ ๐ ๐๐๐ซ๐ญ๐ข๐๐ข๐๐ ๐๐๐ญ๐ ๐๐๐ข๐๐ง๐ญ๐ข๐ฌ๐ญ ๐๐ง ๐๐จ๐ฉ ๐๐๐๐ฌ๐
We help you master the required skills.
Learn by doing, build Industry level projects
๐ฉโ๐ 1500+ Students Placed
๐ผ 7.2 LPA Avg. Package
๐ฐ 41 LPA Highest Package
๐ค 450+ Hiring Partners
Apply for FREE๐ :
https://tracking.acciojob.com/g/PUfdDxgHR
( Limited Slots )
The Average Salary Of a Data Scientist is 14LPA
๐๐๐๐จ๐ฆ๐ ๐ ๐๐๐ซ๐ญ๐ข๐๐ข๐๐ ๐๐๐ญ๐ ๐๐๐ข๐๐ง๐ญ๐ข๐ฌ๐ญ ๐๐ง ๐๐จ๐ฉ ๐๐๐๐ฌ๐
We help you master the required skills.
Learn by doing, build Industry level projects
๐ฉโ๐ 1500+ Students Placed
๐ผ 7.2 LPA Avg. Package
๐ฐ 41 LPA Highest Package
๐ค 450+ Hiring Partners
Apply for FREE๐ :
https://tracking.acciojob.com/g/PUfdDxgHR
( Limited Slots )
๐1
Python is a popular programming language in the field of data analysis due to its versatility, ease of use, and extensive libraries for data manipulation, visualization, and analysis. Here are some key Python skills that are important for data analysts:
1. Basic Python Programming: Understanding basic Python syntax, data types, control structures, functions, and object-oriented programming concepts is essential for data analysis in Python.
2. NumPy: NumPy is a fundamental package for scientific computing in Python. It provides support for large multidimensional arrays and matrices, along with a collection of mathematical functions to operate on these arrays.
3. Pandas: Pandas is a powerful library for data manipulation and analysis in Python. It provides data structures like DataFrames and Series that make it easy to work with structured data and perform tasks such as filtering, grouping, joining, and reshaping data.
4. Matplotlib and Seaborn: Matplotlib is a versatile library for creating static, interactive, and animated visualizations in Python. Seaborn is built on top of Matplotlib and provides a higher-level interface for creating attractive statistical graphics.
5. Scikit-learn: Scikit-learn is a popular machine learning library in Python that provides tools for building predictive models, performing clustering and classification tasks, and evaluating model performance.
6. Jupyter Notebooks: Jupyter Notebooks are an interactive computing environment that allows you to create and share documents containing live code, equations, visualizations, and narrative text. They are commonly used by data analysts for exploratory data analysis and sharing insights.
7. SQLAlchemy: SQLAlchemy is a Python SQL toolkit and Object-Relational Mapping (ORM) library that provides a high-level interface for interacting with relational databases using Python.
8. Regular Expressions: Regular expressions (regex) are powerful tools for pattern matching and text processing in Python. They are useful for extracting specific information from text data or performing data cleaning tasks.
9. Data Visualization Libraries: In addition to Matplotlib and Seaborn, data analysts may also use other visualization libraries like Plotly, Bokeh, or Altair to create interactive visualizations in Python.
10. Web Scraping: Knowledge of web scraping techniques using libraries like BeautifulSoup or Scrapy can be useful for collecting data from websites for analysis.
By mastering these Python skills and applying them to real-world data analysis projects, you can enhance your proficiency as a data analyst and unlock new opportunities in the field.
1. Basic Python Programming: Understanding basic Python syntax, data types, control structures, functions, and object-oriented programming concepts is essential for data analysis in Python.
2. NumPy: NumPy is a fundamental package for scientific computing in Python. It provides support for large multidimensional arrays and matrices, along with a collection of mathematical functions to operate on these arrays.
3. Pandas: Pandas is a powerful library for data manipulation and analysis in Python. It provides data structures like DataFrames and Series that make it easy to work with structured data and perform tasks such as filtering, grouping, joining, and reshaping data.
