Machine Learning & Artificial Intelligence | Data Science Free Courses
64.4K subscribers
557 photos
2 videos
98 files
425 links
Perfect channel to learn Data Analytics, Data Sciene, Machine Learning & Artificial Intelligence

Admin: @coderfun
Download Telegram
Machine Learning Roadmap โคด๏ธ
๐Ÿ‘7
Data science learning circle
๐Ÿฅฐ5โค1
ROADMAP.jpg
60.2 KB
๐Ÿš€ Data Scientist Roadmap for 2025 ๐Ÿง‘โ€๐Ÿ’ป๐Ÿ“Š
Want to become a Data Scientist in 2025? Here's a roadmap covering the essential skills:
โœ… Programming: Python, SQL
โœ… Maths: Statistics, Linear Algebra, Calculus
โœ… Data Analysis: Data Wrangling, EDA
โœ… Machine Learning: Classification, Regression, Clustering, Deep Learning
โœ… Visualization: PowerBI, Tableau, Matplotlib, Plotly
โœ… Web Scraping: BeautifulSoup, Scrapy, Selenium
Mastering these will set you up for success in the ever-growing field of Data Science!
๐Ÿ’ก What skills are you focusing on this year? Letโ€™s discuss in the comments! ๐Ÿš€
๐Ÿ‘8โค1
Hey Guys๐Ÿ‘‹,

The Average Salary Of a Data Scientist is 14LPA 

๐๐ž๐œ๐จ๐ฆ๐ž ๐š ๐‚๐ž๐ซ๐ญ๐ข๐Ÿ๐ข๐ž๐ ๐ƒ๐š๐ญ๐š ๐’๐œ๐ข๐ž๐ง๐ญ๐ข๐ฌ๐ญ ๐ˆ๐ง ๐“๐จ๐ฉ ๐Œ๐๐‚๐ฌ๐Ÿ˜

We help you master the required skills.

Learn by doing, build Industry level projects

๐Ÿ‘ฉโ€๐ŸŽ“ 1500+ Students Placed
๐Ÿ’ผ 7.2 LPA Avg. Package
๐Ÿ’ฐ 41 LPA Highest Package
๐Ÿค 450+ Hiring Partners

Apply for FREE๐Ÿ‘‡ :
https://tracking.acciojob.com/g/PUfdDxgHR

( Limited Slots )
๐Ÿ‘1
Python is a popular programming language in the field of data analysis due to its versatility, ease of use, and extensive libraries for data manipulation, visualization, and analysis. Here are some key Python skills that are important for data analysts:

1. Basic Python Programming: Understanding basic Python syntax, data types, control structures, functions, and object-oriented programming concepts is essential for data analysis in Python.

2. NumPy: NumPy is a fundamental package for scientific computing in Python. It provides support for large multidimensional arrays and matrices, along with a collection of mathematical functions to operate on these arrays.

3. Pandas: Pandas is a powerful library for data manipulation and analysis in Python. It provides data structures like DataFrames and Series that make it easy to work with structured data and perform tasks such as filtering, grouping, joining, and reshaping data.

4. Matplotlib and Seaborn: Matplotlib is a versatile library for creating static, interactive, and animated visualizations in Python. Seaborn is built on top of Matplotlib and provides a higher-level interface for creating attractive statistical graphics.

5. Scikit-learn: Scikit-learn is a popular machine learning library in Python that provides tools for building predictive models, performing clustering and classification tasks, and evaluating model performance.

6. Jupyter Notebooks: Jupyter Notebooks are an interactive computing environment that allows you to create and share documents containing live code, equations, visualizations, and narrative text. They are commonly used by data analysts for exploratory data analysis and sharing insights.

7. SQLAlchemy: SQLAlchemy is a Python SQL toolkit and Object-Relational Mapping (ORM) library that provides a high-level interface for interacting with relational databases using Python.