4. Matplotlib and Seaborn: Matplotlib is a versatile library for creating static, interactive, and animated visualizations in Python. Seaborn is built on top of Matplotlib and provides a higher-level interface for creating attractive statistical graphics.
5. Scikit-learn: Scikit-learn is a popular machine learning library in Python that provides tools for building predictive models, performing clustering and classification tasks, and evaluating model performance.
6. Jupyter Notebooks: Jupyter Notebooks are an interactive computing environment that allows you to create and share documents containing live code, equations, visualizations, and narrative text. They are commonly used by data analysts for exploratory data analysis and sharing insights.
7. SQLAlchemy: SQLAlchemy is a Python SQL toolkit and Object-Relational Mapping (ORM) library that provides a high-level interface for interacting with relational databases using Python.
8. Regular Expressions: Regular expressions (regex) are powerful tools for pattern matching and text processing in Python. They are useful for extracting specific information from text data or performing data cleaning tasks.
9. Data Visualization Libraries: In addition to Matplotlib and Seaborn, data analysts may also use other visualization libraries like Plotly, Bokeh, or Altair to create interactive visualizations in Python.
10. Web Scraping: Knowledge of web scraping techniques using libraries like BeautifulSoup or Scrapy can be useful for collecting data from websites for analysis.
By mastering these Python skills and applying them to real-world data analysis projects, you can enhance your proficiency as a data analyst and unlock new opportunities in the field.
๐8
TOP CONCEPTS FOR INTERVIEW PREPARATION!!
๐TOP 10 SQL Concepts for Job Interview
1. Aggregate Functions (SUM/AVG)
2. Group By and Order By
3. JOINs (Inner/Left/Right)
4. Union and Union All
5. Date and Time processing
6. String processing
7. Window Functions (Partition by)
8. Subquery
9. View and Index
10. Common Table Expression (CTE)
๐TOP 10 Statistics Concepts for Job Interview
1. Sampling
2. Experiments (A/B tests)
3. Descriptive Statistics
4. p-value
5. Probability Distributions
6. t-test
7. ANOVA
8. Correlation
9. Linear Regression
10. Logistics Regression
๐TOP 10 Python Concepts for Job Interview
1. Reading data from file/table
2. Writing data to file/table
3. Data Types
4. Function
5. Data Preprocessing (numpy/pandas)
6. Data Visualisation (Matplotlib/seaborn/bokeh)
7. Machine Learning (sklearn)
8. Deep Learning (Tensorflow/Keras/PyTorch)
9. Distributed Processing (PySpark)
10. Functional and Object Oriented Programming
Like โค๏ธ the post if it was helpful to you!!!
๐TOP 10 SQL Concepts for Job Interview
1. Aggregate Functions (SUM/AVG)
2. Group By and Order By
3. JOINs (Inner/Left/Right)
4. Union and Union All
5. Date and Time processing
6. String processing
7. Window Functions (Partition by)
8. Subquery
9. View and Index
10. Common Table Expression (CTE)
๐TOP 10 Statistics Concepts for Job Interview
1. Sampling
2. Experiments (A/B tests)
3. Descriptive Statistics
4. p-value
5. Probability Distributions
6. t-test
7. ANOVA
8. Correlation
9. Linear Regression
10. Logistics Regression
๐TOP 10 Python Concepts for Job Interview
1. Reading data from file/table
2. Writing data to file/table
3. Data Types
4. Function
5. Data Preprocessing (numpy/pandas)
6. Data Visualisation (Matplotlib/seaborn/bokeh)
7. Machine Learning (sklearn)
8. Deep Learning (Tensorflow/Keras/PyTorch)
9. Distributed Processing (PySpark)
10. Functional and Object Oriented Programming
Like โค๏ธ the post if it was helpful to you!!!
๐3โค1
Q. Explain the data preprocessing steps in data analysis.
Ans. Data preprocessing transforms the data into a format that is more easily and effectively processed in data mining, machine learning and other data science tasks.
1. Data profiling.
2. Data cleansing.
3. Data reduction.
4. Data transformation.
5. Data enrichment.
6. Data validation.
Q. What Are the Three Stages of Building a Model in Machine Learning?
Ans. The three stages of building a machine learning model are:
Model Building: Choosing a suitable algorithm for the model and train it according to the requirement
Model Testing: Checking the accuracy of the model through the test data
Applying the Model: Making the required changes after testing and use the final model for real-time projects
Q. What are the subsets of SQL?
Ans. The following are the four significant subsets of the SQL:
Data definition language (DDL): It defines the data structure that consists of commands like CREATE, ALTER, DROP, etc.
Data manipulation language (DML): It is used to manipulate existing data in the database. The commands in this category are SELECT, UPDATE, INSERT, etc.
Data control language (DCL): It controls access to the data stored in the database. The commands in this category include GRANT and REVOKE.
Transaction Control Language (TCL): It is used to deal with the transaction operations in the database. The commands in this category are COMMIT, ROLLBACK, SET TRANSACTION, SAVEPOINT, etc.
Q. What is a Parameter in Tableau? Give an Example.
Ans. A parameter is a dynamic value that a customer could select, and you can use it to replace constant values in calculations, filters, and reference lines.
For example, when creating a filter to show the top 10 products based on total profit instead of the fixed value, you can update the filter to show the top 10, 20, or 30 products using a parameter.
Ans. Data preprocessing transforms the data into a format that is more easily and effectively processed in data mining, machine learning and other data science tasks.
1. Data profiling.
2. Data cleansing.
3. Data reduction.
4. Data transformation.
5. Data enrichment.
6. Data validation.
Q. What Are the Three Stages of Building a Model in Machine Learning?
Ans. The three stages of building a machine learning model are:
Model Building: Choosing a suitable algorithm for the model and train it according to the requirement
Model Testing: Checking the accuracy of the model through the test data
Applying the Model: Making the required changes after testing and use the final model for real-time projects
Q. What are the subsets of SQL?
Ans. The following are the four significant subsets of the SQL:
Data definition language (DDL): It defines the data structure that consists of commands like CREATE, ALTER, DROP, etc.
Data manipulation language (DML): It is used to manipulate existing data in the database. The commands in this category are SELECT, UPDATE, INSERT, etc.
Data control language (DCL): It controls access to the data stored in the database. The commands in this category include GRANT and REVOKE.
Transaction Control Language (TCL): It is used to deal with the transaction operations in the database. The commands in this category are COMMIT, ROLLBACK, SET TRANSACTION, SAVEPOINT, etc.
Q. What is a Parameter in Tableau? Give an Example.
Ans. A parameter is a dynamic value that a customer could select, and you can use it to replace constant values in calculations, filters, and reference lines.
For example, when creating a filter to show the top 10 products based on total profit instead of the fixed value, you can update the filter to show the top 10, 20, or 30 products using a parameter.
โค5๐1