8. Regular Expressions: Regular expressions (regex) are powerful tools for pattern matching and text processing in Python. They are useful for extracting specific information from text data or performing data cleaning tasks.

9. Data Visualization Libraries: In addition to Matplotlib and Seaborn, data analysts may also use other visualization libraries like Plotly, Bokeh, or Altair to create interactive visualizations in Python.

10. Web Scraping: Knowledge of web scraping techniques using libraries like BeautifulSoup or Scrapy can be useful for collecting data from websites for analysis.

By mastering these Python skills and applying them to real-world data analysis projects, you can enhance your proficiency as a data analyst and unlock new opportunities in the field.
๐Ÿ‘8
Overview of Machine Learning
๐Ÿ‘3
Data Science : Definition, Challenges and Use cases
๐Ÿ‘4
Machine Learning Syllabus ๐Ÿ‘†
โค5
TOP CONCEPTS FOR INTERVIEW PREPARATION!!

๐Ÿš€TOP 10 SQL Concepts for Job Interview

1. Aggregate Functions (SUM/AVG)
2. Group By and Order By
3. JOINs (Inner/Left/Right)
4. Union and Union All
5. Date and Time processing
6. String processing
7. Window Functions (Partition by)
8. Subquery
9. View and Index
10. Common Table Expression (CTE)


๐Ÿš€TOP 10 Statistics Concepts for Job Interview

1. Sampling
2. Experiments (A/B tests)
3. Descriptive Statistics
4. p-value
5. Probability Distributions
6. t-test
7. ANOVA
8. Correlation
9. Linear Regression
10. Logistics Regression


๐Ÿš€TOP 10 Python Concepts for Job Interview

1. Reading data from file/table
2. Writing data to file/table
3. Data Types
4. Function
5. Data Preprocessing (numpy/pandas)
6. Data Visualisation (Matplotlib/seaborn/bokeh)
7. Machine Learning (sklearn)
8. Deep Learning (Tensorflow/Keras/PyTorch)
9. Distributed Processing (PySpark)
10. Functional and Object Oriented Programming

Like โค๏ธ the post if it was helpful to you!!!
๐Ÿ‘3โค1
Steps to become a successful data scientist
๐Ÿ‘3
Q. Explain the data preprocessing steps in data analysis.

Ans. Data preprocessing transforms the data into a format that is more easily and effectively processed in data mining, machine learning and other data science tasks.
1. Data profiling.
2. Data cleansing.
3. Data reduction.
4. Data transformation.
5. Data enrichment.
6. Data validation.

Q. What Are the Three Stages of Building a Model in Machine Learning?

Ans. The three stages of building a machine learning model are:

Model Building: Choosing a suitable algorithm for the model and train it according to the requirement

Model Testing: Checking the accuracy of the model through the test data

Applying the Model: Making the required changes after testing and use the final model for real-time projects


Q. What are the subsets of SQL?

Ans. The following are the four significant subsets of the SQL:

Data definition language (DDL): It defines the data structure that consists of commands like CREATE, ALTER, DROP, etc.

Data manipulation language (DML): It is used to manipulate existing data in the database. The commands in this category are SELECT, UPDATE, INSERT, etc.

Data control language (DCL): It controls access to the data stored in the database. The commands in this category include GRANT and REVOKE.

Transaction Control Language (TCL): It is used to deal with the transaction operations in the database. The commands in this category are COMMIT, ROLLBACK, SET TRANSACTION, SAVEPOINT, etc.


Q. What is a Parameter in Tableau? Give an Example.

Ans. A parameter is a dynamic value that a customer could select, and you can use it to replace constant values in calculations, filters, and reference lines.
For example, when creating a filter to show the top 10 products based on total profit instead of the fixed value, you can update the filter to show the top 10, 20, or 30 products using a parameter.
โค5๐Ÿ‘1
How much Statistics must I know to become a Data Scientist?