How much Statistics must I know to become a Data Scientist?
This is one of the most common questions
Here are the must-know Statistics concepts every Data Scientist should know:
๐ฃ๐ฟ๐ผ๐ฏ๐ฎ๐ฏ๐ถ๐น๐ถ๐๐
โ Bayes' Theorem & conditional probability
โ Permutations & combinations
โ Card & die roll problem-solving
๐๐ฒ๐๐ฐ๐ฟ๐ถ๐ฝ๐๐ถ๐๐ฒ ๐๐๐ฎ๐๐ถ๐๐๐ถ๐ฐ๐ & ๐ฑ๐ถ๐๐๐ฟ๐ถ๐ฏ๐๐๐ถ๐ผ๐ป๐
โ Mean, median, mode
โ Standard deviation and variance
โ Bernoulli's, Binomial, Normal, Uniform, Exponential distributions
๐๐ป๐ณ๐ฒ๐ฟ๐ฒ๐ป๐๐ถ๐ฎ๐น ๐๐๐ฎ๐๐ถ๐๐๐ถ๐ฐ๐
โ A/B experimentation
โ T-test, Z-test, Chi-squared tests
โ Type 1 & 2 errors
โ Sampling techniques & biases
โ Confidence intervals & p-values
โ Central Limit Theorem
โ Causal inference techniques
๐ ๐ฎ๐ฐ๐ต๐ถ๐ป๐ฒ ๐น๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด
โ Logistic & Linear regression
โ Decision trees & random forests
โ Clustering models
โ Feature engineering
โ Feature selection methods
โ Model testing & validation
โ Time series analysis
Join our WhatsApp channel for more Statistics Resources
๐๐
https://whatsapp.com/channel/0029Vat3Dc4KAwEcfFbNnZ3O
Like if you need similar content ๐๐
This is one of the most common questions
Here are the must-know Statistics concepts every Data Scientist should know:
๐ฃ๐ฟ๐ผ๐ฏ๐ฎ๐ฏ๐ถ๐น๐ถ๐๐
โ Bayes' Theorem & conditional probability
โ Permutations & combinations
โ Card & die roll problem-solving
๐๐ฒ๐๐ฐ๐ฟ๐ถ๐ฝ๐๐ถ๐๐ฒ ๐๐๐ฎ๐๐ถ๐๐๐ถ๐ฐ๐ & ๐ฑ๐ถ๐๐๐ฟ๐ถ๐ฏ๐๐๐ถ๐ผ๐ป๐
โ Mean, median, mode
โ Standard deviation and variance
โ Bernoulli's, Binomial, Normal, Uniform, Exponential distributions
๐๐ป๐ณ๐ฒ๐ฟ๐ฒ๐ป๐๐ถ๐ฎ๐น ๐๐๐ฎ๐๐ถ๐๐๐ถ๐ฐ๐
โ A/B experimentation
โ T-test, Z-test, Chi-squared tests
โ Type 1 & 2 errors
โ Sampling techniques & biases
โ Confidence intervals & p-values
โ Central Limit Theorem
โ Causal inference techniques
๐ ๐ฎ๐ฐ๐ต๐ถ๐ป๐ฒ ๐น๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด
โ Logistic & Linear regression
โ Decision trees & random forests
โ Clustering models
โ Feature engineering
โ Feature selection methods
โ Model testing & validation
โ Time series analysis
Join our WhatsApp channel for more Statistics Resources
๐๐
https://whatsapp.com/channel/0029Vat3Dc4KAwEcfFbNnZ3O
Like if you need similar content ๐๐
๐6
Data Scientist Roadmap
|
|-- 1. Basic Foundations
| |-- a. Mathematics
| | |-- i. Linear Algebra
| | |-- ii. Calculus
| | |-- iii. Probability
| |
| | |
| |
| |
|
|
|-- 2. Data Exploration and Preprocessing
| |-- a. Exploratory Data Analysis (EDA)
| |-- b. Feature Engineering
| |-- c. Data Cleaning
| |-- d. Handling Missing Data
|
| | |
| |
| |
| |-- b. Unsupervised Learning
| | |-- i. Clustering
| | | |-- 1. K-means
| | | |-- 2. DBSCAN
| | |
| | |-- 1. Principal Component Analysis (PCA)
| | |-- 2. t-Distributed Stochastic Neighbor Embedding (t-SNE)
| |
| |
|
|
|-- 4. Deep Learning
| |-- a. Neural Networks
| | |-- i. Perceptron
| |
| |
| |-- c. Recurrent Neural Networks (RNNs)
| | |-- i. Sequence-to-Sequence Models
| | |-- ii. Text Classification
| |
| |
|
|
|-- 5. Big Data Technologies
| |-- a. Hadoop
| | |-- i. HDFS
| |
| |
|
|
|-- 6. Data Visualization and Reporting
| |-- a. Dashboarding Tools
| | |-- i. Tableau
| | |-- ii. Power BI
| | |-- iii. Dash (Python)
| |
|
|-- 7. Domain Knowledge and Soft Skills
| |-- a. Industry-specific Knowledge
| |-- b. Problem-solving
| |-- c. Communication Skills
| |-- d. Time Management
|
|-- a. Online Courses
|-- b. Books and Research Papers
|-- c. Blogs and Podcasts
|-- d. Conferences and Workshops
`-- e. Networking and Community Engagement