This is one of the most common questions

Here are the must-know Statistics concepts every Data Scientist should know:

๐—ฃ๐—ฟ๐—ผ๐—ฏ๐—ฎ๐—ฏ๐—ถ๐—น๐—ถ๐˜๐˜†

โ†— Bayes' Theorem & conditional probability
โ†— Permutations & combinations
โ†— Card & die roll problem-solving

๐——๐—ฒ๐˜€๐—ฐ๐—ฟ๐—ถ๐—ฝ๐˜๐—ถ๐˜ƒ๐—ฒ ๐˜€๐˜๐—ฎ๐˜๐—ถ๐˜€๐˜๐—ถ๐—ฐ๐˜€ & ๐—ฑ๐—ถ๐˜€๐˜๐—ฟ๐—ถ๐—ฏ๐˜‚๐˜๐—ถ๐—ผ๐—ป๐˜€

โ†— Mean, median, mode
โ†— Standard deviation and variance
โ†—  Bernoulli's, Binomial, Normal, Uniform, Exponential distributions

๐—œ๐—ป๐—ณ๐—ฒ๐—ฟ๐—ฒ๐—ป๐˜๐—ถ๐—ฎ๐—น ๐˜€๐˜๐—ฎ๐˜๐—ถ๐˜€๐˜๐—ถ๐—ฐ๐˜€

โ†— A/B experimentation
โ†— T-test, Z-test, Chi-squared tests
โ†— Type 1 & 2 errors
โ†— Sampling techniques & biases
โ†— Confidence intervals & p-values
โ†— Central Limit Theorem
โ†— Causal inference techniques

๐— ๐—ฎ๐—ฐ๐—ต๐—ถ๐—ป๐—ฒ ๐—น๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด

โ†— Logistic & Linear regression
โ†— Decision trees & random forests
โ†— Clustering models
โ†— Feature engineering
โ†— Feature selection methods
โ†— Model testing & validation
โ†— Time series analysis

Join our WhatsApp channel for more Statistics Resources
๐Ÿ‘‡๐Ÿ‘‡
https://whatsapp.com/channel/0029Vat3Dc4KAwEcfFbNnZ3O