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
All the best ๐๐
|
|-- 1. Basic Foundations
| |-- a. Mathematics
| | |-- i. Linear Algebra
| | |-- ii. Calculus
| | |-- iii. Probability
| |
-- iv. Statistics
| |
| |-- b. Programming
| | |-- i. Python
| | | |-- 1. Syntax and Basic Concepts
| | | |-- 2. Data Structures
| | | |-- 3. Control Structures
| | | |-- 4. Functions
| | | -- 5. Object-Oriented Programming| | |
| |
-- ii. R (optional, based on preference)
| |
| |-- c. Data Manipulation
| | |-- i. Numpy (Python)
| | |-- ii. Pandas (Python)
| | -- iii. Dplyr (R)| |
|
-- d. Data Visualization
| |-- i. Matplotlib (Python)
| |-- ii. Seaborn (Python)
| -- iii. ggplot2 (R)|
|-- 2. Data Exploration and Preprocessing
| |-- a. Exploratory Data Analysis (EDA)
| |-- b. Feature Engineering
| |-- c. Data Cleaning
| |-- d. Handling Missing Data
|
-- e. Data Scaling and Normalization
|
|-- 3. Machine Learning
| |-- a. Supervised Learning
| | |-- i. Regression
| | | |-- 1. Linear Regression
| | | -- 2. Polynomial Regression| | |
| |
-- ii. Classification
| | |-- 1. Logistic Regression
| | |-- 2. k-Nearest Neighbors
| | |-- 3. Support Vector Machines
| | |-- 4. Decision Trees
| | -- 5. Random Forest| |
| |-- b. Unsupervised Learning
| | |-- i. Clustering
| | | |-- 1. K-means
| | | |-- 2. DBSCAN
| | |
-- 3. Hierarchical Clustering
| | |
| | -- ii. Dimensionality Reduction| | |-- 1. Principal Component Analysis (PCA)
| | |-- 2. t-Distributed Stochastic Neighbor Embedding (t-SNE)
| |
-- 3. Linear Discriminant Analysis (LDA)
| |
| |-- c. Reinforcement Learning
| |-- d. Model Evaluation and Validation
| | |-- i. Cross-validation
| | |-- ii. Hyperparameter Tuning
| | -- iii. Model Selection| |
|
-- e. ML Libraries and Frameworks
| |-- i. Scikit-learn (Python)
| |-- ii. TensorFlow (Python)
| |-- iii. Keras (Python)
| -- iv. PyTorch (Python)|
|-- 4. Deep Learning
| |-- a. Neural Networks
| | |-- i. Perceptron
| |
-- ii. Multi-Layer Perceptron
| |
| |-- b. Convolutional Neural Networks (CNNs)
| | |-- i. Image Classification
| | |-- ii. Object Detection
| | -- iii. Image Segmentation| |
| |-- c. Recurrent Neural Networks (RNNs)
| | |-- i. Sequence-to-Sequence Models
| | |-- ii. Text Classification
| |
-- iii. Sentiment Analysis
| |
| |-- d. Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU)
| | |-- i. Time Series Forecasting
| | -- ii. Language Modeling| |
|
-- e. Generative Adversarial Networks (GANs)
| |-- i. Image Synthesis
| |-- ii. Style Transfer
| -- iii. Data Augmentation|
|-- 5. Big Data Technologies
| |-- a. Hadoop
| | |-- i. HDFS
| |
-- ii. MapReduce
| |
| |-- b. Spark
| | |-- i. RDDs
| | |-- ii. DataFrames
| | -- iii. MLlib| |
|
-- c. NoSQL Databases
| |-- i. MongoDB
| |-- ii. Cassandra
| |-- iii. HBase
| -- iv. Couchbase|
|-- 6. Data Visualization and Reporting
| |-- a. Dashboarding Tools
| | |-- i. Tableau
| | |-- ii. Power BI
| | |-- iii. Dash (Python)
| |
-- iv. Shiny (R)
| |
| |-- b. Storytelling with Data
| -- c. Effective Communication|
|-- 7. Domain Knowledge and Soft Skills
| |-- a. Industry-specific Knowledge
| |-- b. Problem-solving
| |-- c. Communication Skills
| |-- d. Time Management
|
-- e. Teamwork
|
-- 8. Staying Updated and Continuous Learning|-- a. Online Courses
|-- b. Books and Research Papers
|-- c. Blogs and Podcasts
|-- d. Conferences and Workshops
`-- e. Networking and Community Engagement
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
All the best ๐๐
๐7
Machine Learning Project Ideas ๐
๐2โค1