Like if you need similar content ๐Ÿ˜„๐Ÿ‘
๐Ÿ‘6
Data Science Resources ๐Ÿ‘†
๐Ÿ‘8
Data Scientist Roadmap
|
|-- 1. Basic Foundations
|   |-- a. Mathematics
|   |   |-- i. Linear Algebra
|   |   |-- ii. Calculus
|   |   |-- iii. Probability
|   |   -- iv. Statistics
|   |
|   |-- b. Programming
|   |   |-- i. Python
|   |   |   |-- 1. Syntax and Basic Concepts
|   |   |   |-- 2. Data Structures
|   |   |   |-- 3. Control Structures
|   |   |   |-- 4. Functions
|   |   |  
-- 5. Object-Oriented Programming
|   |   |
|   |   -- ii. R (optional, based on preference)
|   |
|   |-- c. Data Manipulation
|   |   |-- i. Numpy (Python)
|   |   |-- ii. Pandas (Python)
|   |  
-- iii. Dplyr (R)
|   |
|   -- d. Data Visualization
|       |-- i. Matplotlib (Python)
|       |-- ii. Seaborn (Python)
|      
-- iii. ggplot2 (R)
|
|-- 2. Data Exploration and Preprocessing
|   |-- a. Exploratory Data Analysis (EDA)
|   |-- b. Feature Engineering
|   |-- c. Data Cleaning
|   |-- d. Handling Missing Data
|   -- e. Data Scaling and Normalization
|
|-- 3. Machine Learning
|   |-- a. Supervised Learning
|   |   |-- i. Regression
|   |   |   |-- 1. Linear Regression
|   |   |  
-- 2. Polynomial Regression
|   |   |
|   |   -- ii. Classification
|   |       |-- 1. Logistic Regression
|   |       |-- 2. k-Nearest Neighbors
|   |       |-- 3. Support Vector Machines
|   |       |-- 4. Decision Trees
|   |      
-- 5. Random Forest
|   |
|   |-- b. Unsupervised Learning
|   |   |-- i. Clustering
|   |   |   |-- 1. K-means
|   |   |   |-- 2. DBSCAN
|   |   |   -- 3. Hierarchical Clustering
|   |   |
|   |  
-- ii. Dimensionality Reduction
|   |       |-- 1. Principal Component Analysis (PCA)
|   |       |-- 2. t-Distributed Stochastic Neighbor Embedding (t-SNE)
|   |       -- 3. Linear Discriminant Analysis (LDA)
|   |
|   |-- c. Reinforcement Learning
|   |-- d. Model Evaluation and Validation
|   |   |-- i. Cross-validation
|   |   |-- ii. Hyperparameter Tuning
|   |  
-- iii. Model Selection
|   |
|   -- e. ML Libraries and Frameworks
|       |-- i. Scikit-learn (Python)
|       |-- ii. TensorFlow (Python)
|       |-- iii. Keras (Python)
|      
-- iv. PyTorch (Python)
|
|-- 4. Deep Learning
|   |-- a. Neural Networks
|   |   |-- i. Perceptron
|   |   -- ii. Multi-Layer Perceptron
|   |
|   |-- b. Convolutional Neural Networks (CNNs)
|   |   |-- i. Image Classification
|   |   |-- ii. Object Detection
|   |  
-- iii. Image Segmentation
|   |
|   |-- c. Recurrent Neural Networks (RNNs)
|   |   |-- i. Sequence-to-Sequence Models
|   |   |-- ii. Text Classification
|   |   -- iii. Sentiment Analysis
|   |
|   |-- d. Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU)
|   |   |-- i. Time Series Forecasting
|   |  
-- ii. Language Modeling
|   |
|   -- e. Generative Adversarial Networks (GANs)
|       |-- i. Image Synthesis
|       |-- ii. Style Transfer
|      
-- iii. Data Augmentation
|
|-- 5. Big Data Technologies
|   |-- a. Hadoop
|   |   |-- i. HDFS
|   |   -- ii. MapReduce
|   |
|   |-- b. Spark
|   |   |-- i. RDDs
|   |   |-- ii. DataFrames
|   |  
-- iii. MLlib
|   |
|   -- c. NoSQL Databases
|       |-- i. MongoDB
|       |-- ii. Cassandra
|       |-- iii. HBase
|      
-- iv. Couchbase
|
|-- 6. Data Visualization and Reporting
|   |-- a. Dashboarding Tools
|   |   |-- i. Tableau
|   |   |-- ii. Power BI
|   |   |-- iii. Dash (Python)
|   |   -- iv. Shiny (R)
|   |
|   |-- b. Storytelling with Data
|  
-- c. Effective Communication
|
|-- 7. Domain Knowledge and Soft Skills
|   |-- a. Industry-specific Knowledge
|   |-- b. Problem-solving
|   |-- c. Communication Skills
|   |-- d. Time Management
|   -- e. Teamwork
|
-- 8. Staying Updated and Continuous Learning
    |-- a. Online Courses
    |-- b. Books and Research Papers
    |-- c. Blogs and Podcasts
    |-- d. Conferences and Workshops
    `-- e. Networking and Community Engagement

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

All the best ๐Ÿ‘๐Ÿ‘
๐Ÿ‘7
This is how ML works
๐Ÿคฃ29๐Ÿ˜5๐Ÿ‘1
Machine Learning Algorithms
๐Ÿ‘7๐Ÿคฃ2
Important Machine Learning Algorithms ๐Ÿ‘†
โค8๐Ÿ‘1
Machine Learning Project Ideas ๐Ÿ‘†
๐Ÿ‘2โค1